×
20.02.2016
216.014.ceb0

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ СКРЫТЫХ КОНТРОЛЬНЫХ ТОЧЕК ПРИ ИЗМЕРЕНИИ ОТКЛОНЕНИЙ ОТ КРУГОВОЙ ФОРМЫ СЕЧЕНИЙ КОРПУСОВ ЦИЛИНДРИЧЕСКИХ ВСТАВОК СУДОВ ИЛИ ПОДВОДНЫХ ЛОДОК

Вид РИД

Изобретение

№ охранного документа
0002575593
Дата охранного документа
20.02.2016
Аннотация: Изобретение относится к измерительной технике и может быть использовано при измерении отклонений округлости сечений крупногабаритных тел вращения. Техническим результатом изобретения является повышение точности измерений округлости и снижение трудоемкости измерительного процесса. Указанный технический результат достигается при измерении отклонений от круговой формы сечений корпусов цилиндрических вставок судов или подводных лодок, при котором размечают на внутренней поверхности обшивки корпуса контрольные точки в плоскости каждого контролируемого сечения и устанавливают на них отражатели, а внутри корпуса размещают измерительное устройство типа лазерного тахеометра. Сканируют контрольные точки, координаты контрольных точек передают на компьютер, который накапливает результаты замеров, затем последовательно перебазируют измерительное устройство относительно координат корпуса для дальнейшего сканирования всего массива контрольных точек сечений. Повышение точности и достоверности измерения отклонения от круговой формы корпусных конструкций обеспечивается охватом полного массива координат точек разметки без их пропусков и применением высокоточного лазерного инструмента с погрешностью измерения не более ±0,3 мм. 1 з.п. ф-лы. 1 ил.

Изобретение относится к измерительной технике и может быть использовано при измерении отклонений округлости сечений крупногабаритных тел вращения, главным образом сечений, например шпангоутов корпусов цилиндрических или конических вставок судов и подводных лодок.

Известен способ контроля формы и диаметров внутренних сечений крупногабаритных цилиндрических деталей по патенту РФ № 2166729, включающий установку внутрь обмеряемой детали измерительного устройства с плоскостью вращения перпендикулярной оси детали, вращение водила, в направляющих которого установлена с возможностью перемещения в радиальном направлении подпружиненная измерительная штанга, на конце которой имеется ролик, катящийся по поверхности проверяемой детали. При этом ось вращения водила устанавливается относительно оси детали приблизительно, с точностью до ±20% от диаметра, текущие значения радиуса детали и угла поворота водила через определенные промежутки передаются на электронное устройство (компьютер), которое накапливает результаты замеров, контролирует величину угла поворота водила, и при совершении водилом полного оборота численным интегрированием с использованием массива значений углов и радиусов контрольных точек определяют положение центра тяжести сечения детали, пересчитывают углы и радиусы контрольных точек детали относительно центра тяжести сечения детали, по пересчитанным значениям которых определяют геометрические характеристики сечения детали. Однако этот способ невозможно использовать в корпусных конструкциях с большим количеством элементов насыщения.

Известны способы измерения отклонений от круговой формы сечений корпусов подводных лодок с использованием радиусометрического и координатного принципов [1]. Радиусометрический способ заключается в измерении радиус-векторов точек внутренней поверхности оболочки. Измерения проводятся в плоскости контролируемого сечения (шпангоута) от заданного центра. Полученные в результате измерения данные пересчитываются к базе отсчета отклонений.

Используемый в настоящее время в судостроении указанный способ предусматривает:

- деление периметров измеряемых сечений (шпангоутов) оболочек на 16 или 48 частей;

- натяжение струны (металлической проволоки) между центрами торцов оболочки и фиксация, таким образом, ее центральной оси;

- измерение радиус-векторов размеченных на контуре точек от центральной оси длинномерным ручным инструментом (штихмасом или рулеткой с натяжным устройством).

Указанные измерения возможны только в случае, если внутри оболочки есть условия для использования крупногабаритного инструмента при отсутствии скрытых контрольных точек. Если же внутри оболочки уже установлены конструкции насыщения, то в их металлических стенках газовой резкой делают технологические вырезы (окна) для возможности прохода измерительного инструмента (штихмаса, рулетки) до точек разметки. В дальнейшем предусматривается заварка этих вырезов и проверка сварных швов гамма-дефектоскопией, что весьма трудоемко. Если вырезка окон не допускается, измерения радиус-векторов проводят не по всей совокупности контрольных точек. Такие измерения снижают качество контроля. После установки внутри оболочек полного комплекса крупногабаритного оборудования измерения указанным способом становятся невозможными.

Координатный способ измерений отклонений от круговой формы оболочек [1], принятый за прототип, основан на использовании современных лазерных средств 3D-измерения, среди которых наиболее востребованными являются тахеометр и трекер.

Применение лазерного тахеометра (трекера) предусматривает измерение дистанции до контрольной точки объекта (длины радиуса-вектора точки) лазерным дальномером и углов, образуемых проекциями радиуса-вектора с координатными осями встроенного электронного теодолита по горизонтальному и вертикальному лимбам. С целью обеспечения требуемой точности в контролируемых точках устанавливают специальные отражатели.

Измерение округлости всей оболочки невозможно произвести с одной установки без перебазирования координатного средства контроля. Поэтому предусматривается ряд стоянок тахеометра (трекера) в обход конструкций насыщения, загромождающих прямую видимость точек разметки. При этом результаты измерений с различных стоянок увязываются в единую корабельную систему координат с использованием предварительного создания внутри оболочки локальной геодезической сети с системой стационарных опорных элементов (отражателей).

Описанный координатный способ-прототип позволяет определить координаты точек разметки, скрытые от прямой видимости конструкциями насыщения, установленными в глубине внутренней полости оболочки, за счет их обхода при перебазировании средства измерения. Однако он не позволяет определить координаты точек разметки, скрытых стенками элементов насыщения, приваренных к внутренней поверхности обшивки оболочки (фундаментов, камер, цистерн и др.), которые невозможно обойти.

Задачей заявляемого изобретения является создание простого и надежного способа определения координат скрытых контрольных точек при измерении отклонений от круговой формы корпусных конструкций.

Технический результат, достигаемый в процессе решения поставленной задачи, заключается в повышении достоверности объема измерений округлости и снижении трудоемкости измерительного процесса.

Указанный технический результат достигается при измерении отклонений от круговой формы сечений корпусов цилиндрических вставок судов или подводных лодок, при котором размечают на внутренней поверхности обшивки корпуса контрольные точки в плоскости каждого контролируемого сечения, например, шпангоута и устанавливают на них отражатели, а внутри корпуса размещают измерительное устройство типа лазерного тахеометра или трекера таким образом, чтобы оси измерительного устройства совпадали с системой координат корпуса. Далее сканируют контрольные точки и координаты контрольных точек передают на компьютер, который накапливает результаты замеров, по значениям которых определяют геометрические характеристики контролируемого сечения, затем последовательно перебазируют измерительное устройство относительно координат корпуса для дальнейшего сканирования всего массива контрольных точек сечений.

Однако в отличие от прототипа перед установкой внутри корпуса элементов насыщения, закрывающих прямую видимость для лазерного луча некоторых контрольных точек, измеряют с помощью измерительного устройства расстояния от каждой закрываемой точки до ближайших к ней с одной или двух сторон двух открытых контрольных точек привязки, находящихся на общей разметке в плоскости контролируемого сечения, а также расстояние между ними. Результаты этих замеров используют затем при измерении отклонений от круговой формы сечений корпусов для определения координат скрытых контрольных точек по известной формуле треугольника, причем результат определения координат скрытой точки признается достоверным, если первичное и вторичное измеренные расстояния между точками привязки отличаются друг от друга не более чем на 0,1% от диаметра корпуса.

В частном случае все вычисления координат скрытых точек производят в среде графоаналитического программного обеспечения, т.е. по специальной программе.

Повышение точности и достоверности измерения отклонения от круговой формы корпусных конструкций обеспечивается охватом полного массива координат точек разметки без их пропусков и применением высокоточного лазерного инструмента (тахеометра, трекера) с погрешностью измерения не более ±0,3 мм.

Снижение трудоемкости процесса измерения достигается за счет отмены вскрытия в металлических стенках элементов насыщения проходных отверстий для лазерного луча с последующей их заваркой и проверкой гамма-дефектоскопией.

Заявляемый способ поясняется чертежом (фиг. 1), на котором показаны контуры сечений цилиндрической корпусной конструкции с разметкой контрольных точек и схемой их измерений, где номерами обозначены следующие позиции: (1÷16) - контрольные точки разметки, 7, 11 - скрытые контрольные точки, I - цилиндрическая корпусная конструкция, II - закрытый элемент насыщения (фундамент), III - след контролируемого сечения (шпангоута), IV - тахеометр (трекер).

Заявляемый способ осуществляется следующим образом на примере технологии процесса измерений отклонений круговой формы корпуса подводной лодки. В процессе изготовления корпусной конструкции цилиндрической вставки подводной лодки (цилиндрической обечайки прочного корпуса) по каждому контрольному сечению (шпангоуту) производится разметка равноудаленных контрольных точек, количество которых 16 для прочных корпусов подводных лодок. В соответствии с чертежом в каждом контрольном сечении по технологии предприятия-изготовителя отдельно отмечаются скрываемые элементами насыщения точки и ближайшие к каждой из них открытые точки, которые принимают за точки привязки. После встраивания изготовленной обечайки в корпус основного изделия (например, в корпус подводной лодки, находящийся на стапеле) перед установкой насыщения и сварочными работами, способными вызвать деформации обшивки и шпангоутов, с помощью тахеометра или трекера измеряют и протоколируют расстояния R1 и R2 от закрываемой точки до точек привязки, а также расстояние R3 между точками привязки.

После завершения плановых работ по установке внутри секции подводной лодки штатных элементов насыщения (выгородок, переборок, палуб, настилов и других конструктивных образований) перед гидравлическими испытаниями обязательно предусматриваются проверочные работы по определению отклонений сечений корпуса от круговой формы. Проверочные работы выполняются координатным способом с использованием в качестве измерительного инструмента тахеометра или трекера. Операторы измерительной бригады устанавливают отражатели поочередно в каждую размеченную контрольную точку на внутренней поверхности обечайки. Лазерный луч средства измерения визируется в режиме автоматического слежения на центр отражателя, и прибор определяет и записывает в базу данных трехмерные координаты соответствующей контрольной точки в системе координат прибора, включая зафиксированные точки привязки скрытых контрольных точек. При этом предусматривается перебазирование средства измерения с использованием ряда стоянок тахеометра (трекера) в обход конструкций насыщения, загромождающих прямую видимость точек разметки. Результаты измерений с различных стоянок увязываются в единую корабельную систему координат с использованием предварительного создания внутри оболочки локальной геодезической сети с системой стационарных опорных элементов (отражателей). По измеренным координатам точек привязки повторно определяется расстояние R3 между ними. Координаты соответствующей скрытой точки определяются как пересечение в плоскости шпангоута двух окружностей с радиусами R1 и R2 с центрами в точках привязки соответственно. При этом геометрические построения и вычисления производят или аналитически или в среде графоаналитического программного обеспечения персонального компьютера, причем результат определения координат скрытых точек признается достоверным, если первичное и вторичное измеренные расстояния между точками привязки отличаются не более чем на 0,1% от диаметра корпуса.

Источник информации

1. Гаврилюк Л.П. Обоснование выбора методики контроля отклонений от круговой формы корпусных конструкций. Судостроение. 2007. № 2. С. 55-58.


СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ СКРЫТЫХ КОНТРОЛЬНЫХ ТОЧЕК ПРИ ИЗМЕРЕНИИ ОТКЛОНЕНИЙ ОТ КРУГОВОЙ ФОРМЫ СЕЧЕНИЙ КОРПУСОВ ЦИЛИНДРИЧЕСКИХ ВСТАВОК СУДОВ ИЛИ ПОДВОДНЫХ ЛОДОК
Источник поступления информации: Роспатент

Показаны записи 61-70 из 369.
10.02.2014
№216.012.9e08

Штамповочно-экструзионный гидравлический пресс

Изобретение относится к оборудованию для штамповки деталей и прессования труб. Пресс оснащен составной станиной рамного типа, на которой смонтированы подвижная траверса с узлом пресс-штемпеля и рабочими гидроцилиндрами, прошивная траверса и неподвижная траверса. На неподвижной траверсе...
Тип: Изобретение
Номер охранного документа: 0002506164
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a2db

Система подачи топлива в газотурбинный двигатель с форсажной камерой сгорания

(57) Система подачи топлива в газотурбинный двигатель с форсажной камерой сгорания содержит параллельно установленные в магистрали топливоподающие насос высокого давления с электроприводом и двухступенчатый центробежный насос высокого давления с механическим приводом и отбором топлива за каждой...
Тип: Изобретение
Номер охранного документа: 0002507406
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a2dc

Система подачи топлива в камеру сгорания газотурбинного двигателя

Система подачи топлива в камеру сгорания газотурбинного двигателя содержит топливоподающие насосы с электроприводами, последовательно установленные в магистрали топливоподачи, связывающей топливный бак с камерой сгорания. При этом но меньшей мере один из насосов является основным...
Тип: Изобретение
Номер охранного документа: 0002507407
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a6d1

Способ беления льняной ровницы

Способ беления льняной ровницы предназначен для текстильной промышленности. Способ включает кисловку, восстановительную отварку и окислительную обработку раствором пероксида водорода при температуре от 95 до 100°С, авиважную обработку и промывки между технологическими операциями сначала...
Тип: Изобретение
Номер охранного документа: 0002508420
Дата охранного документа: 27.02.2014
20.03.2014
№216.012.ab88

Способ управления высокоскоростным мотор-шпинделем металлорежущего станка

Способ включает установку шпинделя внутри корпуса шпиндельного узла станка и закрепление посредством фланца с возможностью вращения в передних и задних подшипниковых опорах. При этом в корпусе и во фланце выполняют каналы для охлаждения элементов шпиндельного узла. Для повышения ресурса работы...
Тип: Изобретение
Номер охранного документа: 0002509627
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad67

Фазовращатель

Изобретение относится к области радиотехники и может быть использовано в антеннах с электронным сканированием луча. Создан новый тип отражательного СВЧ фазовращателя на основе многощелевой линии с развязкой СВЧ поля от управляющего напряжения. Технический результат - создание фазовращателя...
Тип: Изобретение
Номер охранного документа: 0002510106
Дата охранного документа: 20.03.2014
27.03.2014
№216.012.aefe

Радиометр с трехопорной модуляцией

Изобретение относится к области приборостроения, а именно к СВЧ-радиометрическим приемникам. Радиометр с трехопорной модуляцией содержит последовательно соединенные приемную антенну, трехвходовый СВЧ-переключатель, усилитель высокой частоты, квадратичный детектор, усилитель низкой частоты,...
Тип: Изобретение
Номер охранного документа: 0002510513
Дата охранного документа: 27.03.2014
27.03.2014
№216.012.af28

Защитное устройство станка

Изобретение относится к электротехнической промышленности, в частности к электрическим схемам, и может быть использовано в составе схемы включения и аварийной блокировки металлорежущих станков, в том числе зубообрабатывающих станков с числовым программным управлением (ЧПУ). Технический...
Тип: Изобретение
Номер охранного документа: 0002510555
Дата охранного документа: 27.03.2014
10.04.2014
№216.012.b212

Устройство для пропитки древесины с торца под давлением

Изобретение относится к деревообрабатывающей промышленности, в частности к оборудованию сквозной пропитки древесины жидкостями. Устройство содержит сварную раму 1, с закрепленной на ней металлической трубой 2, левую конусную насадку 3, правую конусную насадку 4, ультразвуковой излучатель 5,...
Тип: Изобретение
Номер охранного документа: 0002511302
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b510

Способ получения андроста-4,9(11)-диен-3,17-диона из фитостерина

Изобретение относится к биотехнологии. Предложен способ получения андроста-4,9(11)-диен-3,17-диона из фитостерина. Проводят микробиологическое окислительное элиминирование боковой цепи при атоме С с образованием 9α-гидроксиандрост-4-ен-3,17-диона. Отделяют биомассу. Экстрагируют...
Тип: Изобретение
Номер охранного документа: 0002512076
Дата охранного документа: 10.04.2014
Показаны записи 61-70 из 276.
10.11.2013
№216.012.7ffa

Способ изготовления электрического провода

Способ изготовления электрического провода предназначен для использования в авиационной, аэрокосмической, судостроительной и других отраслях промышленности. Способ изготовления электрического провода предусматривает введение в гранулят радиационно-сшиваемой композиции на основе сополимера...
Тип: Изобретение
Номер охранного документа: 0002498435
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8d56

Способ упрочнения изделий из твердых сплавов

Изобретение относится к области металлургии, в частности к технике вакуумно-плазменного напыления путем нанесения металлосодержащих покрытий на изделия из твердых сплавов. Способ включает распыление на рабочую поверхность изделия из твердого сплава слоя из карбидообразующих элементов 4-5...
Тип: Изобретение
Номер охранного документа: 0002501865
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.8fe3

Способ воздействия на организм

Изобретение относится к медицине, а именно к физиотерапии, оториноларингологии, аудиологии, восстановительной медицине, и может быть использовано для физиотерапевтического воздействия на организм при заболеваниях, развившихся в тканях и органах головы и шеи человека, таких как нейросенсорная...
Тип: Изобретение
Номер охранного документа: 0002502528
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9049

Морская гравитационная платформа

Изобретение относится к морским гравитационным платформам для освоения месторождений нефти и газа на континентальном шельфе. Морская гравитационная платформа содержит погружное основание, образованное донной и верхней опорными плитами, боковыми стенками и внутренними переборками. На погружном...
Тип: Изобретение
Номер охранного документа: 0002502630
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.90a7

Способ получения нитродифениламинов

Изобретение относится к способу получения нитродифениламинов общей формулы где нитро-группа может находиться в орто-, мета- или пара-положении относительно анилинового фрагмента. Способ заключается во взаимодействии анилина с нитрогалогенбензолами общей формулы CH(NO)X, где X=Cl, Br, I, при...
Тип: Изобретение
Номер охранного документа: 0002502724
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.90a8

Способ получения n-алкил-n'-фенил-пара-фенилендиаминов

Изобретение относится к усовершенствованному способу получения N-алкил-N'-фенил-п-фенилендиаминов общей формулы 1, где R, R - алкильные заместители. Способ заключается в восстановительном алкилировании 4-нитродифениламина (4-НДФА) алифатическими кетонами общей формулы R-CO-R, где R, R -...
Тип: Изобретение
Номер охранного документа: 0002502725
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.90fa

Способ выработки кож

Изобретение относится к кожевенной промышленности и может быть использовано при выработке кож для верха обуви, мебели и салонов автомобилей с применением наноразмерных минеральных дубителей и пигментов. Способ включает пикелевание голья, дубление титаноалюминиевым дубителем с размером частиц не...
Тип: Изобретение
Номер охранного документа: 0002502807
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.94c0

Узел герметизации стыков ограждающих конструкций искусственных грунтовых островов

Изобретение относится к гидротехническому строительству, а именно к устройствам для герметизации стыков сборных ограждающих конструкций искусственных грунтовых островов. Узел герметизации стыков ограждающих конструкций искусственных грунтовых островов включает два вертикальных паза на торцах...
Тип: Изобретение
Номер охранного документа: 0002503774
Дата охранного документа: 10.01.2014
27.01.2014
№216.012.9cfa

Многорезонансная однонаправленная вибраторная антенна

Изобретение относится к радиотехнике, а более конкретно к антенной технике, находящей широкое применение в радиотехнике, в радиосвязи, в радиолокации, в радионавигации, где требуются широкополосные или сверхширокополосные антенны, обладающие однонаправленной диаграммой направленности....
Тип: Изобретение
Номер охранного документа: 0002505892
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9cfb

Однонаправленная коническая антенна

Изобретение относится к радиотехнике, а более конкретно, к антенной технике, находящей широкое применение в радиосвязи, в радиолокации, в радионавигации, где требуются широкополосные или сверхширокополосные антенны, обладающие однонаправленной диаграммой направленности. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002505893
Дата охранного документа: 27.01.2014
+ добавить свой РИД