×
27.03.2016
216.014.c855

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ДЛИНЫ ДИФФУЗИИ НОСИТЕЛЕЙ ЗАРЯДА В ПОЛУПРОВОДНИКОВЫХ ПЛАСТИНКАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и предназначено для бесконтактного неразрушающего определения диффузионной длины носителей заряда в полупроводниковых пластинах, в том числе покрытых прозрачным слоем диэлектрика. Способ измерения диффузионной длины носителей заряда в полупроводниковых пластинах включает измерение сигнала, пропорционального неравновесной концентрации носителей заряда, возникающей в точке тестирования полупроводниковой пластины вследствие их диффузии из областей генерации, создаваемых на различных расстояниях от точки тестирования за счет формирования в этих областях световых пятен малой площади излучением из спектрального диапазона внутреннего фотоэффекта в полупроводнике, построение опытной зависимости амплитуды измеренного сигнала от расстояния между световым пятном и точкой тестирования, сравнение опытной зависимости с аналогичными зависимостями, рассчитанными теоретически, при этом для проведения измерений без установления электрического контакта с исследуемой пластиной сигнал, пропорциональный неравновесной концентрации носителей заряда в точке тестирования, получают путем пропускания через пластинку инфракрасного излучения с длиной волны из области прозрачности исследуемого полупроводника и измерения интенсивности прошедшего через пластину излучения. Также предложено устройство для измерения длины диффузии носителей заряда в полупроводниковых пластинах. Изобретение обеспечивает возможность выполнять измерения длины диффузии носителей заряда в полупроводниковых пластинах без установления электрического контакта с образцом непосредственно в тех областях, где будут изготовлены приборы, а также в пластинах, покрытых слоем прозрачного диэлектрика. 2 н.п. ф-лы, 1 ил.

Изобретение относится к способам и устройствам измерения длины диффузии носителей заряда в полупроводниковых материалах, в частности в полупроводниковых пластинках, в том числе покрытых прозрачным для инфракрасного излучения слоем диэлектрика, и может использоваться для контроля свойств полупроводниковых материалов при производстве приборов и в научных исследованиях.

Известен способ измерения диффузионной длины носителей заряда и устройство для его реализации (метод подвижного электронного зонда) (Батавин В.В., Концевой Ю.А., Федорович Ю.В. Измерение параметров полупроводниковых материалов и структур. - М.: Радио и связь, 1985. - 264 с.). На поверхности полупроводника создается совокупность р-n-переходов или барьеров Шотки малой площади, являющихся коллекторами неосновных носителей заряда. В другой точке образца при помощи подвижного электронного зонда создается повышенная концентрация носителей заряда, которые диффундируют в полупроводнике. Ток в цепи коллектора прямо пропорционален концентрации неосновных носителей заряда. Диффузионную длину определяют, сравнивая экспериментальную зависимость тока в коллекторе от расстояния между зондом и коллектором с такими же зависимостями, рассчитанными теоретически для различных длин диффузии неосновных носителей заряда.

Недостатком этого способа является необходимость формирования на поверхности полупроводника дополнительных структур и создание электрического контакта с ним.

Недостатком устройства, реализующего этот способ, является обязательное наличие вакуумной системы, без которой невозможно создание электронного зонда.

Известен способ измерения диффузионной длины неосновных носителей заряда в полупроводниках (патент РФ №2501116, опубл. 10.12.2013 г.), заключающийся в том, что в тестовой структуре, выполненной на общем базовом слое на поверхности р-n- или n-р-переходов фотодиодов, изготавливают контактные электроды, которые изолируют от базового слоя диэлектрическим слоем. Радиусы контактных электродов больше радиусов р-n- или n-р-переходов фотодиодов и имеют общую ось симметрии. На поверхности базового слоя изготавливают контакт. Освещение тестовой структуры осуществляют в спектральном диапазоне поглощения базового слоя со стороны контактных электродов, непрозрачных для потока ИК-излучения. Проводят измерение фототоков фотодиодов и вычисляют отношения фототоков двух фотодиодов в тестовой структуре. Осуществляют теоретический расчет фототоков разных фотодиодов тестовой структуры и построение графиков зависимости отношения фототоков фотодиодов от диффузионной длины неосновных носителей заряда. Полученные экспериментально отношения фототоков сравнивают с теоретически рассчитанными по графикам и определяют величину диффузионной длины неосновных носителей заряда.

Недостатком способа является необходимость непосредственного контакта с поверхностью полупроводникового образца и изготовление тестовых структур.

Известен способ измерения длины диффузии носителей заряда и устройство для его реализации на основе измерения фотоэлектромагнитного эффекта (Батавин В.В., Концевой Ю.А., Федорович Ю.В. Измерение параметров полупроводниковых материалов и структур. - М.: Радио и связь, 1985. - 264 с.). Полупроводниковая пластина, находящаяся в магнитном поле, освещается излучением лазера, мощность которого может быть измерена с погрешностью, не превышающей 10%. В этом случае можно рассчитать скорость поверхностной генерации носителей заряда. Присоединяя к пластине контакты, измеряют силу тока фотоэлектромагнитного эффекта или ЭДС. Значения подвижности носителей заряда берут из литературы или измеряют иными методами. Имея вышеперечисленные данные, можно рассчитать длину диффузии неосновных носителей заряда.

Недостаткам способа являются необходимость проведения дополнительных исследований для определения подвижности носителей заряда.

Недостатком устройства, реализующего этот способ, является создание электрического контакта с поверхностью образца.

Известен способ измерения длины диффузии носителей заряда и устройство для его реализации (Л.П. Павлов. Методы измерения параметров полупроводниковых материалов. - М.: Высшая школа, 1987, с. 96-99), принятые за прототип. Способ реализуется следующим образом. Излучением из спектральной области внутреннего фотоэффекта в полупроводнике на поверхности исследуемой полупроводниковой пластины создают световое пятно малой площади. Такой свет (излучение), поглощаясь в приповерхностном слое полупроводника, генерирует в нем электронно-дырочные пары носителей заряда, которые перемещаются из освещенной области посредством диффузии. На некотором расстоянии от светового пятна в другой точке на поверхности исследуемой полупроводниковой пластины (в точке тестирования) устанавливают точечный прижимной коллекторный контакт. К контакту прикладывают напряжение в обратном направлении. Ток в цепи коллектора прямо пропорционален концентрации неосновных носителей заряда, которые переместились (продиффундировали) от светового пятна в точку тестирования. Изменяя расстояние между точкой тестирования и световым пятном, получают опытную зависимость тока коллектора (и концентрации носителей заряда) от расстояния между световым пятном и точкой тестирования. Для определения диффузионной длины неосновных носителей заряда строят зависимость экспериментально измеренного тока в цепи коллектора (или концентрации неравновесных носителей) от расстояния между световым пятном и коллекторным контактом. Полученную зависимость сравнивают с аналогичными зависимостями, рассчитанными теоретически для различных значений диффузионной длины. Совпадение одной из теоретических зависимостей с опытной (экспериментальной) позволяет определить длину диффузии носителей заряда.

Недостатком способа-прототипа является необходимость создания прижимного электрического контакта зонда с поверхностью полупроводника. Это накладывает ограничения на его использование, например, когда исследуемая полупроводниковая пластина покрыта слоем диэлектрика. Кроме того, прижимной контакт механически повреждает пластину и делает невозможным изготовление в области тестирования качественных приборов.

Устройство, реализующее данный способ, содержит: оптическую систему для формирования излучением из области внутреннего фотоэффекта на поверхности исследуемой полупроводниковой пластины пятна малой площади, систему перемещения этого пятна относительно точки тестирования на заданные расстояния и систему измерения концентрации неравновесных носителей заряда в точке тестирования. Система формирования светового пятна может быть реализована классически - источник света (лампа) и объектив. Для повышения точности измерений световое излучение модулируют на заданной частоте. В настоящее время в качестве системы создания светового пятна часто используют полупроводниковый лазер или светодиод, излучение которого модулируют за счет питания. Система перемещения светового пятна на заданное расстояние обычно представляет собой микрометрическую подвижку с линейной или угловой шкалой перемещений, на которую монтируется система формирования светового пятна. Для определения концентрации неравновесных носителей заряда в точке тестирования используется металлический контактор, источник питания и измерительный прибор. В случае использования модулированного светового потока в качестве измерительного прибора обычно используется селективный милливольтметр.

Недостатком устройства являются искажения, связанные с ненадежным контактом между контактором и поверхностью полупроводника, приводящие к ошибкам в измерениях. Создание прижимного электрического контакта с поверхностью пластины для контроля ее электрофизических характеристик может вызывать изменение свойств полупроводника, его повреждение или даже разрушение, поэтому для проведения измерений на пластине приходится резервировать специальные площадки. Измерение параметров происходит не в той области пластины, где будет создан прибор, а в соседней. Это приводит как к недостоверности результатов, так и к уменьшению количества приборов, изготавливаемых по планарной технологии на одной пластине, следствием чего является увеличение их себестоимости.

Техническим результатом предлагаемого способа является возможность выполнять измерения длины диффузии носителей заряда в полупроводниковых пластинах без установления электрического контакта с образцом, в том числе в пластинах, покрытых слоем прозрачного диэлектрика.

Технический результат достигается тем, что для проведения измерений без установления электрического контакта с исследуемой пластиной сигнал, пропорциональный неравновесной концентрации носителей в измеряемой области, получают путем пропускания через нее луча инфракрасного излучения с длиной волны из области прозрачности исследуемой полупроводниковой пластины и измерения интенсивности этого луча после прохождения им пластины.

Техническим результатом устройства является расширение возможностей выполнения измерения длины диффузии носителей заряда в полупроводниковых пластинах без установления электрического контакта с образцом, в том числе непосредственно в тех областях, где будут изготовлены приборы, и без изменения свойств пластины, а также в пластинах, покрытых слоем прозрачного диэлектрика.

Технический результат достигается тем, что для измерения концентрации неравновесных носителей в точке тестирования используется инфракрасный лазер с длиной волны из области прозрачности полупроводника, фотоэлектрический приемник, регистрирующий излучение этого лазера после прохождения излучением исследуемой пластины, и электроизмерительный прибор, например селективный милливольтметр.

Способ и устройство для определения длины диффузии носителей заряда в полупроводниковых пластинках поясняется следующим чертежом:

фиг. 1 - блок-схема установки, где:

1 - система формирования светового пятна на поверхности полупроводниковой пластинки;

2 - система перемещения светового пятна по поверхности полупроводниковой пластинки;

3 - исследуемая полупроводниковая пластина;

4 - инфракрасный лазер с длиной волны из области прозрачности исследуемого полупроводника;

5 - фотоэлектрический приемник, преобразующий излучение инфракрасного лазера в электрический сигнал;

6 - электроизмерительный прибор.

Способ осуществляется следующим образом. Излучение из спектральной области внутреннего фотоэффекта в полупроводнике направляют на поверхность исследуемой полупроводниковой пластины и формируют на ее поверхности световое пятно малой площади. В области светового пятна внутри полупроводниковой пластины возникает повышенная концентрация неравновесных носителей заряда. В другой точке образца (в точке тестирования), отстоящей от области генерации неравновесных носителей заряда (т.е. от светового пятна) на заданное расстояние, определяют пропускание пластиной излучения инфракрасного лазера, длина волны которого выбирается из области прозрачности исследуемого полупроводника. Величина полученного сигнала пропорциональна неравновесной концентрации носителей заряда, созданной в точке тестирования. Это объясняется тем, что изменение концентрации носителей заряда приводит к изменению показателя преломления и коэффициента поглощения полупроводника, вследствие чего и происходит изменение пропускания пластинкой луча инфракрасного лазера (А.Б. Федорцов, Ю.В. Чуркин. Раздельное определение времен жизни неравновесных электронов и дырок в полупроводниках интерференционным методом. - М: Наука, журн. "Письма в ЖТФ", 1988, Т. 14, №4, с. 321-324). Проведя измерения интенсивности прошедшего через исследуемую полупроводниковую пластину лазерного излучения при разных расстояниях между световым пятном малой площади и точкой тестирования, строят экспериментальную зависимость величины полученного сигнала от этого расстояния. Используя решение уравнения непрерывности, рассчитывают серию теоретических зависимостей неравновесной концентрации носителей заряда от расстояния между световыми пятнами и точкой тестирования для различных значений длины диффузии. По совпадению опытной зависимости с одной из теоретических, при их сравнении, определяют диффузионную длину носителей заряда.

Устройство включает в себя: систему формирования излучением из спектрального диапазона внутреннего эффекта в исследуемом полупроводнике светового пятна малой площади на поверхности пластины 1, систему перемещения этого пятна на заданные расстояния 2 по поверхности пластины 3. Для измерения концентрации неравновесных носителей заряда в точке тестирования используется инфракрасный лазер с длиной волны из области прозрачности исследуемого полупроводника 4, фотоэлектрический приемник инфракрасного лазерного излучения 5 и электроизмерительный прибор 6.

Устройство работает следующим образом. Система 1 создает световое пятно малой площади, которое с помощью системы 2 может перемещаться на заданные расстояния по поверхности исследуемой полупроводниковой пластины 3. За счет диффузии неравновесные носители заряда, возникшие в области светового пятна, достигают точки тестирования полупроводниковой пластины 3. Для того чтобы измерения концентрации неравновесных носителей заряда выполнить бесконтактно, не разрушая исследуемый образец, через пластину 3 в точке тестирования пропускают луч длинноволнового инфракрасного лазера 4. Интенсивность прошедшего через пластинку лазерного излучения измеряют фотоэлектрическим приемником 5 и измерительным прибором 6. С помощью системы 2 последовательно устанавливают световое пятно на разных расстояниях от точки тестирования на поверхности пластины 3. При каждом положении светового пятна измеряют концентрацию неравновесных носителей заряда с помощью указанных выше приборов. По результатам измерений стоят опытную зависимость измеренного сигнала от расстояния между световым пятном и точкой тестирования.

Определение диффузионной длины производится по алгоритму, аналогичному тому, который используется в устройстве-прототипе, т.е. сравнением полученной опытной зависимости с аналогичными зависимостями, рассчитанными теоретически для разных длин диффузии носителей заряда.


СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ДЛИНЫ ДИФФУЗИИ НОСИТЕЛЕЙ ЗАРЯДА В ПОЛУПРОВОДНИКОВЫХ ПЛАСТИНКАХ
Источник поступления информации: Роспатент

Показаны записи 161-164 из 164.
13.01.2017
№217.015.6699

Способ захоронения твердых радиоактивных отходов

Изобретение относится к атомной энергетике, в частности к выводу из эксплуатации выработавших свой ресурс объектов использования атомной энергии и захоронения твердых и отвержденных радиоактивных отходов. В качестве сыпучей массы используют каменную, калийную соли или их смесь, укладываемую...
Тип: Изобретение
Номер охранного документа: 0002592067
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.7541

Устройство для размещения чипа биосенсора для осуществления способа восстановления чувствительной поверхности чипа

Изобретение относится к области биохимии. Предложено устройство для размещения чипа биосенсора для осуществления способа восстановления чувствительной поверхности чипа биосенсора путем обработки его восстанавливающим раствором. Устройство включает основу и крышку. Основа имеет углубление,...
Тип: Изобретение
Номер охранного документа: 0002598716
Дата охранного документа: 27.09.2016
25.08.2017
№217.015.bd86

Перистальтический насос-смеситель для сильно сгущенных веществ

Изобретение относится к перистальтическим насосам с электромагнитным приводом, может быть использовано при перекачивании сильно сгущенных веществ, высоковязких, а также хрупких жидкостей и гелей. Cодержит внешнюю трубу-оболочку, в которой расположена рабочая камера - канал. Рабочая камера-канал...
Тип: Изобретение
Номер охранного документа: 0002616432
Дата охранного документа: 14.04.2017
26.08.2017
№217.015.e52f

Способ изготовления износостойких поворотных резцов

Изобретение относится к горнодобывающей промышленности и может быть использовано в производстве режущего инструмента горных и дорожных машин. Способ заключается в том, что закалка державки осуществляется непосредственно после ее изготовления горячей штамповкой из цилиндрической заготовки,...
Тип: Изобретение
Номер охранного документа: 0002626481
Дата охранного документа: 28.07.2017
Показаны записи 171-180 из 203.
20.12.2015
№216.013.9b00

Способ определения толщины наклепанного слоя

Изобретение относится к методам испытания металлов, в частности к методам определения толщины наклепанного слоя металлических деталей, и может быть применено в дробеструйной обработке рабочих поверхностей. Сущность: осуществляют поверхностное пластическое деформирование до получения остаточного...
Тип: Изобретение
Номер охранного документа: 0002571305
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a3e5

Устройство компенсации высших гармоник и коррекции несимметрии сети

Использование: в области электротехники. Технический результат - снижение коэффициентов искажения синусоидальности формы кривых тока и напряжения сети. В устройстве компенсации высших гармоник и коррекции несимметрии сети, содержащем инвертор, накопительный конденсатор, выходной сглаживающий...
Тип: Изобретение
Номер охранного документа: 0002573599
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bcae

Способ выявления источника высших гармоник

Изобретение относится к электротехнике и электроэнергетике, а именно к способам оценки качества электроэнергии. Способ может быть использован в системах электроснабжения промышленных предприятий с неизменной нагрузкой для определения источника нелинейных искажений как со стороны питающей сети,...
Тип: Изобретение
Номер охранного документа: 0002573706
Дата охранного документа: 27.01.2016
27.02.2016
№216.014.bef8

Способ захоронения токсичных и радиоактивных отходов

Изобретение относится к технологиям обращения с токсичными и радиоактивными технологиями и может быть использовано при разработке месторождений с закладкой выработанного пространства. По мере возведения саркофагов из шин внутренний зазор между ними и контейнерами для скрепления заполняют...
Тип: Изобретение
Номер охранного документа: 0002576331
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.bffc

Способ повышения извлечения платиноидов из нетрадиционного платиносодержащего сырья

Изобретение относится к области обогащения полезных ископаемых и может быть использовано в горно-обогатительной промышленности при обогащении платиносодержащих нетрадиционных руд. Способ обогащения руд, содержащих металлы платиновой группы, включает измельчение и кондиционирование материала с...
Тип: Изобретение
Номер охранного документа: 0002576715
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.c042

Устройство бесперебойного электроснабжения

Использование: в области электроэнергетики. Техническим результатом является обеспечение двухступенчатого автоматического ввода резерва при поддержании необходимого уровня заряда аккумуляторных батарей. Устройство содержит резервный генератор, блок развязки с энергосистемой, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002576664
Дата охранного документа: 10.03.2016
10.02.2016
№216.014.c38e

Забойный скребковый зарубной конвейер

Изобретение относится к горной промышленности, в частности к средствам механизации для транспортирования горной массы из очистных забоев. Техническим результатом является обеспечение устойчивости положения самих скребков конвейера, осуществление выравнивания почвы, облегчение монтажа и...
Тип: Изобретение
Номер охранного документа: 0002574090
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c58e

Способ переработки железных руд

Изобретение относится к подготовке железосодержащего сырья к металлургической переработке. Руду рассеивают на крупный, средний и мелкий классы крупности. Руду крупного класса подвергают сенсорной сепарации с выделением чернового концентрата и отвальных хвостов, черновой концентрат додрабливают...
Тип: Изобретение
Номер охранного документа: 0002574560
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c69b

Стенд для ударных испытаний образцов материалов

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит основание, установленные на нем маховик с приводом вращения, штанги по количеству точек нагружения по заданной поверхности образца с ударниками для взаимодействия с образцом, установленные с возможностью...
Тип: Изобретение
Номер охранного документа: 0002578657
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.c76f

Устройство защиты электрических сетей от однофазных замыканий на землю

Использование: в области электроэнергетики. Технический результат заключается в повышении эффективности действия токовой защиты от однофазных замыканий на землю, происходящих через переходное сопротивление, за счет коррекции ее алгоритма работы в соответствии с величиной асимметрии...
Тип: Изобретение
Номер охранного документа: 0002578123
Дата охранного документа: 20.03.2016
+ добавить свой РИД