×
20.03.2016
216.014.caca

СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДА АЛЮМИНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам получения активного гидроксида алюминия, пригодного для получения эффективного коагулянта - гидроксохлорида алюминия, а также катализаторов, осушителей и сорбентов. Способ включает смешение кристаллических солей алюминия и карбоната натрия в твердом виде при расходе карбоната натрия 4-6 моль на 1 моль AlO. В качестве соли алюминия берут его нитрат Al(NO)·9HO или хлорид AlCl·6HO. Полученную реакционную массу выщелачивают водой при температуре не выше 50°C с образованием суспензии, из которой выделяют алюминийсодержащий осадок. Осадок промывают водой при температуре 60-80°C до величины pH промывной воды не более 7,5 и сушат. Технический результат - получение химически активного по отношению к соляной кислоте гидроксида алюминия, снижение количества жидких отходов, повышение экологичности способа. 3 з.п. ф-лы, 3 пр.
Реферат Свернуть Развернуть

Изобретение относится к способам получения активного гидроксида алюминия, пригодного для получения эффективного коагулянта - гидроксохлорида алюминия, а также катализаторов, осушителей и сорбентов.

Большинство существующих способов получения активного гидроксида алюминия заключается в его осаждении из растворов алюмината натрия или из растворов кислых солей алюминия под действием кислотных (HCl, HNO3, CO2) или основных реагентов (NH3, NH4OH, NaOH, Na2CO3, (NH4)2CO3) соответственно. Главным недостатком этих способов является недостаточно высокая химическая активность получаемого гидроксида алюминия по отношению к соляной кислоте. Кроме того, эти способы характеризуются значительными материальными потоками, многооперационностью, трудностью отделения осадка гидроксида алюминия от раствора, а также связаны с образованием больших объемов сточных вод, что снижает их экологичность.

Известен способ получения гидроксида алюминия (см. пат. 2258035 РФ, МПК C01F 7/02, 2003), включающий обработку раствора основного сульфата алюминия AlOHSO4, содержащего 75 г/л Al2O3, в непрерывном режиме путем смешения с 25%-ным водным раствором аммиака NH4OH при pH 9,5-10,5 в течение 30-45 минут. Полученную суспензию фильтруют с отделением гидроксида алюминия, который подвергают автоклавной обработке в 5-7,5%-ном растворе аммиака при pH 10-11 и температуре 135-145°C в течение 1-2 часов. Полученный осадок гидроксида алюминия псевдобемитной структуры отфильтровывают, промывают химически обессоленной водой и сушат.

Основным недостатком данного способа является то, что получаемый гидроксид алюминия химически неактивней по отношению к соляной кислоте. Способ также характеризуется высокой энергоемкостью по причине повышенной влажности гидроксида алюминия и необходимостью использования автоклава. Кроме того, вследствие образования большого количества трудноутилизируемых разбавленных растворов сульфата аммония, способ является недостаточно экологичным.

Известен также принятый в качестве прототипа способ получения гидроксида алюминия (см. а.с. 852798 СССР, МПК3 C01F 7/34, 1977), включающий смешение в водном растворе кристаллических солей алюминия и бикарбоната аммония при их молярном соотношении 1:(3-7), перемешивание полученной смеси в течение 2 часов, выдерживание образовавшегося осадка под маточником 5-24 часа, отделение осадка фильтрацией со скоростью 100-102 л/(м2·ч), промывку его водой при 70-90°C и сушку.

Основным недостатком известного способа является недостаточно высокая химическая активность получаемого гидроксида алюминия по отношению к соляной кислоте. Кроме того, способ характеризуется длительностью выдерживания осадка под маточным раствором и низкой скоростью фильтрации вследствие образования сильнообводненного гидроксида алюминия. Следствием этого является наличие значительных объемов разбавленных растворов аммонийных солей, что снижает экологичность способа.

Настоящее изобретение направлено на достижение технического результата, заключающегося в получении химически активного по отношению к соляной кислоте гидроксида алюминия и в интенсификации способа. Кроме того, техническим результатом является снижение количества жидких отходов, что повышает экологичность способа.

Технический результат достигается тем, что в способе получения гидроксида алюминия, включающем смешение кристаллических солей алюминия и угольной кислоты, выделение алюминийсодержащего осадка, его промывку водой при повышенной температуре и сушку, согласно изобретению в качестве соли угольной кислоты используют карбонат натрия, смешение солей ведут в твердом виде при расходе карбоната натрия 4-6 моль на 1 моль Al2O3, полученную реакционную массу выщелачивают водой с образованием суспензии, из которой выделяют алюминийсодержащий осадок, а промывку осадка водой ведут до величины pH промывной воды не более 7,5.

Технический результат достигается также тем, что в качестве соли алюминия берут его нитрат Al(NO3)3·9H2O или хлорид AlCl3·6H2O.

Технический результат достигается также и тем, что выщелачивание реакционной массы ведут при температуре не выше 50°C.

На достижение технического результата направлено то, что промывку осадка ведут при температуре 60-80°C.

При смешении кристаллических солей алюминия и карбоната натрия согласно изобретению, протекают следующие химические реакции:

Возможность протекания этих реакций при смешении солей в твердом виде обусловлена наличием слабосвязанной воды в составе кристаллогидратов солей алюминия. Образующийся при этом гидроалюмокарбонат натрия NaAl(OH)2CO3 имеет специфическую волокнистую структуру в результате преимущественного роста кристаллов вдоль одного направления. В процессе водного выщелачивания реакционной массы, полученной при расходе карбоната натрия 4-6 моль на 1 моль Al2O3, гидролитического разложения гидроалюмокарбоната натрия не происходит вследствие наличия в растворе достаточного количества ионов натрия. При смешении твердых солей в отсутствие жидкой фазы гидроалюмокарбонат натрия формируется в малогидратированной форме и поэтому легко выделяется из суспензии фильтрованием. При промывке осадка водой происходит постепенное разложение гидроалюмокарбоната натрия с получением гидроксида алюминия в форме псевдобемита, который наследует структуру гидроалюмокарбоната натрия, что и предопределяет его высокую химическую активность по отношению к соляной кислоте. При величине pH промывной воды не более 7,5 достигается полное разложение гидроалюмокарбоната натрия до гидроксида алюминия.

Использование карбоната натрия в качестве соли угольной кислоты позволяет при условии смешения солей в твердом виде получить алюминийсодержащий осадок в виде гидроалюмокарбоната натрия, обладающего специфической волокнистой структурой, которую наследует гидроксид алюминия, что и обусловливает его высокую химическую активность по отношению к соляной кислоте. Кроме того, смешение солей в твердом виде позволяет интенсифицировать способ, так как в этом случае гидроалюмокарбонат натрия формируется в малогидратированной хорошо фильтруемой форме и дополнительной выдержки осадка под маточным раствором не требуется.

Расход карбоната натрия 4-6 моль на 1 моль Al2O3 позволяет обеспечить величину pH образующейся суспензии, наиболее благоприятную для формирования волокнистой структуры гидроалюмокарбоната натрия. При расходе карбоната натрия менее 4 моль на 1 моль Al2O3 часть алюминия при смешении реагентов превращается в аморфный гидроксид алюминия, что приводит к резкому снижению химической активности получаемого гидроксида алюминия по отношению к соляной кислоте. Увеличение расхода карбоната натрия более 6 моль на 1 моль Al2O3 является избыточным и приводит к неоправданному увеличению количества промывной воды.

Выщелачивание реакционной массы водой позволяет получить суспензию, твердая фаза которой представляет собой нерастворимый алюминийсодержащий осадок в виде гидроалюмокарбоната натрия, а жидкая фаза - раствор солей натрия.

Промывка алюминийсодержащего осадка водой до величины pH промывной воды не более 7,5 обусловлена тем, что при этом происходит полное разложение гидроалюмокарбоната натрия с образованием гидроксида алюминия, который также обладает хорошей фильтруемостью, что способствует снижению количества промывных вод. Величина pH промывной воды более 7,5 свидетельствует о неполноте разложения гидроалюмокарбоната натрия, что приводит к существенному снижению химической активности получаемого гидроксида алюминия по отношению к соляной кислоте.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в получении химически активного по отношению к соляной кислоте гидроксида алюминия и в интенсификации способа за счет сокращения продолжительности операций при одновременном снижении количества жидких отходов.

В частных случаях осуществления изобретения предпочтительны следующие режимные параметры.

Использование в качестве соли алюминия нитрата алюминия Al(NO3)3·9H2O или хлорида алюминия AlCl3·6H2O обусловлено наличием в них кристаллизационной воды в количестве, необходимом для протекания реакции в соответствии с уравнениями (1) и (2) при условии смешения солей в твердом виде.

Проведение выщелачивания реакционной массы при температуре не выше 50°C гарантирует, наряду с наличием в растворе достаточного количества ионов натрия, предотвращение гидролитического разложения гидроалюмокарбоната натрия до гидроксида алюминия в процессе выщелачивания.

Промывка осадка при температуре 60-80°C способствует ускорению процесса разложения гидроалюмокарбоната натрия и минимизации количества промывной воды.

Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения получения химически активного по отношению к соляной кислоте гидроксида алюминия, интенсификации способа и снижения количества жидких отходов.

Сущность предлагаемого способа и достигаемые результаты более наглядно могут быть проиллюстрированы следующими примерами.

Пример 1. 500 г Al(NO3)3·9H2O и 282,7 г кристаллического карбоната натрия Na2CO3 (расход карбоната натрия 4 моль на 1 моль Al2O3) смешивают в твердом виде в лопастном смесителе в течение 20 минут. Полученную реакционную массу весом 714,4 г выщелачивают 1500 мл воды при температуре 40°C в течение 15 минут. Образовавшуюся суспензию фильтруют на нутч-фильтре с выделением алюминийсодержащего осадка. Скорость фильтрации составляет 1340 л/(м2·ч). Из полученного осадка отбирают пробу массой 5 г, высушивают при 105°C до постоянной массы и анализируют методом рентгенофазового анализа РФА. По данным РФА основной фазой алюминийсодержащего осадка является гидроалюмокарбонат натрия NaAl(OH)2CO3. Алюминийсодержащий осадок промывают 5 раз порциями воды по 250 мл с температурой 60°C до величины pH 5-й порции промывной воды 7,1. Промытый алюминийсодержащий осадок сушат при 105°C до постоянной массы. Получают 88,7 г сухого осадка с содержанием Al2O3 74,1%. Влажность осадка составляет 77,6%. По данным РФА осадок представляет собой гидроксид алюминия в форме псевдобемита.

Для оценки химической активности по отношению к соляной кислоте берут навеску полученного гидроксида алюминия массой 5 г, помещают в эксикатор над 37% соляной кислотой и выдерживают в течение 30 минут. После этого навеску помещают в 100 мл воды с температурой 25°C, в которой она полностью растворяется, что свидетельствует о высокой химической активности полученного гидроксида алюминия по отношению к соляной кислоте.

Пример 2. 500 г Al(NO3)3·9H2O и 424,1 г кристаллического карбоната натрия Na2CO3 (расход карбоната натрия 6 моль на 1 моль Al2O3) смешивают в твердом виде в лопастном смесителе в течение 30 минут. Полученную реакционную массу весом 855,6 г выщелачивают 2200 мл воды при температуре 50°C в течение 30 минут. Образовавшуюся суспензию фильтруют на нутч-фильтре с выделением алюминийсодержащего осадка. Скорость фильтрации составляет 1280 л/(м2·ч). Из полученного осадка отбирают пробу массой 5 г, высушивают при 105°C до постоянной массы и анализируют методом рентгенофазового анализа РФА. По данным РФА основной фазой алюминийсодержащего осадка является гидроалюмокарбонат натрия NaAl(OH)2CO3. Алюминийсодержащий осадок промывают 7 раз порциями воды по 250 мл с температурой 80°C до величины pH 7-й порции промывной воды 7,5. Промытый алюминийсодержащий осадок сушат при 105°C до постоянной массы. Получают 83,1 г сухого осадка с содержанием Al2O3 79,2%. Влажность осадка составляет 72,8%. По данным РФА осадок представляет собой гидроксид алюминия в форме псевдобемита.

Для оценки химической активности по отношению к соляной кислоте берут навеску полученного гидроксида алюминия массой 5 г, помещают в эксикатор над 37% соляной кислотой и выдерживают в течение 30 минут. После этого навеску помещают в 100 мл воды с температурой 25°C, в которой она полностью растворяется, что свидетельствует о высокой химической активности полученного гидроксида алюминия по отношению к соляной кислоте.

Пример 3. 322 г AlO3-6H2O и 353,3 г кристаллического карбоната натрия Na2CO3 (расход карбоната натрия 5 моль на 1 моль Al2O3) смешивают в лопастном смесителе в течение 25 минут. Полученную реакционную массу весом 539,7 г выщелачивают 2000 мл воды при температуре 45°C в течение 20 минут. Образовавшуюся суспензию фильтруют на нутч-фильтре с выделением алюминийсодержащего осадка. Скорость фильтрации составляет 1310 л/(м2·ч). Из полученного осадка отбирают пробу массой 5 г, высушивают при 105°C до постоянной массы и анализируют методом рентгенофазового анализа РФА. По данным РФА основной фазой алюминийсодержащего осадка является гидроалюмокарбонат натрия NaAl(OH)2CO3. Алюминийсодержащий осадок промывают 6 раз порциями воды по 250 мл с температурой 70°C до величины pH 6-й порции промывной воды 7,3. Промытый алюминийсодержащий осадок сушат при 105°C до постоянной массы. Получают 86,3 г сухого осадка с содержанием Al2O3 76,4%. Влажность осадка составляет 74,1%. По данным РФА осадок представляет собой гидроксид алюминия в форме псевдобемита.

Для оценки химической активности по отношению к соляной кислоте берут навеску полученного гидроксида алюминия массой 5 г, помещают в эксикатор над 37% соляной кислотой и выдерживают в течение 30 минут. После этого навеску помещают в 100 мл воды с температурой 25°C, в которой она полностью растворяется, что свидетельствует о высокой химической активности полученного гидроксида алюминия по отношению к соляной кислоте.

Из приведенных Примеров видно, что заявляемый способ по сравнению с прототипом позволяет получить в условиях твердофазного процесса гидроксид алюминия, химически активный по отношению к соляной кислоте. Способ является менее длительным, так как скорость фильтрации возрастает в 12,5-13,4 раз при меньшей продолжительности предшествующих операций. Соответственно снижается количество жидких отходов, что повышает экологичность способа. Предлагаемый способ относительно прост и может быть реализован с привлечением стандартного технологического оборудования.

Источник поступления информации: Роспатент

Показаны записи 41-50 из 72.
10.12.2015
№216.013.98b5

Способ получения порошка ниобия

Изобретение относится к получению высокочистых порошков ниобия с большой удельной поверхностью, которые могут быть использованы для производства анодов объемно-пористых конденсаторов. В герметичный реактор загружают исходную шихту, содержащую кислородное или кислородное и бескислородное...
Тип: Изобретение
Номер охранного документа: 0002570713
Дата охранного документа: 10.12.2015
27.12.2015
№216.013.9d52

Способ переработки титансодержащего материала

Изобретение может быть использовано в химической промышленности. Способ переработки титансодержащего материала включает выщелачивание измельченного материала серной кислотой при нагревании с получением суспензии. Затем суспензию фильтруют и отделяют твердый остаток от сернокислого раствора...
Тип: Изобретение
Номер охранного документа: 0002571904
Дата охранного документа: 27.12.2015
10.03.2016
№216.014.be0d

Способ получения шихты ниобата лития для выращивания монокристаллов

Изобретение относится к технологии получения легированной бором шихты ниобата лития, которая может быть использована для выращивания оптически однородных монокристаллов ниобата лития, а также беспористой пьезоэлектрической керамики. Из фторидного ниобийсодержащего раствора осаждают гидроксид...
Тип: Изобретение
Номер охранного документа: 0002576641
Дата охранного документа: 10.03.2016
10.05.2016
№216.015.3aab

Способ получения порошкообразного твердого электролита с высокой проводимостью по иону лития

Изобретение относится к способам получения керамических твердых электролитов с высокой проводимостью по иону лития и может быть использовано в электротехнической промышленности, преимущественно при изготовлении твердотельных литий-ионных аккумуляторов. Осуществляют смешивание водных растворов...
Тип: Изобретение
Номер охранного документа: 0002583762
Дата охранного документа: 10.05.2016
27.08.2016
№216.015.4eff

Способ получения фосфата титана

Изобретение может быть использовано в производстве сорбента катионов из водно-солевых растворов. Для получения фосфата титана берут титанилсульфат аммония в твердом виде и вводят его в 10-50% раствор фосфорной кислоты, взятой из расчета обеспечения массового отношения TiO:PO=1:(1,75-2,5)....
Тип: Изобретение
Номер охранного документа: 0002595657
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.604b

Способ переработки фосфогипса

Изобретение относится к переработке фосфогипса. После водной обработки фосфогипс выщелачивают серной кислотой с переводом концентрата редкоземельных элементов (РЗЭ) и примесных компонентов в раствор. Промытый фосфогипс нейтрализуют с получением гипсового продукта. Сорбцию РЗЭ осуществляют в...
Тип: Изобретение
Номер охранного документа: 0002590796
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.70de

Способ получения порошка молибдена

Изобретение относится к порошковой металлургии, а именно к металлотермическим способам получения нанокристаллических порошков молибдена. В реактор загружают оксидное соединение молибдена в виде молибдата щелочноземельного металла и пространственно отделенный от оксидного соединения...
Тип: Изобретение
Номер охранного документа: 0002596513
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.785d

Способ разложения алюминатных растворов при переработке нефелинового сырья

Изобретение относится к области химии и цветной металлургии и может быть использовано при переработке низкокачественного алюминийсодержащего сырья, в том числе нефелинов, методом спекания. Предложенный способ включает деление раствора после первой стадии обескремнивания на содощелочную и...
Тип: Изобретение
Номер охранного документа: 0002599295
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7956

Способ переработки ниобийсодержащего фторидного раствора с примесью сурьмы

Изобретение относится к экстракционной технологии извлечения и разделения ниобия и сурьмы и может найти применение при получении высокочистых соединений ниобия. В ниобийсодержащий фторидный раствор с примесью сурьмы вводят фторид аммония до обеспечения суммарной концентрации HF и NHF, равной...
Тип: Изобретение
Номер охранного документа: 0002599463
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7b1e

Способ извлечения свинца из никельсодержащего хлоридного раствора

Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для извлечения свинца из многокомпонентных водных растворов солей цветных металлов и железа при гидрометаллургической переработке никелевого сырья. Хлоридный раствор с концентрацией 5,5-8,0 моль/л хлора и...
Тип: Изобретение
Номер охранного документа: 0002600041
Дата охранного документа: 20.10.2016
Показаны записи 41-50 из 83.
10.12.2015
№216.013.98b5

Способ получения порошка ниобия

Изобретение относится к получению высокочистых порошков ниобия с большой удельной поверхностью, которые могут быть использованы для производства анодов объемно-пористых конденсаторов. В герметичный реактор загружают исходную шихту, содержащую кислородное или кислородное и бескислородное...
Тип: Изобретение
Номер охранного документа: 0002570713
Дата охранного документа: 10.12.2015
27.12.2015
№216.013.9d52

Способ переработки титансодержащего материала

Изобретение может быть использовано в химической промышленности. Способ переработки титансодержащего материала включает выщелачивание измельченного материала серной кислотой при нагревании с получением суспензии. Затем суспензию фильтруют и отделяют твердый остаток от сернокислого раствора...
Тип: Изобретение
Номер охранного документа: 0002571904
Дата охранного документа: 27.12.2015
10.03.2016
№216.014.be0d

Способ получения шихты ниобата лития для выращивания монокристаллов

Изобретение относится к технологии получения легированной бором шихты ниобата лития, которая может быть использована для выращивания оптически однородных монокристаллов ниобата лития, а также беспористой пьезоэлектрической керамики. Из фторидного ниобийсодержащего раствора осаждают гидроксид...
Тип: Изобретение
Номер охранного документа: 0002576641
Дата охранного документа: 10.03.2016
10.05.2016
№216.015.3aab

Способ получения порошкообразного твердого электролита с высокой проводимостью по иону лития

Изобретение относится к способам получения керамических твердых электролитов с высокой проводимостью по иону лития и может быть использовано в электротехнической промышленности, преимущественно при изготовлении твердотельных литий-ионных аккумуляторов. Осуществляют смешивание водных растворов...
Тип: Изобретение
Номер охранного документа: 0002583762
Дата охранного документа: 10.05.2016
27.08.2016
№216.015.4eff

Способ получения фосфата титана

Изобретение может быть использовано в производстве сорбента катионов из водно-солевых растворов. Для получения фосфата титана берут титанилсульфат аммония в твердом виде и вводят его в 10-50% раствор фосфорной кислоты, взятой из расчета обеспечения массового отношения TiO:PO=1:(1,75-2,5)....
Тип: Изобретение
Номер охранного документа: 0002595657
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.604b

Способ переработки фосфогипса

Изобретение относится к переработке фосфогипса. После водной обработки фосфогипс выщелачивают серной кислотой с переводом концентрата редкоземельных элементов (РЗЭ) и примесных компонентов в раствор. Промытый фосфогипс нейтрализуют с получением гипсового продукта. Сорбцию РЗЭ осуществляют в...
Тип: Изобретение
Номер охранного документа: 0002590796
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.70de

Способ получения порошка молибдена

Изобретение относится к порошковой металлургии, а именно к металлотермическим способам получения нанокристаллических порошков молибдена. В реактор загружают оксидное соединение молибдена в виде молибдата щелочноземельного металла и пространственно отделенный от оксидного соединения...
Тип: Изобретение
Номер охранного документа: 0002596513
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.785d

Способ разложения алюминатных растворов при переработке нефелинового сырья

Изобретение относится к области химии и цветной металлургии и может быть использовано при переработке низкокачественного алюминийсодержащего сырья, в том числе нефелинов, методом спекания. Предложенный способ включает деление раствора после первой стадии обескремнивания на содощелочную и...
Тип: Изобретение
Номер охранного документа: 0002599295
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7956

Способ переработки ниобийсодержащего фторидного раствора с примесью сурьмы

Изобретение относится к экстракционной технологии извлечения и разделения ниобия и сурьмы и может найти применение при получении высокочистых соединений ниобия. В ниобийсодержащий фторидный раствор с примесью сурьмы вводят фторид аммония до обеспечения суммарной концентрации HF и NHF, равной...
Тип: Изобретение
Номер охранного документа: 0002599463
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7b1e

Способ извлечения свинца из никельсодержащего хлоридного раствора

Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для извлечения свинца из многокомпонентных водных растворов солей цветных металлов и железа при гидрометаллургической переработке никелевого сырья. Хлоридный раствор с концентрацией 5,5-8,0 моль/л хлора и...
Тип: Изобретение
Номер охранного документа: 0002600041
Дата охранного документа: 20.10.2016
+ добавить свой РИД