×
27.03.2016
216.014.c8d0

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АЛКАЛОИДОВ

Вид РИД

Изобретение

№ охранного документа
0002578408
Дата охранного документа
27.03.2016
Аннотация: Изобретение относится к области нанотехнологии, фармакологии, фармацевтики и ветеринарной медицины. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование алкалоидов и оболочки нанокапсул натрий карбоксиметилцеллюлозы, а также использование осадителя гексана при получении нанокапсул физико-химическим методом осаждения нерастворителем. 4 ил., 20 пр.
Основные результаты: Способ получения нанокапсул алкалоидов, отличающийся тем, что в качестве оболочки используется натрий карбоксиметилцеллюлоза, которую осаждают из раствора в бензоле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты путем добавления гексана в качестве осадителя, при этом соотношение алкалоид : натрий карбоксиметилцеллюлоза составляет 1:3, сушку частиц проводят при комнатной температуре.

Изобретение относится к области нанотехнологии, фармакологии, фармацевтике и ветеринарной медицине.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в Пат. 2092155, МПК A61K 047/02, A61K 009/16 опубликован 10.10.1997 Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на использовании облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2091071, МПК A61K 35/10, Российская Федерация, опубликован 27.09.1997, предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.

Недостатком способа является применение шаровой мельницы и длительность процесса.

В пат. 2101010, МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.

В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N53/00, A01N 25/28, опубликован 27.08.1999 г., Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул алкалоидов, отличающимся тем, что в качестве оболочки нанокапсул используется натрий карбоксиметилцеллюлоза при их получении физико-химическим методом осаждения нерастворителем с использованием гексана в качестве осадителя, процесс получения осуществляется без специального оборудования.

В качестве алкалоидов использовались гигрин, атропин, гиосциамин, скополамин, кониин, пиперин, никотин, анабазин, кодеин, папаверин, хинин, иохимбин, резерпин, стрихнин, кофеин, эфедрин, норэфедрин, колхицин, капсаицин, которые широко применяются в фармацевтической промышленности и в сельском хозяйстве.

Отличительной особенностью предлагаемого метода является использование натрий карбоксиметилцеллюлозы в качестве оболочки нанокапсул алкалоидов - в качестве их ядра, а также использование гексана в качестве осадителя.

Результатом предлагаемого метода являются получение нанокапсул алкалоидов в натрий карбоксиметилцеллюлозе при 25°C в течение 20 минут. Выход микрокапсул составляет 100%.

ПРИМЕР 1. Получение нанокапсул гигрина, соотношение ядро/полимер 1:3

100 мг гигрина небольшими порциями диспергируют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого с желтоватым оттенком порошка. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул атропина, соотношение ядро/полимер 1:3

100 мг атропина небольшими порциями добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого с желтоватым оттенком порошка. Выход составил 100%.

ПРИМЕР. 3 Получение нанокапсул гиосциамина, соотношение ядро/полимер 1:3

100 мг гиосциамина небольшими порциями добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого с желтоватым оттенком порошка. Выход составил 100%.

ПРИМЕР 4. Получение нанокапсул скополамина, соотношение ядро/полимер 1:3

100 мг скополамина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 5. Получение нанокапсул кониина, соотношение ядро/полимер 1:3

100 мг кониина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 6. Получение нанокапсул пиперина, соотношение ядро/полимер 1:3

100 мг пиперина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 7. Получение нанокапсул никотина, соотношение ядро/полимер 1:3

100 мг никотина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 8. Получение нанокапсул анабазина, соотношение ядро/полимер 1:3

100 мг анабазина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 9. Получение нанокапсул кодеина, соотношение ядро/полимер 1:3

100 мг кодеина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 10. Получение нанокапсул папаверина, соотношение ядро/полимер 1:3

100 мг папаверина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре (см. рис. 4).

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 11. Получение микрокапсул хинина, соотношение ядро/полимер 1:3

100 мг хинина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 12. Получение нанокапсул иохимбина, соотношение ядро/полимер 1:3

100 мг иохимбина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата Е472 с при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 13. Получение нанокапсул резерпина, соотношение ядро/полимер 1:3

100 мг резерпина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 14. Получение нанокапсул стрихнина, соотношение ядро/полимер 1:3

100 мг стрихнина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре (см. рис. 3).

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 15. Получение нанокапсул кофеина, соотношение ядро/полимер 1:3

100 мг кофеина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 16. Получение нанокапсул эфедрина, соотношение ядро/полимер 1:3

100 мг эфедрина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре (см. рис. 2).

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 17. Получение нанокапсул норэфедрина, соотношение ядро/полимер 1:3

100 мг норэфедрина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 18. Получение нанокапсул колхицина, соотношение ядро/полимер 1:3

100 мг колхицина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре (см. рис. 1).

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 19. Получение нанокапсул капсаицина, соотношение ядро/полимер 1:3

100 мг капсаицина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 4 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого порошка. Выход составил 100%.

ПРИМЕР 20. Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.

Предложенная методика пригодна для фармацевтической и ветеринарной промышленности, а также в агрохимии вследствие минимальных потерь, быстроты, простоты получения и выделения нанокапсул.

Способ получения нанокапсул алкалоидов, отличающийся тем, что в качестве оболочки используется натрий карбоксиметилцеллюлоза, которую осаждают из раствора в бензоле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты путем добавления гексана в качестве осадителя, при этом соотношение алкалоид : натрий карбоксиметилцеллюлоза составляет 1:3, сушку частиц проводят при комнатной температуре.
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АЛКАЛОИДОВ
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АЛКАЛОИДОВ
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АЛКАЛОИДОВ
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АЛКАЛОИДОВ
Источник поступления информации: Роспатент

Показаны записи 241-250 из 672.
27.08.2016
№216.015.505d

Способ получения нанокапсул экстракта зеленого чая

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул экстракта зеленого чая. В качестве оболочки нанокапсул используют конжаковую камедь. Согласно способу по изобретению указанный экстракт добавляют в суспензию конжаковой камеди в бутаноле в присутствии препарата...
Тип: Изобретение
Номер охранного документа: 0002595834
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.5096

Способ получения нанокапсул иодида калия

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул иодида калия. В качестве оболочки нанокапсул используют конжаковую камедь. Согласно способу по изобретению иодид калия добавляют в суспензию конжаковой камеди в петролейном эфире в присутствии препарата Е472с в...
Тип: Изобретение
Номер охранного документа: 0002595820
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.50e4

Способ получения нанокапсул иодида калия в пектине

Изобретение относится к способу получения нанокапсул иодида калия в пектине. Указанный способ характеризуется тем, что к суспензии низко- или высокоэтерифицированного яблочного или цитрусового пектина в этаноле прибавляют препарат Е472с, полученную смесь перемешивают, добавляют иодид калия,...
Тип: Изобретение
Номер охранного документа: 0002595825
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.5da8

Способ получения нанокапсул рибофлавина в геллановой камеди

Изобретение относится к области нанотехнологии. Способ получения нанокапсул рибофлавина характеризуется тем, что в качестве оболочки для нанокапсул используют геллановую камедь, при этом 100 мг рибофлавина диспергируют в суспензию геллановой камеди в петролейном эфире, содержащую 100, 300 или...
Тип: Изобретение
Номер охранного документа: 0002590651
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5f46

Способ получения нанокапсул адаптогенов в пектине

Изобретение относится к области нанотехнологии и фармацевтики. Описан способ получения нанокапсул адаптогенов в оболочке из пектина. В качестве материала оболочки используется низкоэтерифицированный или высокоэтерифицированный яблочный или цитрусовый пектины. В качестве адаптогена используют...
Тип: Изобретение
Номер охранного документа: 0002590693
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.60a2

Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием

Изобретение относится в области нанотехнологии и фармацевтики. Описан способ получения нанокапсул с настойкой эхинацеи в оболочке из альгината натрия. Согласно способу настойку эхинацеи добавляют в суспензию альгината натрия в петролейном эфире в присутствии препарата Е472с в качестве...
Тип: Изобретение
Номер охранного документа: 0002590666
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6606

Способ получения нанокапсул креатина

Способ получения нанокапсул креатина в альгинате натрия, которые можно использовать в спортивном питании и животноводстве, относится к области нанотехнологии. Способ включает осаждение нанокапсул креатина петролейным эфиром из раствора альгината натрия в бутаноле в присутствии сложного эфира...
Тип: Изобретение
Номер охранного документа: 0002592202
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6613

Способ получения нанокапсул серы

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул серы. Согласно способу по изобретению серу добавляют в суспензию альгината натрия в бутаноле в присутствии препарата Е472с при перемешивании. Затем добавляют осадитель - серный эфир. Полученную суспензию нанокапсул...
Тип: Изобретение
Номер охранного документа: 0002592203
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6660

Способ получения нанокапсул серы

Изобретение относится к способу получения нанокапсул серы. Указанный способ характеризуется тем, что серу диспергируют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами...
Тип: Изобретение
Номер охранного документа: 0002592211
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.67ae

Способ получения нанокапсул адаптогенов в конжаковой камеди

Изобретение относится к способу получения нанокапсул адаптогенов. Указанный способ характеризуется тем, что экстракт элеутерококка или экстракт женьшеня добавляют в суспензию конжаковой камеди в бензоле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и...
Тип: Изобретение
Номер охранного документа: 0002591798
Дата охранного документа: 20.07.2016
Показаны записи 241-250 из 686.
13.01.2017
№217.015.78ea

Способ получения нанокапсул лекарственных растений, обладающих седативным действием в конжаковой камеди

Изобретение относится к способу получения нанокапсул лекарственных растений, обладающих седативным действием, характеризующемуся тем, что 5 мл настойки пустырника, или 5 мл настойки валерьяны, или 10 мл настойки пиона уклоняющегося добавляют в суспензию, содержащую 3 г конжаковой камеди в...
Тип: Изобретение
Номер охранного документа: 0002599009
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.796b

Способ получения нанокапсул ципрофлоксацина гидрохлорида в альгинате натрия

Изобретение относится к области нанотехнологии и медицины. Описан способ получения нанокапсул ципрофлоксацина гидрохлорида в оболочке из альгината натрия. Согласно способу по изобретению порошок ципрофлоксацина гидрохлорида добавляют в суспензию альгината натрия в бензоле, содержащую 0,01 г...
Тип: Изобретение
Номер охранного документа: 0002599007
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.79b4

Способ получения нанокапсул экстракта зеленого чая

Изобретение относится к способу получения нанокапсул экстракта зеленого чая. Указанный способ характеризуется тем, что экстракт зеленого чая добавляют в суспензию альгината натрия в бутаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя...
Тип: Изобретение
Номер охранного документа: 0002599484
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a11

Способ получения наночастиц ароматизатора "тропик" в альгинате натрия

Изобретение относится к способу получения нанокапсул ароматизатора «тропик» в альгинате натрия. Указанный способ характеризуется тем, что ароматизатор «тропик» растворяют в бутаноле, диспергируют полученную смесь в раствор альгината натрия в метаноле в присутствии сложного эфира глицерина с...
Тип: Изобретение
Номер охранного документа: 0002599486
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a4a

Способ получения нанокапсул флавоноидов шиповника

Изобретение относится к способу получения нанокапсул флавоноидов шиповника. Указанный способ характеризуется тем, что флавоноиды шиповника диспергируют в суспензию альгината натрия в изопропаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя...
Тип: Изобретение
Номер охранного документа: 0002599485
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7c55

Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием в конжаковой камеди

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием, характеризуется тем, что 5 мл настойки эхинацеи добавляют в суспензию конжаковой камеди в гексане, содержащую 3 г или...
Тип: Изобретение
Номер охранного документа: 0002600441
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7d38

Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием, в каррагинане

Изобретение относится к области фармацевтики. Описан способ получения нанокапсул лекарственных растений. В качестве оболочки нанокапсул используют каррагинан. Согласно способу по изобретению 10 мл настойки валерианы добавляют в суспензию каррагинана в диэтиловом эфире, содержащую 1 г...
Тип: Изобретение
Номер охранного документа: 0002600890
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7dbc

Способ получения нанокапсул экстракта зеленого чая в агар-агаре

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул экстракта зеленого чая характеризуется тем, что экстракт зеленого чая добавляют в суспензию агар-агара в серном эфире в присутствии 0,01 г препарата Е472с в качестве...
Тип: Изобретение
Номер охранного документа: 0002600862
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7e1f

Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием, характеризуется тем, что настойку боярышника добавляют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире в...
Тип: Изобретение
Номер охранного документа: 0002600861
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f6d

Способ получения нанокапсул иодида калия

Изобретение относится в области нанотехнологии, в частности фармацевтике и пищевой промышленности. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование...
Тип: Изобретение
Номер охранного документа: 0002599839
Дата охранного документа: 20.10.2016
+ добавить свой РИД