×
27.03.2016
216.014.c700

Результат интеллектуальной деятельности: СПОСОБ ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛИЧЕСКОЙ МЕДИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к гидрометаллургии цветных металлов, может быть использовано для выщелачивания и растворения металлической меди из сырья и промпродуктов. Выщелачивание металлической меди из медьсодержащего материала в растворах серной кислоты проводят с добавкой окислителя при нагревании и наложении переменного тока промышленной частоты. Процесс ведут в режиме перколяции выщелачивающего сернокислого раствора через слой медьсодержащего материала. При выщелачивании контролируют и поддерживают содержание меди в выходящем растворе в пределах 20-30 г/л регулированием расхода выщелачивающего раствора. В качестве окислителя используют раствор перекиси водорода с концентрацией 5-10%. Нерастворимые электроды погружают в слой медьсодержащего материала, реактор герметизируют. Подачу раствора перекиси водорода прекращают при возникновении избыточного давления внутри реактора и возобновляют при снижении давления, причем перекись водорода подают непосредственно в реакционную зону отдельно от выщелачивающего сернокислого раствора. Техническим результатом является повышение скорости и степени выщелачивания меди. 1 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к гидрометаллургии цветных металлов, может быть использовано для выщелачивания и растворения меди из сырья и промпродуктов и, в частности, для обезмеживания медеэлектролитного шлама, получения растворов медного купороса и при переработке вторичного медьсодержащего сырья (цементная медь, сплавы на основе меди и т.п.).

В гидрометаллургии весьма актуальна проблема растворения металлической меди в сернокислых растворах, исключающих растворение благородных металлов, в частности выщелачивание меди из медеэлектролитных шламов. Чаще всего обезмеживание проводят в растворах серной кислоты при нагревании и интенсивной аэрации. Иногда в качестве окислителя используют кислород. Для более полного удаления меди шламы подвергают выщелачиванию в автоклавах или обрабатывают в концентрированной серной кислоте при температурах выше 200°C (1. Масленицкий И.Н., Чугаев Л.Г. Металлургия благородных металлов. - М.: Металлургия, 1987. - 366 с.; 2. Мастюгин С.Α., Волкова Н.А. и др. Шламы электролитического рафинирования меди и никеля. - Екатеринбург: УрФУ, 2013). Известны методы электрохимического обезмеживания шламов с использованием постоянного тока. В этом случае шлам приводят в контакт с анодом, а переходящую в электролит медь восстанавливают на катоде (3. Лобанов Е.Н., Худяков И.Ф. Электрохимический способ обезмеживания шламов медерафинировочного производства. Бюл. «Цветная металлургия». 1978, №21. С. 26-27; 4. Шалаева Т.С., Угорец М.З., Букетов Е.А. Об электрохимическом удалении меди из медеэлектролитных шламов. ЖПХ, 1979, №5. С. 1196-1198; 5. Способ переработки медеэлектролитных шламов. А.с. СССР №1678906. Опубл. 23.09.1991).

В указанных работах установлено, что в оптимальных условиях скорость электрохимического выщелачивания меди существенно выше, чем при использовании традиционных методов химического обезмеживания. Вместе с тем, сочетание в электролизере разнонаправленных (катодного и анодного) процессов существенно затрудняет практическую реализацию такого метода обезмеживания.

Процессы выщелачивания металлической меди в сернокислых растворах широко применяются при переработке вторичного сырья, в частности цементных осадков, а также в производстве медного купороса. [6. И.Ф. Худяков и др. Металлургия вторичных тяжелых металлов. М.: Металлургия, 1987, 523 с.; 7. С.С. Набойченко, В.И. Смирнов. Гидрометаллургия меди. М.: Металлургия, 1974, 271 с.]. Окисление металлической меди проводят барботажем воздухом (часто это обогащенный по кислороду воздух) при нагревании до 45-85°C. Недостатки процесса (высокая температура, продолжительность растворения и т.п.) связаны с известной высокой химической устойчивостью металлической меди и обусловленной этим замедленной кинетикой растворения.

Известен способ, выбранный в качестве прототипа и включающий выщелачивания металлической меди в растворе серной кислоты при нагреве и аэрации воздухом и при наложении симметричного переменного тока промышленной частоты плотностью 3 A/см2 и выше (8. Патент РФ №2326950). По мнению авторов наложение переменного тока на процесс выщелачивания интенсифицирует окисление меди за счет изменения механизма самого электродного акта [9. Современные гидроэлектрохимические технологии комплексной переработки нетрадиционных видов сырья / Палант Α.Α., Брюквин В.А. и др. // В сб. научные труды «Институту металлургии и материаловедения им. А.А. Байкова 60 лет», М.: Элиз, 1998. С. 91-101]. Вместе с тем, даже в оптимальных условиях по причине недостаточной окислительной активности используемого окислителя - кислорода степень выщелачивания меди недостаточно высокая.

Настоящее изобретение направлено на устранение указанных недостатков, в частности на увеличение степени выщелачивания металлической меди. Технический результат заключается в увеличении скорости выщелачивания при использовании более сильного окислителя и особых режимов выщелачивания и подачи реагентов.

Указанная цель достигается при использовании способа выщелачивания металлической меди из медьсодержащего материала в растворах серной кислоты с добавкой окислителя при нагревании и наложении переменного тока промышленной частоты с использованием нерастворимых электродов, отличающегося тем, что выщелачивание ведут в режиме перколяции выщелачивающего сернокислого раствора через слой медьсодержащего материала, при этом контролируют и поддерживают содержание меди в выходящем растворе в пределах 20-30 г/л регулированием расхода выщелачивающего раствора, причем в качестве окислителя используют раствор перекиси водорода с концентрацией 5-10%. В частности, при выщелачивании нерастворимые электроды погружают в слой медьсодержащего материала, реактор герметизируют, при этом подачу раствора перекиси водорода прекращают при возникновении избыточного давления внутри реактора и возобновляют при снижении давления, причем перекись водорода подают непосредственно в реакционную зону отдельно от выщелачивающего сернокислого раствора.

Традиционно любые гидрометаллургические процессы, протекающие в диффузионном режиме, интенсифицируют перемешиванием реакционных масс. Ведение выщелачивания в поле переменного тока позволяет не столько снизить энергию активации электродных реакций, сколько усилить массообменные процессы в диффузионном слое на поверхности частиц, находящихся в этом поле. В этой связи значимость перемешивания уменьшается и, напротив, делает возможным ведение процесса в режиме просачивания реагента через слой выщелачиваемого материала. Однозначно, что аппаратурно перколяция значительно проще агитационного выщелачивания с перемешиванием. В таком режиме медьсодержащий материал в компактном сгущенном виде находится на дне реактора (перколятора). Нерастворимые электроды, через которые протекает переменный ток, погружены в выщелачиваемый материал таким образом, что силовые линии поляризации полностью сконцентрированы в реакционной зоне. Непродуктивное прохождение тока просто через электролит может быть сведено к минимуму.

Для выщелачивания меди в сернокислом растворе в качестве окислителя вместо кислорода (аэрации) в данном случае предложено использовать более сильный и растворенный окислитель. Из перечня доступных и активных окислителей для обезмеживания следует выделить перекись водорода. Известно, что в кислой среде перекись водорода быстро разлагается с образованием сначала атомарного и затем в результате рекомбинации - газообразного кислорода:

Н2O22O+О→Н2O+0,5О2.

Молекулярный и особенно атомарный кислород интенсивно окисляет медь

Cu+H2SO4+0,5О2=CuSO42O.

Избыточный, неизрасходованный на окисление меди кислород в виде газа выделяется из раствора в атмосферу. Для более полного «срабатывания» перекиси на целевой процесс:

Cu+H2SO42O2=CuSO4+2Н2O

рекомендуются следующие технологические особенности:

- концентрация перекиси не должна быть больше 5-10%;

- раствор перекиси следует подавать раздельно от выщелачивающего сернокислого раствора непосредственно в зону выщелачивания;

- реактор делают герметичным и подачу перекиси регулируют в зависимости от избыточного давления кислорода над раствором; при избыточном выделении кислорода подачу перекиси прекращают, а при снижении давления возобновляют.

В процессе выщелачивания медь переходит в электролит. При переменной поляризации нерастворимых электродов по мере накопления меди в растворе становится возможным ее восстановление на электродах, поляризуемых в данный момент катодно. Эта свежеосажденная медь при смене полярности вновь окисляется, переходит в раствор, и в конечном итоге ток будет расходоваться только на обратимый процесс. Несмотря на наличие окислителя выщелачивание меди из исходного сырья замедлится или прекратится полностью. В этой связи растворенную медь следует выводить из реакционной зоны, для чего проводят просачивание выщелачивающего раствора через слой обезмеживаемого материала. Исследованиями установлено, что расход просачивающего раствора должен быть достаточным, чтобы на выходе из реактора содержание меди в нем составляло 20-30 г/т. При меньших концентрациях увеличиваются объемы растворов и затраты на извлечение меди из них.

При прохождении тока реакционная смесь нагревается. Подобно прототипу, в итоге процесс протекает при нагревании, что оказывает позитивное влияние на скорость растворения меди. Плотность переменного тока, протекающего через нерастворимые электроды, ограничивается верхним пределом, при котором может выделяться чрезмерное количество тепла, вскипание раствора, и определяется конструктивными особенностями реактора.

Примером реализации предлагаемого способа являются результаты следующих опытов. Навески медеэлектролитного шлама (ОАО «Уралэлектромедь») с содержанием меди 18,5% массой 50 г загружали в реактор прямоугольной формы объемом 0,3 л. Ложное днище реактора было покрыто фильтровальной тканью. Снизу вверх с просачиванием через шлам с помощью перистальтического насоса в реактор подавали выщелачивающий раствор с содержанием 100 г/л H2SO4. Медьсодержащий раствор через переливной патрубок стекал из реактора в накопительную емкость. На противоположных сторонах реактора в придонной части были расположены графитовые электроды на расстоянии 4 см друг от друга. Через изолированные токоподводы электроды подключали к источнику переменного тока промышленной частоты; плотность тока на электродах составляла 2 А/см2. При такой нагрузке электролит нагревался до 50-60°C. Раствор перекиси водорода по питающей трубке подавали в нижнюю зону шлама. Реактор закрывали герметичной крышкой и в ходе выщелачивания с помощью контактного манометра измеряли в нем избыточное давление. При достижении избыточного давления в реакторе 5 см водяного столба при помощи контактного манометра дозирующий насос отключался. По мере расходования кислорода на окисление и снижения избыточного давления до нуля подача перекиси автоматически возобновлялась.

В опытах в зависимости от содержания меди в выходящем растворе варьировали расходом выщелачивающего сернокислого раствора и меняли содержание перекиси в окисляющем растворе. Продолжительность выщелачивания во всех опытах составляла 1 час.

Для сравнения провели опыт обезмеживания шлама по способу прототипа с наложением переменного тока плотностью 2 А/см2 и перемешиванием (аэрацией) пульпы воздухом. Необходимо отметить, что по ряду причин выщелачивание меди из шлама протекает с большими затруднениями, чем растворение цементной меди, рассмотренное в прототипе. В этой связи, в целом степень обезмеживания в проведенных опытах несопоставима с приведенными показателями в описании прототипа.

По данным анализа продуктов опыта рассчитывали скорость выщелачивания и степень обезмеживания шлама.

Результаты опытов

№ опыта Концентрация меди в выходящем растворе, г/л Концентрация перекиси в окисляющем растворе, % Скорость выщелачивания меди, г/час Степень обезмеживания, %
1 10 3 6,1 65
2 20 5 6,8 73
3 25 7 7,6 82
4 30 10 8,2 88
5 35 12 8,3 89
прототип 4,2 45

Сопоставительный анализ известных технических решений, в т.ч. способа, выбранного в качестве прототипа, и предлагаемого изобретения позволяет сделать вывод, что именно совокупность заявленных признаков обеспечивает достижение усматриваемого технического результата. Реализация предложенного технического решения за счет использования перекиси водорода в качестве окислителя и особых режимов подачи реагентов в рекомендованных значениях параметров дает возможность повысить скорость выщелачивания меди на 50-80% по сравнению со способом прототипа.

Источник поступления информации: Роспатент

Показаны записи 31-33 из 33.
13.02.2018
№218.016.20e7

Способ измельчения минерального сырья

Изобретение относится к горнорудной промышленности и может быть использовано при измельчении минерального сырья перед обогащением или гидрометаллургической переработкой. Способ включает предварительную обработку водным раствором ПАВ с наложением импульсного физического воздействия и последующее...
Тип: Изобретение
Номер охранного документа: 0002641527
Дата охранного документа: 18.01.2018
04.04.2018
№218.016.31c1

Способ извлечения благородных металлов из цианистых растворов

Изобретение относится к металлургии благородных металлов, в частности к извлечению благородных металлов из растворов. Способ включает контактирование цианистых растворов с осаждающим компонентом, в качестве которого используют порошки цинка или алюминия, нанесенные на фильтровальную бумагу....
Тип: Изобретение
Номер охранного документа: 0002645168
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.35ec

Флюс для горячего цинкования стальных изделий

Изобретение относится к горячему цинкованию стальных изделий. Флюс для горячего цинкования стальных изделий содержит, г/дм: хлорид цинка от 200 до 300, хлорид аммония от 200 до 300, сульфат никеля от 6,5 до 12. Сульфат никеля может быть введен во флюс как в виде твердой соли, так и в виде...
Тип: Изобретение
Номер охранного документа: 0002646303
Дата охранного документа: 02.03.2018
Показаны записи 51-55 из 55.
12.10.2019
№219.017.d564

Способ механических испытаний

Изобретение относится к испытательной технике и может быть использовано для испытания объектов на комплексное воздействие механических нагрузок. Способ включает размещение ОИ в контейнере, хвостовая часть которого расположена в стволе разгонного устройства, нагружение ОИ механическим импульсом...
Тип: Изобретение
Номер охранного документа: 0002702694
Дата охранного документа: 09.10.2019
16.01.2020
№220.017.f568

Способ восстановления меди из сульфидных соединений

Изобретение относится к металлургии меди и может быть использовано для восстановления меди из ее сульфидных природных соединений и соединений, присутствующих в технологических продуктах, например в штейнах и сульфидных шламах. Восстановление меди из сульфидных продуктов ведут при контакте...
Тип: Изобретение
Номер охранного документа: 0002710810
Дата охранного документа: 14.01.2020
09.04.2020
№220.018.1381

Способ очистки оборотных цинковых растворов выщелачивания от лигносульфонатов

Изобретение относится к гидрометаллургии цинка, также предлагаемый способ может быть использован для очистки сточных вод. Способ очистки сульфатного цинкового раствора от примесей цементацией цинковой пылью заключается в предварительном контактировании раствора с твердым веществом,...
Тип: Изобретение
Номер охранного документа: 0002718440
Дата охранного документа: 06.04.2020
16.05.2023
№223.018.637c

Способ селективного извлечения благородных металлов из золотосодержащего цементата

Изобретение относится к металлургии благородных металлов и может быть использовано для селективного выделения и концентрирования золота, серебра, платины, палладия и родия из цементата производства золота. Цементат нагревают на воздухе нагревом при температуре 700-800°С, после чего проводят...
Тип: Изобретение
Номер охранного документа: 0002775555
Дата охранного документа: 04.07.2022
29.05.2023
№223.018.727f

Способ переработки полиметаллического сульфидного сырья цветных металлов

Изобретение относится к гидрометаллургии, а именно к переработке полиметаллического сульфидного сырья, содержащего цветные и благородные металлы. Полиметаллическое сульфидное сырьё цветных металлов выщелачивают в растворе азотной кислоты и улавливают нитрозные газы. Выщелачивание проводят в...
Тип: Изобретение
Номер охранного документа: 0002796344
Дата охранного документа: 22.05.2023
+ добавить свой РИД