×
27.03.2016
216.014.c8a0

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ИСТОЧНИКОВ СЫРЬЯ ДЛЯ АРХЕОЛОГИЧЕСКИХ КЕРАМИЧЕСКИХ АРТЕФАКТОВ

Вид РИД

Изобретение

Аннотация: Использование: для определения источников сырья для керамических артефактов. Сущность изобретения заключается в том, что способ определения источников сырья для археологических керамических артефактов включает рентгеновское облучение исследуемого материала, получение графиков термостимулированной люминесценции облученного материала. Предварительно отбирают пробы керамических изделий и пробы глинистого материала из предполагаемых источников сырья без выделения монофракций кварца, затем получают графики термостимулированной люминесценции в интервале температур 20-500°С для проб, облученных без предварительного прокаливания (ИТЛ1), и для проб, облученных после предварительного прокаливания исследуемого материала до температуры 500°С (ИТЛ2), и по сходству значений интенсивности термостимулированной люминесценции облученного материала в пробах керамических изделий и пробах глинистого материала в температурном интервале 100-200°С (ИТЛ1 и ИТЛ2) и по сходству отношений ИТЛ1/ИТЛ2 в пробах керамических изделий и пробах глинистого материала определяют источник сырья для исследуемых археологических артефактов. Технический результат: повышение экспрессности и надежности определения источников сырья для керамических артефактов. 4 ил., 2 табл.
Основные результаты: Способ определения источников сырья для археологических керамических артефактов, включающий рентгеновское облучение исследуемого материала, получение графиков термостимулированной люминесценции облученного материала, отличающийся тем, что предварительно осуществляют отбор проб керамических изделий и проб глинистого материала из предполагаемых источников сырья без выделения монофракций кварца, затем получают графики термостимулированной люминесценции в интервале температур 20-500°С для проб, облученных без предварительного прокаливания (ИТЛ1), и для проб, облученных после предварительного прокаливания исследуемого материала до температуры 500°С (ИТЛ2), и по сходству значений интенсивности термостимулированной люминесценции облученного материала в пробах керамических изделий и пробах глинистого материала в температурном интервале 100-200°С (ИТЛ1 и ИТЛ2) и по сходству отношений ИТЛ1/ИТЛ2 в пробах керамических изделий и пробах глинистого материала определяют источник сырья для исследуемых археологических артефактов.

Изобретение относится к области археологии и может быть использовано при изучении археологических памятников для определения источников сырья для керамических артефактов.

Известен способ определения источников сырья для керамических артефактов на основе сравнения данных химического анализа для керамических изделий и глинистых пород. В настоящее время химический состав породы определяют с помощью трудоемких и дорогостоящих методов: рентгенофлюоресцентного анализа - РФА (в основе данного метода лежит зависимость интенсивности характеристического излучения от длины волны), масс-спектрометрии с индуктивно-связанной плазмой - ISP-MS (этот метод основан на использовании индуктивно-связанной плазмы в качестве источника ионов и масс-спектрометра для их разделения и детектирования) либо с помощью количественного спектрального анализа, также требующего длительной пробоподготовки. В результате, недостатком известного способа является сложная предварительная подготовка, большая затрата времени, большой объем исследуемого материала и средств на выполнение химического анализа. Кроме того, следует учитывать тот факт, что при различной температуре обжига во время производства керамики происходит концентрирование ряда элементов за счет улетучивания других, следствием чего могут быть ощутимые различия между количественным содержанием элементов-примесей в керамических изделиях и в источниках сырья (глинах).

Известен также минералогический способ определения источников сырья для керамических артефактов на основе диагностики минералов, входящих в состав керамики и глинистых пород, с помощью рентгенофазового анализа, заключающийся в том, что для исследуемых проб снимают рентгенограммы, после расшифровки которых с использованием диагностических таблиц, определяют минералы, входящие в состав данной пробы (Михеев В.И. Рентгенометрический определитель минералов/М.: Гос. Научно-техническое изд-во литературы по геологии и охране недр. - 1957. - С. 375-376). Недостатком этого способа является тот факт, что этим способом можно определить минерал только в том случае, если его содержание в пробе не менее одного процента. Другим недостатком этого метода является тот факт, что определение глинистых минералов требует специальной длительной пробоподготовки, заключающейся в многодневном отмучивании пробы. Кроме того, выводы, сделанные на основе сравнения минерального состава керамики и глинистых пород, могут быть некорректными ввиду того, что изготовление керамики обычно связано с высокотемпературным отжигом, в результате которого происходит изменение минерального состава.

Известен также термический способ определения глинистых минералов, заключающийся в изучении превращений, происходящих в условиях нагревания в минералах при различных физических и химических процессах, по сопровождающим их тепловым эффектам (Топор Н.Д., Огородова Л.П., Мельчакова Л.В. Термический анализ минералов и неорганических соединений. - М.: Изд-во МГУ, 1987. - 190 с.). Физические процессы связаны с изменением структуры или агрегатного состояния вещества без изменения его химического состава. Химические процессы приводят к изменению химического состава вещества. К таковым относятся дегидратация, диссоциация, окисление, реакция обмена и др. Каждому превращению, протекающему в образце, соответствует свой термический эффект. Совокупность всех термических эффектов при соответствующих температурах является индивидуальной характеристикой данного минерала, которая отражает особенности всех происходящих в нем превращений. Недостатком данного метода является сложность учета всех факторов, влияющих на результат анализа, таких как скорость нагревания, величина навески, степень дисперсии и плотности набивки образца в тигле, чувствительность в цепи дифференциальной термопары, свойства эталона, атмосфера печного пространства и др.

Наиболее близким по технической сущности является люминесцентный способ исследования структурного несовершенства кварца, заключающийся в том, что отбирают монофракции кварца, подвергают их рентгеновскому облучению при низких температурах (77 K), затем, нагревая до 170 K, регистрируют пики ТСЛ (термостимулированной люминесценции) 135 и 165 K и по их значению оценивают качество кварца (Вотяков С.Л., Крохалев В.Я., Пуртов В.К., Краснобаев А.А. Люминесцентный анализ структурного несовершенства кварца //Екатеринбург: УИФ "Наука", 1993. - С. 33). Низкодефектному кварцу соответствуют низкие отношения этих пиков и в целом низкая запасенная светосумма. Способ выбран за прототип. Недостатком известного способа является необходимость постоянного использования низкотемпературного рентгеновского возбуждения, получение низкотемпературных пиков ТСЛ, что связано с наличием специального вакуумного криостата и специализированной рентгеновской установки.

Задачей настоящего изобретения является разработка экспрессного способа определения источников сырья для археологических керамических артефактов с целью снижения себестоимости, повышения экспрессности и надежности определения источников сырья при сравнении керамических изделий и глинистых пород.

Поставленная задача решается тем, что согласно прототипу осуществляется пробоподготовка исследуемого материала, облучение его рентгеновскими лучами и возбуждение в нем термолюминесценции, но в отличие от прототипа отбор проб исследуемых керамических изделий и глинистого материала из предполагаемых источников сырья осуществляется без выделения монофракций кварца, что значительно облегчает пробоподготовку, затем получают графики термостимулированной люминесценции в интервале температур 20-300°С для проб, облученных без предварительного прокаливания (ИТЛ1), и для проб, облученных после предварительного прокаливания исследуемого материала до температуры 500°С (ИТЛ2).

Авторами изобретения экспериментально установлено, что источник сырья для исследуемых археологических артефактов определяется по сходству значений интенсивности термостимулированной люминесценции облученного материала в температурном интервале 100-200°С и отношений ИТЛ1/ИТЛ2 в пробах керамических изделий и пробах глинистого материала, что определяется наличием примесных и собственных дефектов на базе кремне- и алюмокислородных тетраэдров, характерных для большинства глинистых минералов и кварца. Различия между этими значениями не превышают 25-30% (Рисунок 1). Из рисунка 1 видно, что значения термостимулированной люминесценции в температурном интервале 100-200°С для образцов керамики №5 и глинистого материала №12 близки и находятся в пределах 530-540 усл.ед. для ИТЛ1 и в пределах 435-437 усл.ед. для ИТЛ2. То, что глинистый материал №12 послужил источником сырья для керамики №5, подтверждается данными рентгенофазового (с учетом того факта, что каолинит разрушился при температуре 500°С и поэтому в керамике его нет) и спектрального анализов (с учетом того факта, что за счет потерь при прокаливании во время изготовления керамики произошло концентрирование ряда элементов, например Ti) (таблицы 1 и 2).

Ниже приведены примеры конкретного осуществления изобретения.

Исследования проводились на образцах из четырех фрагментов керамической коллекции Томского кремля, обнаруженных внутри одного из объектов культурного слоя памятника - воеводской усадьбы. Также были исследованы пробы глинистых пород, взятых поблизости от воеводской усадьбы (в районе р. Ушайки на склоне Воскресенской горы) и в районе Лагерного сада, на берегу р. Томи, предполагаемых источниках сырья для керамических изделий Томского кремля. Было приготовлено 4 пробы керамических изделий и 4 пробы глинистых пород. Сравнительный термолюминесцентный анализ проводился на установке, собранной по схеме, основанной на измерении постоянного тока с использованием высоковольтного регулируемого блока питания фотоэлектронного умножителя ФЭУ-39, двух усилителей постоянного тока (УПТ) для фотоумножителя и для термопары, блока управления нагревом печки и блока оцифровки сигналов с ФЭУ и термопары и их передачи на компьютер. Нагревательный блок состоял из печи и регулятора температуры, измерение которой осуществлялось с помощью хромель-алюмелевой термопары. Термопара вместе с нагревателем градуировалась по реперным веществам. Скорость нагрева образца линейна и составляла 3.8-4°C в секунду. Все пробы были облучены в двух режимах: без предварительного прокаливания и после предварительного прокаливания до температуры 500°С. Для всех облученных проб снимались кривые термостимулированной люминесценции в диапазоне температур 20-300°С и проводился сравнительный анализ полученных данных с последующим определением источника сырья для исследуемых археологических артефактов по сходству значений интенсивности термостимулированной люминесценции облученного материала в пробах керамических изделий и пробах глинистого материала в температурном интервале 100-200°С (ИТЛ1 и ИТЛ2) и по сходству отношений ИТЛ1/ИТЛ2 в пробах керамических изделий и пробах глинистого материала.

Пример 1

Взяли образец керамического изделия (проба №5 - фрагмент донца белоглиняной керамики) и образец белой глины Лагерного сада г. Томска (проба №12). Сделали протолочки. Приготовили навески по 20 мг для проб №5 и №12. Каждую навеску разделили на две равные части. Одну часть навески №5 и навески №12 (по 10 мг) облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ1) в интервале температур 20-300°С. Другую часть навесок №5 и №12 предварительно прокалили до температуры 500°С, затем облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ2) в интервале температур 20-300°С (Рисунок 1). По сходству значений интенсивности термостимулированной люминесценции облученного керамического изделия №5 и пробы глинистого материала №12 в температурном интервале 100-200°С (ИТЛ1 и ИТЛ2) и по сходству отношений ИТЛ1/ИТЛ2 в пробе №5 (1,24) и пробе №12 (1,24), что видно из рисунка 1, определили пробу №12 как источник сырья для белоглиняной керамики №5. Достоверность определения подтверждена данными рентгенофазового анализа (с учетом того факта, что каолинит разрушился при температуре выше 500°С во время изготовления керамики и поэтому его там нет) и спектрального анализа (с учетом того факта, что за счет потерь при прокаливании во время изготовления керамики произошло концентрирование ряда элементов, например Ti) (таблицы 1 и 2).

Пример 2

Взяли образец керамического изделия (проба №3 - фрагмент муравленого печного изразца) и образец глинистого материала с осыпи западного склона Воскресенской горы г. Томска (проба №18). Сделали протолочки. Приготовили навески по 20 мг для проб №3 и №18. Каждую навеску разделили на две равные части. Одну часть навески №3 и навески №18 (по 10 мг) облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ1) в интервале температур 20-300°С. Другую часть навесок №3 и №18 предварительно прокалили до температуры 500°С, затем облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ2) в интервале температур 20-300°С (Рисунок 2). По сходству значений интенсивности термостимулированной люминесценции облученного керамического изделия №3 и пробы глинистого материала №18 в температурном интервале 100-200°С (ИТЛ1 и ИТЛ2) и по сходству отношений ИТЛ1/ИТЛ2 в пробе №3 (1,1) и пробе №18 (1,1), что видно из рисунка 2, определили пробу №18 как источник сырья для фрагмента муравленого печного изразца №3. Достоверность определения подтверждена данными рентгенофазового анализа (с учетом того факта, что каолинит и кальцит разрушились при температуре выше 500 °С и поэтому в керамике их нет) и спектрального анализа (с учетом того факта, что за счет потерь при прокаливании во время изготовления керамики произошло концентрирование ряда элементов, например Ti и Mn) (таблицы 1 и 2).

Пример 3

Взяли образец керамического изделия (проба №4 - фрагмент терракотового печного изразца) и образец черной глины Лагерного сада г. Томска (проба №14). Сделали протолочки. Приготовили навески по 20 мг для проб №4 и №14. Каждую навеску разделили на две равные части. Одну часть навески №4 и навески №14 (по 10 мг) облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ1) в интервале температур 20-300°С. Другую часть навесок №4 и №14 предварительно прокалили до температуры 500°С, затем облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ2) в интервале температур 20-300°С (Рисунок 3). По сходству значений интенсивности термостимулированной люминесценции облученного керамического изделия №4 и пробы глинистого материала №14 в температурном интервале 100-200°С (ИТЛ1 и ИТЛ2) и по сходству отношений ИТЛ1/ИТЛ2 в пробе №4 (1,5) и пробе №14 (1,4), что видно из рисунка 3, определили пробу №14 как источник сырья для фрагмента терракотового печного изразца. Достоверность определения подтверждена данными рентгенофазового анализа (с учетом того факта, что каолинит, хлорит и слюда разрушились при температуре выше 850°С и поэтому в керамике их нет) и спектрального анализа (с учетом того факта, что за счет потерь при прокаливании во время изготовления керамики произошло концентрирование ряда элементов, например Zn) (таблицы 1 и 2).

Пример 4

Взяли образец керамического изделия (проба №7 - фрагмент чернолощеного керамического изделия.) и образец глины с правого берега р. Ушайки недалеко от строения по ул. Алтайская 4 г. Томска (проба №17). Сделали протолочки. Приготовили навески по 20 мг для проб №7 и №17. Каждую навеску разделили на две равные части. Одну часть навески №7 и навески №17 (по 10 мг) облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ1) в интервале температур 20-300°С. Другую часть навесок №7 и №17 предварительно прокалили до температуры 500°С, затем облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ2) в интервале температур 20-300°С (Рисунок 4). По сходству значений интенсивности термостимулированной люминесценции облученного керамического изделия №7 и пробы глинистого материала №17 в температурном интервале 100-200°С (ИТЛ1 и ИТЛ2) и по сходству отношений ИТЛ1/ИТЛ2 в пробе №7 (0,57) и пробе №17 (0,56), что видно из рисунка 4, определили пробу №17 как источник сырья для фрагмента чернолощеного керамического изделия №7. Достоверность определения подтверждена данными рентгенофазового анализа (с учетом того факта, что каолинит, хлорит и слюда разрушились при температуре выше 850°С и поэтому в керамике их нет) и спектрального анализа (с учетом того факта, что за счет потерь при прокаливании во время изготовления керамики произошло концентрирование ряда элементов, например Zn) (таблицы 1 и 2).

Таким образом, предложенный способ определения источников сырья для археологических керамических артефактов с помощью термолюминесцентного анализа позволяет быстро и надежно определять и подтверждать предполагаемые источники сырья.

Способ определения источников сырья для археологических керамических артефактов, включающий рентгеновское облучение исследуемого материала, получение графиков термостимулированной люминесценции облученного материала, отличающийся тем, что предварительно осуществляют отбор проб керамических изделий и проб глинистого материала из предполагаемых источников сырья без выделения монофракций кварца, затем получают графики термостимулированной люминесценции в интервале температур 20-500°С для проб, облученных без предварительного прокаливания (ИТЛ1), и для проб, облученных после предварительного прокаливания исследуемого материала до температуры 500°С (ИТЛ2), и по сходству значений интенсивности термостимулированной люминесценции облученного материала в пробах керамических изделий и пробах глинистого материала в температурном интервале 100-200°С (ИТЛ1 и ИТЛ2) и по сходству отношений ИТЛ1/ИТЛ2 в пробах керамических изделий и пробах глинистого материала определяют источник сырья для исследуемых археологических артефактов.
СПОСОБ ОПРЕДЕЛЕНИЯ ИСТОЧНИКОВ СЫРЬЯ ДЛЯ АРХЕОЛОГИЧЕСКИХ КЕРАМИЧЕСКИХ АРТЕФАКТОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ИСТОЧНИКОВ СЫРЬЯ ДЛЯ АРХЕОЛОГИЧЕСКИХ КЕРАМИЧЕСКИХ АРТЕФАКТОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ИСТОЧНИКОВ СЫРЬЯ ДЛЯ АРХЕОЛОГИЧЕСКИХ КЕРАМИЧЕСКИХ АРТЕФАКТОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ИСТОЧНИКОВ СЫРЬЯ ДЛЯ АРХЕОЛОГИЧЕСКИХ КЕРАМИЧЕСКИХ АРТЕФАКТОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ИСТОЧНИКОВ СЫРЬЯ ДЛЯ АРХЕОЛОГИЧЕСКИХ КЕРАМИЧЕСКИХ АРТЕФАКТОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ИСТОЧНИКОВ СЫРЬЯ ДЛЯ АРХЕОЛОГИЧЕСКИХ КЕРАМИЧЕСКИХ АРТЕФАКТОВ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 176.
25.08.2017
№217.015.9bbd

Способ получения 4(5)-нитроимидазола

Изобретение относится к области органической химии, а именно к способу получения 4(5)-нитроимидазола, заключающемуся в нитровании имидазола натрием азотнокислым в присутствии серной кислоты при нагревании, с последующим охлаждением, нейтрализацией реакционной смеси, выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002610267
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9bf4

Импульсный лавинный s-диод

Изобретение относится к импульсной технике, в частности к импульсным лавинным полупроводниковым диодам, полученным легированием GaAs хромом или железом, и предназначено для использования в системах силовой импульсной электроники. Техническим результатом являются устранение влияния инжекции...
Тип: Изобретение
Номер охранного документа: 0002609916
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9d6a

Способ получения нанодисперсных оксидных материалов в виде сферических агрегатов

Изобретение относится к области синтеза оксидных многофункциональных металлов сложного состава в нанодисперсном состоянии. Описан способ получения нанодисперсных оксидных материалов в виде сферических агрегатов, включающий приготовление раствора, в состав которого входят растворимые соли,...
Тип: Изобретение
Номер охранного документа: 0002610762
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e02

Стенд для исследования высокоскоростного соударения мелких частиц с преградой

Изобретение относится к экспериментальной технике, а именно к стендам для исследования высокоскоростных взаимодействий тел с преградами. Стенд для исследования высокоскоростного соударения мелких частиц с преградой включает ствольную метательную установку с размещёнными в её разгонном стволе...
Тип: Изобретение
Номер охранного документа: 0002610790
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e80

Способ твердофазной экстракции красителя толуидинового синего

Изобретение относится к области аналитической химии и может быть использовано для твердофазной экстракции основного тиазинового красителя толуидинового синего из водных растворов. Способ включает взаимодействие полимерной матрицы со сшитой внутренней структурой с аналитом, последующее ее...
Тип: Изобретение
Номер охранного документа: 0002605965
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a751

Способ получения композитного каталитического материала в виде слоистых полых сфер

Изобретение относится к области химической технологии, а именно к производству новых форм зерен каталитических материалов в виде слоистых полых сфер или других полых структур для процессов превращения углеводородов, в том числе парциального окисления алифатических углеводородов. Способ...
Тип: Изобретение
Номер охранного документа: 0002608125
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.aa05

Алюмооксидный носитель и способ его получения

Изобретение относится к области химической технологии и каталитической химии и может найти применение в производстве катализаторов для различных отраслей химической и нефтехимической промышленности, а именно изобретение относится к способу получения алюмооксидного носителя для катализатора,...
Тип: Изобретение
Номер охранного документа: 0002611618
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.abbb

Способ получения антитурбулентной присадки для углеводородных ракетных топлив

Изобретение относится к способам получения антитурбулентных присадок на основе (со)полимеров высших альфа-олефинов и может быть использовано в топливных магистралях жидкостных ракетных двигателей (ЖРД). Способ осуществляют (со)полимеризацией высших α-олефинов в присутствии микросферического...
Тип: Изобретение
Номер охранного документа: 0002612135
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.aedd

Способ определения наночастиц au, ni и cu в жидких объектах

Использование: для количественного химического анализа с использованием электрохимических методов. Сущность изобретения заключается в том, что способ заключается в получении циклических вольтамперограмм с последующим расчетом концентрации наночастиц в образце по значениям тока аналитического...
Тип: Изобретение
Номер охранного документа: 0002612845
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b07c

Способ определения меди(ii) и марганца(ii) индикаторной трубкой при их совместном присутствии в растворах для анализа природных вод

Изобретение может быть использовано для полуколичественного определения марганца(II) и меди(II) в водных растворах, в частности в природных и сточных водах в полевых условиях. Способ включает наполнение стеклянной трубки с внутренним диаметром 0,5 см Na-формой макросетчатого карбоксильного...
Тип: Изобретение
Номер охранного документа: 0002613407
Дата охранного документа: 16.03.2017
Показаны записи 51-60 из 104.
25.08.2017
№217.015.9bbd

Способ получения 4(5)-нитроимидазола

Изобретение относится к области органической химии, а именно к способу получения 4(5)-нитроимидазола, заключающемуся в нитровании имидазола натрием азотнокислым в присутствии серной кислоты при нагревании, с последующим охлаждением, нейтрализацией реакционной смеси, выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002610267
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9bf4

Импульсный лавинный s-диод

Изобретение относится к импульсной технике, в частности к импульсным лавинным полупроводниковым диодам, полученным легированием GaAs хромом или железом, и предназначено для использования в системах силовой импульсной электроники. Техническим результатом являются устранение влияния инжекции...
Тип: Изобретение
Номер охранного документа: 0002609916
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9d6a

Способ получения нанодисперсных оксидных материалов в виде сферических агрегатов

Изобретение относится к области синтеза оксидных многофункциональных металлов сложного состава в нанодисперсном состоянии. Описан способ получения нанодисперсных оксидных материалов в виде сферических агрегатов, включающий приготовление раствора, в состав которого входят растворимые соли,...
Тип: Изобретение
Номер охранного документа: 0002610762
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e02

Стенд для исследования высокоскоростного соударения мелких частиц с преградой

Изобретение относится к экспериментальной технике, а именно к стендам для исследования высокоскоростных взаимодействий тел с преградами. Стенд для исследования высокоскоростного соударения мелких частиц с преградой включает ствольную метательную установку с размещёнными в её разгонном стволе...
Тип: Изобретение
Номер охранного документа: 0002610790
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e80

Способ твердофазной экстракции красителя толуидинового синего

Изобретение относится к области аналитической химии и может быть использовано для твердофазной экстракции основного тиазинового красителя толуидинового синего из водных растворов. Способ включает взаимодействие полимерной матрицы со сшитой внутренней структурой с аналитом, последующее ее...
Тип: Изобретение
Номер охранного документа: 0002605965
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a751

Способ получения композитного каталитического материала в виде слоистых полых сфер

Изобретение относится к области химической технологии, а именно к производству новых форм зерен каталитических материалов в виде слоистых полых сфер или других полых структур для процессов превращения углеводородов, в том числе парциального окисления алифатических углеводородов. Способ...
Тип: Изобретение
Номер охранного документа: 0002608125
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.aa05

Алюмооксидный носитель и способ его получения

Изобретение относится к области химической технологии и каталитической химии и может найти применение в производстве катализаторов для различных отраслей химической и нефтехимической промышленности, а именно изобретение относится к способу получения алюмооксидного носителя для катализатора,...
Тип: Изобретение
Номер охранного документа: 0002611618
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.abbb

Способ получения антитурбулентной присадки для углеводородных ракетных топлив

Изобретение относится к способам получения антитурбулентных присадок на основе (со)полимеров высших альфа-олефинов и может быть использовано в топливных магистралях жидкостных ракетных двигателей (ЖРД). Способ осуществляют (со)полимеризацией высших α-олефинов в присутствии микросферического...
Тип: Изобретение
Номер охранного документа: 0002612135
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.aedd

Способ определения наночастиц au, ni и cu в жидких объектах

Использование: для количественного химического анализа с использованием электрохимических методов. Сущность изобретения заключается в том, что способ заключается в получении циклических вольтамперограмм с последующим расчетом концентрации наночастиц в образце по значениям тока аналитического...
Тип: Изобретение
Номер охранного документа: 0002612845
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b07c

Способ определения меди(ii) и марганца(ii) индикаторной трубкой при их совместном присутствии в растворах для анализа природных вод

Изобретение может быть использовано для полуколичественного определения марганца(II) и меди(II) в водных растворах, в частности в природных и сточных водах в полевых условиях. Способ включает наполнение стеклянной трубки с внутренним диаметром 0,5 см Na-формой макросетчатого карбоксильного...
Тип: Изобретение
Номер охранного документа: 0002613407
Дата охранного документа: 16.03.2017
+ добавить свой РИД