×
27.03.2016
216.014.c7a8

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области судостроения, а более конкретно - к ледовым опытовым бассейнам для проведения испытаний моделей судов и инженерных сооружений, касается вопроса определения прочности льда в ледовом опытовом бассейне. Способ определения прочности льда в ледовом опытовом бассейне включает измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву. При этом предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различную среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f(S,t), и структуры льда для выбранного опытового бассейна. А перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер. После чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляют среднюю температуру льда по формуле: где t - температура поверхности льда, t - температура приледного слоя воды. С использованием полученных результатов измерений характеристик льда и результатов расчета компьютера и с применением ранее полученной зависимости σ=f(S,t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки. Техническим результатом является повышение точности и достоверности результатов модельного эксперимента при одновременном повышении эффективности использования ледового поля для проведения в нем указанных экспериментов, что их выгодно отличает от прототипов. 2 ил.
Основные результаты: Способ определения прочности льда в ледовом опытовом бассейне, включающий измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву, отличающийся тем, что предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f (S, t), и структуры льда для выбранного опытового бассейна, а перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер, после чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляет среднюю температуру льда по формуле: где t - температура поверхности льда, t - температура приледного слоя воды, и с использованием полученных результатов измерений характеристик льда и с применением ранее полученной зависимости σ=f (S, t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки.

Изобретение относится к области судостроения, а более конкретно - к ледовым опытовым бассейнам для проведения испытаний моделей судов и инженерных сооружений, и может быть использовано для оперативного определения и контроля прочности моделированного льда в процессе проведения гидродинамических экспериментов с буксируемыми моделями в ледовых опытовых бассейнах.

Известен способ определения прочности льда, согласно которому прочность льда определяют путем разрушения консольных балок льда на плаву и с использованием силового динамометра, при этом измеряют соленость льда и его среднюю по толщине температуру. Полученные результаты выводят на регистрирующую аппаратуру (Е.Б. Карулин, М.М. Карулина, А.С. Шестов и А.В. Марченко. Исследование прочности льда на изгиб в Фиордах западного Шпицбергена. Труды Центрального научно-исследовательского института имени академика А.Н. Крылова, вып. 63(347). - Спб., 2011, стр. 131-142) - прототип.

Однако определение прочности льда методом его разрушения приводит к сокращению площади ледового поля, необходимого для проведения испытаний моделей, и, кроме того, в различных точках ледового поля средняя температура льда по его толщине как правило не одинакова и, соответственно, не одинакова прочность льда в этих точках, поэтому в процессе испытаний модели путем ее буксировки в выбранной полосе ледового поля результаты эксперимента с буксируемыми моделями будут иметь погрешность и будут недостоверными.

Задачей предлагаемого изобретения является создание способа, обеспечивающего оперативное и неразрушающий лед определение прочности моделированного льда в темпе ведения эксперимента с буксируемыми моделями в ледовом опытовом бассейне для повышения точности и достоверности результатов модельного эксперимента при одновременном повышении эффективности использования ледового поля для проведения в нем указанных экспериментов.

Для этого в способе определения прочности льда в ледовом опытовом бассейне, включающем измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву, по изобретению предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f(S,t), и структуры льда для выбранного опытового бассейна. А перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер. После чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляет среднюю температуру льда по формуле:

где tпов. - температура поверхности льда, tприл. - температура приледного слоя воды. И с использованием полученных результатов измерений характеристик льда и результатов расчета компьютером и с применением ранее полученной зависимости σ=f(S,t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки.

Предварительное определение прочности льда путем разрушения консольных балок льда на плаву в моделированных ледовых покровах, имеющие различную среднюю температуру, среднюю соленость и структуру с получением данных о прочности льда σ в виде зависимости σ=f(S,t) для выбранного опытового бассейна, позволяет использовать полученную кривую зависимости в компьютере при определении прочности льда в процессе ведения эксперимента с буксируемыми моделями в ледовом опытовом бассейне.

Определение температуры поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна, с помощью измерительного тепловизора обосновано тем, что на указанном расстоянии перед движущейся моделью лед не имеет признаков разрушения, и благодаря этому обеспечивается выполнение измерений с получением данных по температуре поверхности не разрушенного перед буксируемой моделью льда, имеющего исходные физико-механические свойства.

Определение прочности льда одновременно в процессе проведения эксперимента с моделями в ледовом опытовом бассейне позволяет повысить эффективность использования ледового поля за счет исключения сокращения его площади для проведения испытаний моделей, имеющего место при определении прочности льда известным методом разрушения консольных балок на плаву.

Определение прочности льда в темпе ведения эксперимента с буксируемыми моделями в выбранной полосе ледового поля позволяет повысить точность и достоверность результатов модельного эксперимента, проводимого в ледовом поле.

Предлагаемый способ определения прочности льда в ледовом опытовом бассейне осуществляется с помощью приведенного на рисунках устройства, где на фиг. 1 показан общий вид устройства, а на фиг. 2 - вид сверху на устройство на фиг. 1.

Устройство включает размещенную в ледовом опытовом бассейне буксировочную тележку 1, к которой прикреплена испытуемая модель 2 и на которой размещен измеритель температуры поверхности льда ледового покрова 3 бассейна в виде сканирующего поверхность льда измерительного тепловизора 4 (фиг. 1). Измерительный тепловизор 4 расположен на штанге 5, закрепленной на буксировочной тележке 1, и размещен непосредственно перед моделью 2 на расстоянии L, равном не менее восьми толщинам ледового покрова 3 опытового бассейна (фиг. 1). Тепловизор 4 установлен с возможностью осуществления по штанге 5 возвратно-поступательных движений поперек направления движения модели 2 в зоне шириной в пределах 1,1-1,2 ширины испытуемой (буксируемой) модели 2 со скоростью, заданной в зависимости от скорости буксировки испытуемой модели 2 (фиг. 2). Устройство содержит измеритель солености льда и средство разрушения консольных балок с динамометром, связанным с регистрирующей аппаратурой (на рисунке не показаны), и бортовой компьютер 6, который расположен на буксировочной тележке 1 и связан с измерительным тепловизором 4.

Предлагаемый способ определения прочности льда в ледовом опытовом бассейне осуществляется с помощью предлагаемого устройства следующим образом.

Предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость по толщине и структуру, в которых затем определяют прочность льда при соответствующей солености S и средней температуре t по его толщине путем разрушения консольных балок льда на плаву, в результате чего получают данные о прочности льда σ в виде зависимости σ=f(S,t) и структуры льда для выбранного опытового бассейна.

Перед проведением модельных испытаний, перед каждым экспериментом с буксируемыми моделями 2, измеряют в ледовом опытовом бассейне среднюю соленость льда 3 и температуру приледного слоя воды, которые вводят в бортовой компьютер 6.

Затем при проведении эксперимента в процессе буксировки испытуемой модели 2 непрерывно измеряют температуру поверхности льда 3 перед моделью 2 в полосе ледового покрова в пределах зоны шириной в 1,1-1,2 ширины модели 2 на расстоянии, равном не менее восьми толщинам ледового покрова бассейна, с помощью измерительного тепловизора 4, сканирующего поверхность льда 3 в указанной полосе, совершая возвратно-поступательные движения поперек закрепленной на испытательной тележке 1 штанге 5 со скоростью, предусмотренной режимом буксировки модели 2. Полученные данные измерительного тепловизора 4 вводятся в бортовой компьютер 6, в котором непрерывно в темпе ведения эксперимента регистрируются в виде значений температуры поверхности льда в испытуемой полосе льда 3, и вычисляется средняя температура льда по его толщине в указанной полосе как среднеарифметическое между температурой поверхности льда и приледного слоя воды. Одновременно, обрабатывая бортовым компьютером 6 полученные данные о средней температуре льда по его толщине и о его средней солености с применением предварительно полученной кривой зависимости прочности льда σ=f(S,t), получают в процессе буксировки модели 2 информацию о прочности льда вдоль полосы буксировки модели 2.

Используя полученные данные о прочности льда вдоль полосы буксировки испытуемой модели 2, вводят поправки в результаты экспериментов с моделями тел 2, проводимых в ледовом опытовом бассейне.

Предлагаемый способ определения прочности льда в ледовом опытовом бассейне позволяет обеспечить оперативное, не разрушая при этом ледового покрова бассейна, определение прочности моделированного льда в темпе ведения эксперимента с буксируемыми моделями в ледовом опытовом бассейне для повышения точности и достоверности результатов модельного эксперимента, при одновременном повышении эффективности использования ледового поля для проведения в нем указанных экспериментов, что их выгодно отличает от прототипов.

Способ определения прочности льда в ледовом опытовом бассейне, включающий измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву, отличающийся тем, что предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f (S, t), и структуры льда для выбранного опытового бассейна, а перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер, после чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляет среднюю температуру льда по формуле: где t - температура поверхности льда, t - температура приледного слоя воды, и с использованием полученных результатов измерений характеристик льда и с применением ранее полученной зависимости σ=f (S, t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки.
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
Источник поступления информации: Роспатент

Показаны записи 201-210 из 401.
10.04.2016
№216.015.3059

Способ локализации областей акустического излучения

Использование: контрольно-измерительная техника. Решает задачу повышения разрешающей способности локализации источников акустического излучения, распределенных на поверхности объекта измерений для отличающихся частотных диапазонов. Сущность: определяют пространственное распределение уровней...
Тип: Изобретение
Номер охранного документа: 0002580216
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30c5

Гибкая протяженная приемная гидроакустическая антенна

Изобретение относится к гидроакустическим системам навигации подводных аппаратов. Технический результат - снижение гидродинамических шумов и расширение частотной полосы антенны в области низких частот. Антенна содержит внешнюю эластичную кабельную оболочку, армирующий силовой элемент, набор...
Тип: Изобретение
Номер охранного документа: 0002580397
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3100

Устройство электромагнитной защиты экранированных помещений

Изобретение относится к области экранировки аппаратов или их деталей от электрических или магнитных полей с индикацией электрических величин и предназначено для защиты корабельных радиоэлектронных средств от поражающих факторов электромагнитного оружия. Технический результат - снижение уровня...
Тип: Изобретение
Номер охранного документа: 0002580939
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31c4

Устройство получения регулируемого по частоте напряжения на выходе многофазного генератора переменного тока с постоянной частотой вращения вала

Изобретение относится к электротехнике, а именно к системам генерирования электроэнергии с регулированием по частоте и напряжению при постоянной частоте вращения вала. Устройство получения регулируемого по частоте напряжения на выходе многофазного генератора переменного тока с постоянной...
Тип: Изобретение
Номер охранного документа: 0002580843
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31c7

Вибродемпфирующее устройство для корпуса транспортного средства

Изобретение относится к средствам уменьшения интенсивности вибрации корпусных конструкций транспортных средств. Предложено вибродемпфирующее устройство для корпуса транспортного средства, преимущественно судна, содержащее расположенные симметрично относительно демпфируемой корпусной пластины...
Тип: Изобретение
Номер охранного документа: 0002580595
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31c9

Устройство контроля тепловых режимов силовых модулей преобразователя

Изобретение относится к электротехнике и может быть использовано для контроля теплового состояния силовых модулей, входящих в состав статических преобразователей напряжения и частоты различного типа и назначения. Техническим результатом является автоматизация выявления наиболее нагретого...
Тип: Изобретение
Номер охранного документа: 0002580936
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.347b

Контактный охладитель наддувочного воздуха

Изобретение относится к машиностроению и предназначено для использования в транспортных средствах, оборудованных двигателями внутреннего сгорания (ДВС), имеющими турбонаддув. Контактный охладитель наддувочного воздуха, содержащий корпус с воздуховодами для подвода горячего и отвода холодного...
Тип: Изобретение
Номер охранного документа: 0002581505
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3594

Способ проведения самоходных модельных испытаний судов в ледовом опытовом бассейне

Изобретение относится к области судостроения и касается проведения экспериментальных исследований на моделях ледоколов и судов ледового плавания в ледовых опытовых бассейнах. Предложен способ проведения модельных испытаний судов в ледовом опытовом бассейне, включающий буксировку прикрепленной...
Тип: Изобретение
Номер охранного документа: 0002581311
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3661

Плавучий док для строительства объектов с несудовыми обводами

Изобретение относится к области судостроения, более конкретно - к плавучим докам, и может быть использовано при строительстве плавучих и полупогружных морских платформ и других объектов с несудовыми обводами. Предложен плавучий док, содержащий корпус со стапель-палубой преимущественно...
Тип: Изобретение
Номер охранного документа: 0002581430
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.366d

Промежуточная опорная фундаментная конструкция

Изобретение относится к области судостроения и может использоваться в конструкции судовых промежуточных фундаментов для снижения уровней вибрации, распространяющейся от виброактивного оборудования. Предложена промежуточная опорная фундаментная конструкция, представляющая собой неоднородную...
Тип: Изобретение
Номер охранного документа: 0002581276
Дата охранного документа: 20.04.2016
Показаны записи 201-210 из 341.
20.12.2015
№216.013.9b83

Способ изготовления индиевых микроконтактов

Изобретение относится к технологии получения индиевых микроконтактов для соединения больших интегральных схем (БИС) и фотодиодных матриц, выполненных на основе полупроводниковых материалов. Способ изготовления индиевых микроконтактов согласно изобретению включает напыление слоя индия на...
Тип: Изобретение
Номер охранного документа: 0002571436
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9ded

Магнитный и электромагнитный экран

Изобретение относится к устройству для экранирования от магнитных полей промышленной частоты и электромагнитных полей радиочастотного диапазона и может применяться для обеспечения электромагнитной совместимости технических средств и электромагнитной безопасности биологических объектов в...
Тип: Изобретение
Номер охранного документа: 0002572059
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9e63

Вибропоглощающее устройство

Изобретение относится к области машиностроения. Устройство содержит прижимной лист, имеющий не менее двух групп условных прямоугольных участков между соседними креплениями. Прижимной лист выполнен с толщиной от 0,05 до 0,5 толщины демпфируемой конструкции. Каждая группа содержит участки...
Тип: Изобретение
Номер охранного документа: 0002572177
Дата охранного документа: 27.12.2015
20.01.2016
№216.013.a222

Устройство для обеспечения поперечной остойчивости гибкого ограждения амфибийных судов на воздушной подушке различных типоразмеров

Изобретение относится к амфибийным судам на воздушной подушке с гибкими ограждениями. Устройство для обеспечения поперечной остойчивости гибкого ограждения, называемое «жабры», устанавливается на продольном гибком киле, размещающемся внутри воздушной подушки и состоящем из монолитного элемента...
Тип: Изобретение
Номер охранного документа: 0002573148
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a3d8

Система передачи данных по многолучевому каналу связи

Изобретение относится к технике связи и может использоваться для передачи сигналов в морской среде по гидроакустическому каналу связи. Технический результат состоит в повышении помехоустойчивости и достоверности передачи данных в условиях распространения сигнала в многолучевом канале связи...
Тип: Изобретение
Номер охранного документа: 0002573586
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.c00b

Электрохимический способ получения трис(2-хлорэтил)фосфата

Изобретение относится к электрохимическому способу получения трис(2-хлорэтил)фосфата из красного фосфора. Способ характеризуется тем, что процесс электролиза проводят в непрерывном режиме путем постоянной подачи порошкообразного красного фосфора и смеси этиленхлоргидрина, воды и...
Тип: Изобретение
Номер охранного документа: 0002576663
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.c7fc

Подводная лодка с гидравлическими торпедными аппаратами

Изобретение относится к области подводного кораблестроения, а именно к устройству подводных лодок. Подводная лодка с гидравлическими торпедными аппаратами содержит прочный корпус, легкий корпус с волнорезными щитами, стреляющее устройство и торпедопогрузочное устройство, при этом торпедные...
Тип: Изобретение
Номер охранного документа: 0002578923
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c80b

Судно с воздушной каверной на днище и устройством для защиты от попадания воздуха на гребной винт

Изобретение относится к области судостроения и касается конструирования водоизмещающего судна с воздушной каверной на днище и гребным винтом, расположенным в диаметральной плоскости судна. Предложено самоходное судна с выемкой на днище, предназначенной для образования единой воздушной каверны,...
Тип: Изобретение
Номер охранного документа: 0002578896
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c898

Устройство активного гашения гидродинамического шума в системах трубопроводов

Изобретение относится к области виброакустической защиты, касается вопросов снижения и распространения гидродинамического шума в судовых и корабельных трубопроводах. Устройство функционирует как система активного гашения гидродинамического шума и представляет собой участок трубопровода с двумя...
Тип: Изобретение
Номер охранного документа: 0002578792
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c8ab

Устройство из полимерных композитных материалов для снижения радиолокационной заметности объектов различного назначения

Изобретение относится к области радиотехники. Устройство представляет собой многослойную конструкцию, состоящую из нескольких слоев: наружного слоя, выполненного из диэлектрического материала, поглощающих внутренних слоев электропроводящей ткани, соединенных прослойками диэлектрического...
Тип: Изобретение
Номер охранного документа: 0002578769
Дата охранного документа: 27.03.2016
+ добавить свой РИД