×
27.03.2016
216.014.c855

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ДЛИНЫ ДИФФУЗИИ НОСИТЕЛЕЙ ЗАРЯДА В ПОЛУПРОВОДНИКОВЫХ ПЛАСТИНКАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и предназначено для бесконтактного неразрушающего определения диффузионной длины носителей заряда в полупроводниковых пластинах, в том числе покрытых прозрачным слоем диэлектрика. Способ измерения диффузионной длины носителей заряда в полупроводниковых пластинах включает измерение сигнала, пропорционального неравновесной концентрации носителей заряда, возникающей в точке тестирования полупроводниковой пластины вследствие их диффузии из областей генерации, создаваемых на различных расстояниях от точки тестирования за счет формирования в этих областях световых пятен малой площади излучением из спектрального диапазона внутреннего фотоэффекта в полупроводнике, построение опытной зависимости амплитуды измеренного сигнала от расстояния между световым пятном и точкой тестирования, сравнение опытной зависимости с аналогичными зависимостями, рассчитанными теоретически, при этом для проведения измерений без установления электрического контакта с исследуемой пластиной сигнал, пропорциональный неравновесной концентрации носителей заряда в точке тестирования, получают путем пропускания через пластинку инфракрасного излучения с длиной волны из области прозрачности исследуемого полупроводника и измерения интенсивности прошедшего через пластину излучения. Также предложено устройство для измерения длины диффузии носителей заряда в полупроводниковых пластинах. Изобретение обеспечивает возможность выполнять измерения длины диффузии носителей заряда в полупроводниковых пластинах без установления электрического контакта с образцом непосредственно в тех областях, где будут изготовлены приборы, а также в пластинах, покрытых слоем прозрачного диэлектрика. 2 н.п. ф-лы, 1 ил.

Изобретение относится к способам и устройствам измерения длины диффузии носителей заряда в полупроводниковых материалах, в частности в полупроводниковых пластинках, в том числе покрытых прозрачным для инфракрасного излучения слоем диэлектрика, и может использоваться для контроля свойств полупроводниковых материалов при производстве приборов и в научных исследованиях.

Известен способ измерения диффузионной длины носителей заряда и устройство для его реализации (метод подвижного электронного зонда) (Батавин В.В., Концевой Ю.А., Федорович Ю.В. Измерение параметров полупроводниковых материалов и структур. - М.: Радио и связь, 1985. - 264 с.). На поверхности полупроводника создается совокупность р-n-переходов или барьеров Шотки малой площади, являющихся коллекторами неосновных носителей заряда. В другой точке образца при помощи подвижного электронного зонда создается повышенная концентрация носителей заряда, которые диффундируют в полупроводнике. Ток в цепи коллектора прямо пропорционален концентрации неосновных носителей заряда. Диффузионную длину определяют, сравнивая экспериментальную зависимость тока в коллекторе от расстояния между зондом и коллектором с такими же зависимостями, рассчитанными теоретически для различных длин диффузии неосновных носителей заряда.

Недостатком этого способа является необходимость формирования на поверхности полупроводника дополнительных структур и создание электрического контакта с ним.

Недостатком устройства, реализующего этот способ, является обязательное наличие вакуумной системы, без которой невозможно создание электронного зонда.

Известен способ измерения диффузионной длины неосновных носителей заряда в полупроводниках (патент РФ №2501116, опубл. 10.12.2013 г.), заключающийся в том, что в тестовой структуре, выполненной на общем базовом слое на поверхности р-n- или n-р-переходов фотодиодов, изготавливают контактные электроды, которые изолируют от базового слоя диэлектрическим слоем. Радиусы контактных электродов больше радиусов р-n- или n-р-переходов фотодиодов и имеют общую ось симметрии. На поверхности базового слоя изготавливают контакт. Освещение тестовой структуры осуществляют в спектральном диапазоне поглощения базового слоя со стороны контактных электродов, непрозрачных для потока ИК-излучения. Проводят измерение фототоков фотодиодов и вычисляют отношения фототоков двух фотодиодов в тестовой структуре. Осуществляют теоретический расчет фототоков разных фотодиодов тестовой структуры и построение графиков зависимости отношения фототоков фотодиодов от диффузионной длины неосновных носителей заряда. Полученные экспериментально отношения фототоков сравнивают с теоретически рассчитанными по графикам и определяют величину диффузионной длины неосновных носителей заряда.

Недостатком способа является необходимость непосредственного контакта с поверхностью полупроводникового образца и изготовление тестовых структур.

Известен способ измерения длины диффузии носителей заряда и устройство для его реализации на основе измерения фотоэлектромагнитного эффекта (Батавин В.В., Концевой Ю.А., Федорович Ю.В. Измерение параметров полупроводниковых материалов и структур. - М.: Радио и связь, 1985. - 264 с.). Полупроводниковая пластина, находящаяся в магнитном поле, освещается излучением лазера, мощность которого может быть измерена с погрешностью, не превышающей 10%. В этом случае можно рассчитать скорость поверхностной генерации носителей заряда. Присоединяя к пластине контакты, измеряют силу тока фотоэлектромагнитного эффекта или ЭДС. Значения подвижности носителей заряда берут из литературы или измеряют иными методами. Имея вышеперечисленные данные, можно рассчитать длину диффузии неосновных носителей заряда.

Недостаткам способа являются необходимость проведения дополнительных исследований для определения подвижности носителей заряда.

Недостатком устройства, реализующего этот способ, является создание электрического контакта с поверхностью образца.

Известен способ измерения длины диффузии носителей заряда и устройство для его реализации (Л.П. Павлов. Методы измерения параметров полупроводниковых материалов. - М.: Высшая школа, 1987, с. 96-99), принятые за прототип. Способ реализуется следующим образом. Излучением из спектральной области внутреннего фотоэффекта в полупроводнике на поверхности исследуемой полупроводниковой пластины создают световое пятно малой площади. Такой свет (излучение), поглощаясь в приповерхностном слое полупроводника, генерирует в нем электронно-дырочные пары носителей заряда, которые перемещаются из освещенной области посредством диффузии. На некотором расстоянии от светового пятна в другой точке на поверхности исследуемой полупроводниковой пластины (в точке тестирования) устанавливают точечный прижимной коллекторный контакт. К контакту прикладывают напряжение в обратном направлении. Ток в цепи коллектора прямо пропорционален концентрации неосновных носителей заряда, которые переместились (продиффундировали) от светового пятна в точку тестирования. Изменяя расстояние между точкой тестирования и световым пятном, получают опытную зависимость тока коллектора (и концентрации носителей заряда) от расстояния между световым пятном и точкой тестирования. Для определения диффузионной длины неосновных носителей заряда строят зависимость экспериментально измеренного тока в цепи коллектора (или концентрации неравновесных носителей) от расстояния между световым пятном и коллекторным контактом. Полученную зависимость сравнивают с аналогичными зависимостями, рассчитанными теоретически для различных значений диффузионной длины. Совпадение одной из теоретических зависимостей с опытной (экспериментальной) позволяет определить длину диффузии носителей заряда.

Недостатком способа-прототипа является необходимость создания прижимного электрического контакта зонда с поверхностью полупроводника. Это накладывает ограничения на его использование, например, когда исследуемая полупроводниковая пластина покрыта слоем диэлектрика. Кроме того, прижимной контакт механически повреждает пластину и делает невозможным изготовление в области тестирования качественных приборов.

Устройство, реализующее данный способ, содержит: оптическую систему для формирования излучением из области внутреннего фотоэффекта на поверхности исследуемой полупроводниковой пластины пятна малой площади, систему перемещения этого пятна относительно точки тестирования на заданные расстояния и систему измерения концентрации неравновесных носителей заряда в точке тестирования. Система формирования светового пятна может быть реализована классически - источник света (лампа) и объектив. Для повышения точности измерений световое излучение модулируют на заданной частоте. В настоящее время в качестве системы создания светового пятна часто используют полупроводниковый лазер или светодиод, излучение которого модулируют за счет питания. Система перемещения светового пятна на заданное расстояние обычно представляет собой микрометрическую подвижку с линейной или угловой шкалой перемещений, на которую монтируется система формирования светового пятна. Для определения концентрации неравновесных носителей заряда в точке тестирования используется металлический контактор, источник питания и измерительный прибор. В случае использования модулированного светового потока в качестве измерительного прибора обычно используется селективный милливольтметр.

Недостатком устройства являются искажения, связанные с ненадежным контактом между контактором и поверхностью полупроводника, приводящие к ошибкам в измерениях. Создание прижимного электрического контакта с поверхностью пластины для контроля ее электрофизических характеристик может вызывать изменение свойств полупроводника, его повреждение или даже разрушение, поэтому для проведения измерений на пластине приходится резервировать специальные площадки. Измерение параметров происходит не в той области пластины, где будет создан прибор, а в соседней. Это приводит как к недостоверности результатов, так и к уменьшению количества приборов, изготавливаемых по планарной технологии на одной пластине, следствием чего является увеличение их себестоимости.

Техническим результатом предлагаемого способа является возможность выполнять измерения длины диффузии носителей заряда в полупроводниковых пластинах без установления электрического контакта с образцом, в том числе в пластинах, покрытых слоем прозрачного диэлектрика.

Технический результат достигается тем, что для проведения измерений без установления электрического контакта с исследуемой пластиной сигнал, пропорциональный неравновесной концентрации носителей в измеряемой области, получают путем пропускания через нее луча инфракрасного излучения с длиной волны из области прозрачности исследуемой полупроводниковой пластины и измерения интенсивности этого луча после прохождения им пластины.

Техническим результатом устройства является расширение возможностей выполнения измерения длины диффузии носителей заряда в полупроводниковых пластинах без установления электрического контакта с образцом, в том числе непосредственно в тех областях, где будут изготовлены приборы, и без изменения свойств пластины, а также в пластинах, покрытых слоем прозрачного диэлектрика.

Технический результат достигается тем, что для измерения концентрации неравновесных носителей в точке тестирования используется инфракрасный лазер с длиной волны из области прозрачности полупроводника, фотоэлектрический приемник, регистрирующий излучение этого лазера после прохождения излучением исследуемой пластины, и электроизмерительный прибор, например селективный милливольтметр.

Способ и устройство для определения длины диффузии носителей заряда в полупроводниковых пластинках поясняется следующим чертежом:

фиг. 1 - блок-схема установки, где:

1 - система формирования светового пятна на поверхности полупроводниковой пластинки;

2 - система перемещения светового пятна по поверхности полупроводниковой пластинки;

3 - исследуемая полупроводниковая пластина;

4 - инфракрасный лазер с длиной волны из области прозрачности исследуемого полупроводника;

5 - фотоэлектрический приемник, преобразующий излучение инфракрасного лазера в электрический сигнал;

6 - электроизмерительный прибор.

Способ осуществляется следующим образом. Излучение из спектральной области внутреннего фотоэффекта в полупроводнике направляют на поверхность исследуемой полупроводниковой пластины и формируют на ее поверхности световое пятно малой площади. В области светового пятна внутри полупроводниковой пластины возникает повышенная концентрация неравновесных носителей заряда. В другой точке образца (в точке тестирования), отстоящей от области генерации неравновесных носителей заряда (т.е. от светового пятна) на заданное расстояние, определяют пропускание пластиной излучения инфракрасного лазера, длина волны которого выбирается из области прозрачности исследуемого полупроводника. Величина полученного сигнала пропорциональна неравновесной концентрации носителей заряда, созданной в точке тестирования. Это объясняется тем, что изменение концентрации носителей заряда приводит к изменению показателя преломления и коэффициента поглощения полупроводника, вследствие чего и происходит изменение пропускания пластинкой луча инфракрасного лазера (А.Б. Федорцов, Ю.В. Чуркин. Раздельное определение времен жизни неравновесных электронов и дырок в полупроводниках интерференционным методом. - М: Наука, журн. "Письма в ЖТФ", 1988, Т. 14, №4, с. 321-324). Проведя измерения интенсивности прошедшего через исследуемую полупроводниковую пластину лазерного излучения при разных расстояниях между световым пятном малой площади и точкой тестирования, строят экспериментальную зависимость величины полученного сигнала от этого расстояния. Используя решение уравнения непрерывности, рассчитывают серию теоретических зависимостей неравновесной концентрации носителей заряда от расстояния между световыми пятнами и точкой тестирования для различных значений длины диффузии. По совпадению опытной зависимости с одной из теоретических, при их сравнении, определяют диффузионную длину носителей заряда.

Устройство включает в себя: систему формирования излучением из спектрального диапазона внутреннего эффекта в исследуемом полупроводнике светового пятна малой площади на поверхности пластины 1, систему перемещения этого пятна на заданные расстояния 2 по поверхности пластины 3. Для измерения концентрации неравновесных носителей заряда в точке тестирования используется инфракрасный лазер с длиной волны из области прозрачности исследуемого полупроводника 4, фотоэлектрический приемник инфракрасного лазерного излучения 5 и электроизмерительный прибор 6.

Устройство работает следующим образом. Система 1 создает световое пятно малой площади, которое с помощью системы 2 может перемещаться на заданные расстояния по поверхности исследуемой полупроводниковой пластины 3. За счет диффузии неравновесные носители заряда, возникшие в области светового пятна, достигают точки тестирования полупроводниковой пластины 3. Для того чтобы измерения концентрации неравновесных носителей заряда выполнить бесконтактно, не разрушая исследуемый образец, через пластину 3 в точке тестирования пропускают луч длинноволнового инфракрасного лазера 4. Интенсивность прошедшего через пластинку лазерного излучения измеряют фотоэлектрическим приемником 5 и измерительным прибором 6. С помощью системы 2 последовательно устанавливают световое пятно на разных расстояниях от точки тестирования на поверхности пластины 3. При каждом положении светового пятна измеряют концентрацию неравновесных носителей заряда с помощью указанных выше приборов. По результатам измерений стоят опытную зависимость измеренного сигнала от расстояния между световым пятном и точкой тестирования.

Определение диффузионной длины производится по алгоритму, аналогичному тому, который используется в устройстве-прототипе, т.е. сравнением полученной опытной зависимости с аналогичными зависимостями, рассчитанными теоретически для разных длин диффузии носителей заряда.


СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ДЛИНЫ ДИФФУЗИИ НОСИТЕЛЕЙ ЗАРЯДА В ПОЛУПРОВОДНИКОВЫХ ПЛАСТИНКАХ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 164.
20.04.2014
№216.012.bbcd

Способ повышения проницаемости угольного пласта через скважины, пробуренные из горных выработок

Изобретение относится к горной промышленности и может быть применено для дегазации угольных пластов. Способ включает создание полости в угольном пласте посредством циклического увеличения и снижения давления жидкости в шпуре и воздействия на пласт низкочастотными импульсами давления при...
Тип: Изобретение
Номер охранного документа: 0002513805
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c102

Электромеханический буровой снаряд

Изобретение относится к буровой технике и может быть использовано для бурения глубоких скважин с отбором керна в ледовых массивах Арктики и Антарктики. Электромеханический буровой снаряд включает колонковый набор, кабельный замок, электроотсек, насосный узел, приводной узел, шламосборник,...
Тип: Изобретение
Номер охранного документа: 0002515159
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c499

Способ подземной разработки сближенных угольных пластов при высокой газоносности угля и массива вмещающих пород

Изобретение относится к горному делу и может быть использовано при подземной разработке сближенных угольных пластов на участках шахтных полей, осложненных дизъюнктивными геологическими нарушениями в условиях высокой газоносности угля и массива вмещающих пород. Способ включает опережающую...
Тип: Изобретение
Номер охранного документа: 0002516088
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c570

Устройство для тепловой обработки газогидратных залежей

Изобретение относится к горному делу и может применяться для разработки газогидратных залежей, тепловой обработки призабойной зоны скважины и восстановления гидравлической связи пласта со скважиной. Устройство для тепловой обработки газогидратных залежей содержит два корпуса нагревателя,...
Тип: Изобретение
Номер охранного документа: 0002516303
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c664

Способ получения тонкодисперсного поликристаллического карбида кремния

Изобретение относится к производству поликристаллического карбида кремния. Способ получения поликристаллического карбида кремния включает металлотермическое восстановление натрием смеси тетрахлоридов кремния и углерода, взятой в мольном соотношении 1:1. Смесь хлоридов кремния и углерода подают...
Тип: Изобретение
Номер охранного документа: 0002516547
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cdf5

Пластинчатый питатель тяжелого типа

Пластинчатый питатель тяжелого типа содержит пластинчатую ленту, состоящую из прилегающих друг к другу с щелевыми зазорами (1) плоских пластин (2, 3), закрепленных на двухцепном тяговом органе, огибающем приводную и натяжную звездочку. На передних кромках пластин с возможностью огибания их...
Тип: Изобретение
Номер охранного документа: 0002518496
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cefe

Лотковый питатель

Лотковый питатель содержит кинематически связанный с кривошипно-шатунным приводом (1) лоток (2) с его опиранием на стационарные роликовые или катковые опоры (3), неподвижные борта (4). На верхней части бортов (4) у задней торцевой стенки (5) закреплены фланцы (6) с возможностью их соединения с...
Тип: Изобретение
Номер охранного документа: 0002518761
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf55

Установка для испытания материалов на прочность

Изобретение относится к испытательной технике и может быть использовано для испытания образцов материалов на прочность. Сущность: установка содержит основание (1), на котором установлены захваты (2, 3) для образца (4), нагружатель (5), связанный с захватами (2, 3), приспособление для нагрева в...
Тип: Изобретение
Номер охранного документа: 0002518848
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d22f

Трехцепной скребковый конвейер

Скребковый конвейер содержит бесконечно замкнутый и опирающийся на направляющие желобчатого рештачного става (1) тяговый орган, состоящий из трех параллельных тяговых цепей - двух наружных (2, 3) и внутренней (4). К наружным цепям поочередно прикреплены своим концами скребки (5), а чередующиеся...
Тип: Изобретение
Номер охранного документа: 0002519578
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d381

Устройство микроволнового химического синтеза

Изобретение относится к области технических устройств, обеспечивающих нагрев электромагнитным полем СВЧ реакционной среды при проведении химического синтеза. Изобретение предназначено для химического синтеза наноматериалов для промышленности и науки и позволяет проводить исследования кинетики...
Тип: Изобретение
Номер охранного документа: 0002519916
Дата охранного документа: 20.06.2014
Показаны записи 21-30 из 203.
27.01.2014
№216.012.9c99

Стенд для ударных испытаний образцов

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит основание, закрепленную на основании направляющую трубу, выполненную с двумя параллельными вертикальными участками, соединенными в нижней части между собой коленом, шаровой ударник, размещенный в первом...
Тип: Изобретение
Номер охранного документа: 0002505795
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9e40

Эскалатор метрополитена

Эскалатор метрополитена содержит раму, ступенчатое полотно с закрепленными на каркасах ступенями, каждая из которых опирается на два основных и два вспомогательных катка с возможностью их опирания на направляющие и перемещения по ним при соединении ступенчатого полотна с двумя бесконечно...
Тип: Изобретение
Номер охранного документа: 0002506220
Дата охранного документа: 10.02.2014
20.03.2014
№216.012.ac92

Способ возведения сейсмостойкой бетонной крепи

Изобретение относится к горнодобывающей промышленности и может быть использовано для крепления горных выработок в сейсмоопасных районах или при ведении горных работ на удароопасных месторождениях. Техническим результатом является повышение сейсмоустойчивости бетонной крепи. Способ возведения...
Тип: Изобретение
Номер охранного документа: 0002509893
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acfc

Стенд для испытания зубчатых передач по схеме замкнутого контура

Изобретение относится к испытательной технике, в частности к стендам для испытания механических передач, и может быть использовано для испытания зубчатых передач. Стенд содержит привод, входной и выходной валы для установки ведущих и ведомых колес зубчатых передач с одинаковым передаточным...
Тип: Изобретение
Номер охранного документа: 0002509999
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acff

Стенд для исследования энергообмена в массиве горных пород

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд содержит опорную раму, размещенные в ней захват для образца...
Тип: Изобретение
Номер охранного документа: 0002510002
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad00

Стенд для исследования энергообмена в блочном массиве горных пород

Изобретение относится к испытательной технике, к устройствам для исследования энергообмена при деформировании и разрушении блочного горного массива. Стенд для исследования энергообмена в блочном массиве горных пород содержит опорную раму, размещенные в ней захват для образца и захват для...
Тип: Изобретение
Номер охранного документа: 0002510003
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad01

Центробежная установка для испытания образца материала на прочность

Изобретение относится к испытательной технике, к испытаниям на прочность. Центробежная установка содержит корпус, установленные на нем вал с приводом вращения, гидроцилиндр, закрепленный на валу перпендикулярно его оси, размещенные в гидроцилиндре поршень, фиксатор положения поршня в...
Тип: Изобретение
Номер охранного документа: 0002510004
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad02

Термонагружатель к стенду для испытания образцов материалов

Изобретение относится к средствам испытаний образцов материалов при сложном нагружении и может быть использовано совместно со стендами для исследования энергообмена при деформировании и разрушении твердых тел. Термонагружатель к стенду для испытания образцов материалов содержит платформу,...
Тип: Изобретение
Номер охранного документа: 0002510005
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad03

Стенд для испытания образцов материалов при многоточечном изгибе

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд для испытания образцов материалов при многоточечном изгибе содержит раму, опорный элемент в виде трубы, направляющие, установленные на внутренней поверхности трубы, разъемные фиксаторы направляющих на трубе,...
Тип: Изобретение
Номер охранного документа: 0002510006
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad05

Устройство для испытания образцов материалов

Изобретение относится к испытательной технике, к устройствам для испытания материалов на прочность. Устройство содержит основание, пассивный захват образца, закрепленный на основании, активный захват образца, нагружатель, соединенный с активным захватом образца и включающий шаровой корпус,...
Тип: Изобретение
Номер охранного документа: 0002510008
Дата охранного документа: 20.03.2014
+ добавить свой РИД