×
27.03.2016
216.014.c66c

Результат интеллектуальной деятельности: СИСТЕМА ПОЗИТРОН-ЭМИССИОННОЙ И КОМПЬЮТЕРНОЙ ТОМОГРАФИИ С ЕДИНЫМ ДЕТЕКТОРОМ

Вид РИД

Изобретение

Авторы

Правообладатели

№ охранного документа
0002578856
Дата охранного документа
27.03.2016
Аннотация: Изобретение относится к медицинской технике, а именно к технологиям формирования медицинских изображений. Система детекторов излучения содержит первый и второй слои детекторов, с различными размерами поперечных сечений, расположенные друг под другом. Система формирования изображений, обеспечивающая осуществление способа формирования изображения, содержит гентри, множество систем детекторов, расположенных вокруг области исследования, источник рентгеновского излучения и процессор реконструкции. Комбинированная система формирования изображений в передаваемом и эмиссионном излучении содержит гентри, источник передаваемого излучения, расположенный смежно с областью исследования, и систему детекторов излучения, расположенных вокруг области исследования. Использование изобретения позволяет повысить эффективность сканирования. 4 н. и 15 з.п. ф-лы, 7 ил.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Нижеописанное изобретение относится к технологиям формирования медицинских изображений, технологиям медицинской диагностики, технологиям формирования изображений методом позитрон-эмиссионной томографии (ПЭТ), технологиям компьютерной томографии (КТ) и родственным технологиям.

УРОВЕНЬ ТЕХНИКИ

В настоящее время растет применение позитрон-эмиссионной томографии (ПЭТ), однофотонной эмиссионной компьютерной томографии (ОФЭКТ) и других способов формирования изображений в онкологической диагностике, для оценки и планирования лечения. ПЭТ и ОФЭКТ предусматривают введение пациенту (например, человеку или животному) радиофармацевтического препарата и детектирование излучения, испускаемого из пациента радиофармацевтическим препаратом. Радиофармацевтический препарат может быть адаптирован для предпочтительного сбора в кровотоке или других анатомических областях интереса, чтобы обеспечивать контрастность изображения упомянутых областей. ПЭТ и ОФЭКТ считают средствами, дополнительными к трансмиссионной компьютерной томографии (КТ) или магнитно-резонансной томографии (МРТ) для онкологии, так как ПЭТ и ОФЭКТ имеют тенденцию предоставлять функциональную информацию, относящуюся к метаболической активности; тогда как КТ и МРТ обеспечивают, в основном, структурную информацию.

Обычно, специалист-онколог использует КТ-изображения для оконтуривания раковой опухоли и соседних «критичных структур», например соседних органов, чувствительных к облучению. План лучевой терапии с модуляцией интенсивности (IMRT) создают на основании оконтуренных особенностей и применяют с использованием линейного ускорителя («linac») или другой системы лучевой терапии. ПЭТ- или ОФЭКТ-изображения используют, как правило, в качестве дополнительных данных для обеспечения функциональной информации, например, стандартного уровня накопления (SUV), оценки любого наблюдаемого некроза или метастазирования и т.д. В некоторых случаях, ПЭТ и ОФЭКТ могут быть лучше, чем КТ для решения задач обнаружения, например, обнаружения первичной злокачественной опухоли или патологического изменения или обнаружения присутствия и скорости метастазирования рака, так как функциональная чувствительность ПЭТ может быть причиной проявления зарождающихся опухолей или патологических изменений в виде ярких точек, отражающих высокий локальный метаболизм.

Затем пациента перемещают в ПЭТ/КТ- или ОФЭКТ/КТ-сканер для формирования функциональных данных. Большое внимание уделяют размещению пациента в одном и том же месте как в КТ-, так и в ПЭТ- или ОФЭКТ-сканере. Отклонение даже 1 мм или меньше может вызывать значительные погрешности совмещения.

Пациенту вводят радиофармацевтический препарат и реконструируют, по меньшей мере, одно функциональное изображение. ПЭТ-изображение обычно имеет меньшее разрешение, чем КТ-изображение, например, каждый воксель может иметь объем, приблизительно, 4 мм3. Во время реконструкции методом ПЭТ, КТ-изображение используют в качестве карты ослабления для коррекции ПЭТ или для ослабления.

В различных областях, например, онкологии, функциональные и ПЭТ-изображения комбинируют или объединяют. Поскольку функциональное изображение, по существу, не содержит никакой структурной или анатомической информации, и КТ-изображение, по существу, не обеспечивает никакой функциональной информации, то между анатомическим и функциональным изображениями, по существу, нет общих элементов, которые можно использовать для совмещения упомянутых изображений. Вместо этого, точно совмещение обычно обеспечивают на основе точного размещения пациента в двух сканерах. Следовательно, отклонение даже на небольшую величину при размещении пациента может вызывать значительные погрешности совмещения в комбинированном или объединенном изображении.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Ниже предлагаются новые и усовершенствованные устройства и способы, которые решают вышеописанные и другие проблемы.

В соответствии с одним аспектом предлагается детектор излучения, который содержит, по меньшей мере, первый слой детекторов и, по меньшей мере, второй слой детекторов. Детекторы первого слоя имеют первый размер поперечного сечения и преобразуют падающее излучение от источника передаваемого излучения в данные передачи. Детекторы второго слоя детекторов имеют второй размер поперечного сечения, который отличается от первого размера поперечного сечения, и расположены под первым слоем детекторов, чтобы преобразовывать эмиссионное излучение в ядерные данные, например, функциональные или эмиссионные данные.

В соответствии с другим аспектом предлагается способ, в котором передаваемое излучение преобразуют в данные передачи в первых детекторах первого слоя детекторов. Каждый из первых детекторов имеет первый размер поперечного сечения. Эмиссионное излучение преобразуют в ядерные данные во вторых детекторах второго слоя детекторов. Каждый из вторых детекторов имеет размер поперечного сечения, который больше, чем первый размер поперечного сечения. Второй слой детекторов расположен под первым слоем детекторов.

Одно преимущество состоит в более эффективной системе сканирования как для ПЭТ-, так и для формирования изображений КТ.

Другое преимущество состоит в более совершенном и упрощенном совмещении, так как пациента не требуется перемещать на столе.

Другое преимущество состоит в снижении стоимости комбинированных ПЭТ-КТ-систем, так как части детектора системы КТ повторно служат для ПЭТ.

Специалистам в данной области техники станут очевидными дополнительные преимущества после прочтения и изучения нижеследующего подробного описания.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 - схематичное представление комбинированной системы формирования изображений, содержащей единый детектор излучения и поворотный источник рентгеновского излучения и противорассеивающую сетку;

Фиг.2 - изображение примерного сегмента детекторной матрицы в соответствии с одним аспектом настоящего изобретения;

Фиг.3 - перспективный вид детекторного блока для одного детектора системы ПЭТ и девяти детекторов системы КТ;

Фиг.4 подобна Фиг.3, но с детектором системы ПЭТ, выполненным для получения информации о трех уровнях глубины взаимодействия;

Фиг.5 - сечение альтернативного варианта осуществления с множеством распределенных источников рентгеновского излучения и поворотной противорассеивающей сеткой;

Фиг.6 - другой вариант осуществления, в котором источники рентгеновского излучения расположены по обеим сторонам области исследования; и

Фиг.7 - схематичное представление подходящего способа для системы формирования изображений с единым детектором, изображенным на Фиг.2.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Как показано на Фиг.1, комбинированная система 10 формирования изображений содержит один гентри 12, который в своей внутренней области ограничивает область 14 исследования. Кольцо детекторов излучения расположено вокруг области исследования для детектирования излучения, которое испущено из пациента или другого объекта исследования на опоре 18 пациента или пересекло упомянутого пациента или объект, когда упомянутая опора вдвинута в область исследования. В варианте осуществления, показанном на Фиг.1, источник 20 передаваемого излучения, например рентгеновская трубка, и противорассеивающая сетка 22 (называемая также коллиматором с подавлением рассеянного излучения) расположены с возможностью поворота вокруг области 14 исследования. В одном варианте осуществления противорассеивающая сетка выполнена с возможностью удаления из области исследования во время ПЭТ, ОФЭКТ или другого ядерного сканирования для сбора функциональных или эмиссионных данных (например, ядерных данных). Противорассеивающая сетка является решеткой из пластин, каждая из которых выставлена относительно фокусного пятна источника рентгеновского излучения таким образом, что детекторная матрица принимает излучение, которое проходит прямо от источника излучения через противорассеивающую сетку, а излучение с других направлений блокируется.

Источник 20 передаваемого излучения обычно генерирует рентгеновское излучение с энергией 20-140 кэВ; тогда как гамма-излучение, регистрируемое в процессе формирования изображений ПЭТ, имеет энергию 511 кэВ, а в процессе формирования изображений ОФЭКТ, энергия излучения равна 141 кэВ. Детекторная матрица 16 содержит первый слой детекторов 24 с толщиной, которая захватывает, по меньшей мере, все акты излучения системы КТ, и, по меньшей мере, второй слой 26 детекторов, который имеет такую толщину, что упомянутый слой захватывает, по меньшей мере, все акты излучения системы ПЭТ. Гентри 12 соединен с, по меньшей мере, одним процессором 30, который, в свою очередь, соединен с, по меньшей мере, одним блоком 32 памяти. Контроллер 34 сбора данных обращается к подходящему протоколу 36 сбора данных КТ из блока 32 памяти. Контроллер 34 сбора данных управляет гентри и источником рентгеновского излучения, чтобы формировать данные КТ, которые записываются в буфер 38 данных КТ и реконструируются процессором или алгоритмом 40 КТ-реконструкции в представляемое КТ-изображение 42, которое записывается в блоки памяти.

Контроллер сбора данных обращается к протоколам 36 сбора данных для вызова соответствующего протокола формирования изображений ПЭТ, который служит для управления гентри, чтобы формировать набор 44 данных в режиме списка, из которого процессор 46 ПЭТ-реконструкции реконструирует ПЭТ-изображение 48. Термин «режим списка» предназначен для охвата любого формата для хранения событий данных ПЭТ, содержащих информацию об энергии, времени и локализации. В режиме списка все акты излучения сохраняются в списке. Во время реконструкции данных ПЭТ данные из КТ-изображения 42 служат в качестве карты ослабления для выполнения коррекции ослабления данных ПЭТ в режиме списка.

Процессор 50 для обработки изображений объединяет КТ- и ПЭТ-изображения для формирования комбинированного изображения 52, которое сохраняется в памяти 32. Предполагается возможность формирования комбинированных или объединенных изображений различных типов, известных в данной области техники. Видео- или другой дисплейный контроллер 54 назначает дисплею 56 отображать комбинированное, ПЭТ-, КТ- или другие изображения и их комбинации. Оператор использует клавиатуру или другое устройство 58 ввода, чтобы производить выбор из различных вариантов изображения и чтобы управлять контроллером 34 сбора данных для выбора из различных протоколов формирования изображений. По меньшей мере, один блок 32 памяти установки для формирования изображений может содержать, по меньшей мере, один магнитный носитель данных, по меньшей мере, один оптический носитель данных, по меньшей мере, один электростатический носитель данных и т.д. Несколько наглядных примеров содержат: жесткий диск или другое внутреннее запоминающее устройство или устройства, по меньшей мере, одного компьютера 24; внешний накопитель на жестких дисках; система матрицы независимых дисковых накопителей с избыточностью (RAID); удаленная система памяти в сети Интернет; и т.д. По меньшей мере, один блок 32 памяти установки для формирования изображений может также содержать систему архивации и передачи изображений (PACS), поддерживаемую больницей или другой организацией, владеющей или связанной с установкой для формирования медицинских изображений, или обращаться к упомянутой системе.

В одном варианте осуществления каждый единый детектор 60 излучения содержит сцинтиллятор и матрицу SiPM (кремниевых фотоумножителей), которые формируют цифровые сигналы для обработки. Фотоумножители SiPM являются пиксельными датчиками, которые содержат высокосегментированную матрицу одиночных лавинных фотодиодных ячеек, работающих в режиме Гейгера. Цифровые фотоумножители SiPM поддерживают времяпролетный режим для комбинированной системы ПЭТ-КТ и позволяют регистрировать излучение посредством взятия отсчетов оптического сигнала с высокой частотой дискретизации. Приведенный процесс дополнительно описан в документе WO 2009/115956 (опубликованном 24 сентября 2009 г.), полностью включенном в настоящий документ посредством ссылки, где поясняется, что цифровые фотоумножители SiPM допускают взятие отсчетов с частотой до 100 МГц соответственно частоте падения фотонов, преобразованных в оптические фотоны. В сочетании с быстродействующим сцинтиллятором, например, на кристаллах LYSO (лютеций-иттрий ортосиликата, GOS (оксисульфида гадолиния), LSO (оксиортосиликата лютеция) и т.п., возможна даже регистрация одиночных фотонов с дискриминацией по энергии, что обеспечивает важную дополнительную диагностическую информацию.

Как показано на Фиг.2 и 3, детекторная матрица 16 содержит множество детекторных ячеек 60, каждая из которых, в изображенном варианте осуществления, содержит один детектор системы ПЭТ и девять детекторов системы КТ. В изображенном варианте осуществления второй слой 24 детекторов содержит матрицу детекторов ПЭТ, каждая из которых содержит сцинтиллятор 62, который, в изображенном варианте осуществления, имеет размеры, приблизительно, 4 мм × 4 мм, для формирования ПЭТ-изображения с 4-мм3 разрешением. Предполагаются также возможными другие размеры, например, в диапазоне 2,8×2,8-8×8 мм3. Сцинтиллятор имеет достаточную толщину, в которой задерживается и превращается в световое излучение, по существу, все гамма-излучение системы ПЭТ, например, приблизительно 2,8-8 мм для 511-кэВ излучения. Пять из шести граней сцинтиллятора системы ПЭТ покрыты светонепроницаемым отражательным слоем. Шестая поверхность, нижняя поверхность в изображенном варианте осуществления, находится в оптическом контакте с световым детектором 64. В изображенном варианте осуществления световой детектор 64 содержит, по меньшей мере, одну матрицу 65 кремниевых фотоумножителей (SiPM). Выходные сигналы фотоумножителей SiPM суммируются концентратором Ak и передаются в слой 66 обработки данных, который передает данные ПЭТ в модули оценки. Световые детекторы взаимно-однозначно связаны с соответствующими сцинтилляционными элементами, хотя данное требование не обязательно. Как показано только для одного светового детектора, каждый световой детектор содержит множество «ячеек». Регистрируемые сигналы всех детекторных ячеек каждого светового детектора связаны с сетью Ak концентратора, в котором общие количества регистрируемых частиц в течение актов аннигиляции или генерации оптических фотонов определяются в виде цифровой величины.

Первый слой 24 содержит матрицу детекторов системы КТ, установленных на грани приема излучения сцинтилляторов 62 соответствующего детектора системы ПЭТ. В изображенном варианте осуществления присутствуют девять детекторов системы КТ, которые перекрывают каждый детектор системы ПЭТ. Для упрощения конструкции детекторы системы ПЭТ имеют поперечное сечение, которое, по существу, является кратным размерам поперечного сечения детекторов системы КТ, но, данное соотношение не обязательно. Каждый детектор системы КТ, как показано на Фиг.3, содержит сцинтилляционный кристалл 72, на который по шести боковым сторонам нанесено светонепроницаемый отражательный слой (не показанный). Соответствующий световой детектор 74 находится в оптическом контакте с каждым сцинтиллятором. Световой детектор 74 в изображенном варианте осуществления также содержит, по меньшей мере, одну матрицу фотоумножителей SiPM. Каждый сцинтиллятор 72 детектора системы КТ имеет толщину, которая задерживает, по меньшей мере, значительную часть излучения системы КТ, например, приблизительно, 1-4 мм. Сцинтилляторы в изображенном варианте осуществления имеют размеры, приблизительно, 1,4×1,4 мм2, чтобы формировать КТ-изображения с вокселями 1,4 мм3. Предполагаются также возможными другие размеры. Каждый из световых детекторов 74 соединен со слоем 76 межсоединений, как показано на Фиг.2, который может содержать модули оценки или электрически соединяться с ними. В изображенном варианте осуществления каждый световой детектор содержит матрицу фотоумножителей SiPM, соединенную с концентратором Ak.

Хотя световые детекторы 64, 74 показаны в состоянии оптического контакта с нижней поверхностью каждого сцинтиллятора, следует понимать, что световые детекторы могут быть соединены с другими поверхностями, например, по меньшей мере, одной боковой поверхностью.

Поскольку излучение системы ПЭТ имеет более высокую энергию (приблизительно, 511 кэВ), и энергия системы КТ имеет меньшую энергию (приблизительно, 20-140 кэВ), то излучение системы КТ преимущественно задерживается в сцинтилляторах системы КТ, и излучение системы ПЭТ проходит сквозь сцинтилляторы системы КТ, при небольшом числе взаимодействий. Данными от любых сцинтилляций в сцинтилляторах системы ПЭТ во время формирования изображений КТ можно пренебречь. Любые взаимодействия гамма-излучения системы ПЭТ в сцинтилляторах системы КТ можно использовать во время формирования изображений ПЭТ для вычисления информации о глубине взаимодействия.

Для определения информации о глубине взаимодействия выходные сигналы каждой матрицы из девяти детекторов системы КТ (в изображенном варианте осуществления) можно объединять и обрабатывать как с одним детектором системы ПЭТ во время формирования изображений ПЭТ. В таком случае известно, что сцинтилляции от гамма-излучения системы ПЭТ, происходящие в первом слое сцинтилляторов 72 системы КТ, случились на глубине взаимодействия от нуля до толщины сцинтилляторов системы КТ. Кроме того, известно, что сцинтилляции, зарегистрированные в сцинтилляторе 62 системы ПЭТ, имеют глубину взаимодействия от глубины, равной толщине сцинтилляторов системы КТ, (плюс эквивалентную глубину, вносимую матрицей 74 световых детекторов) до толщины сцинтиллятора детектора системы ПЭТ плюс сцинтиллятора системы КТ. Например, сцинтилляторы системы КТ могут иметь толщину 4 мм, и сцинтилляторы системы ПЭТ могут иметь толщину 4 мм для обеспечения информации о глубине взаимодействия для излучения системы ПЭТ.

Как показано на Фиг.4, вместо применения одного детектора системы ПЭТ, детектор системы ПЭТ может быть разделен на N детекторов системы ПЭТ, где N означает целое число больше единицы. При выборе соответствующей толщины для сцинтилляторов систем КТ и ПЭТ можно формировать данные о глубине взаимодействия для каждого из N+1 диапазонов по глубине. То есть группа детекторов системы КТ, которые перекрывают сцинтиллятор 621 первого детектора системы ПЭТ, задает в сборе границы первого диапазона по глубине. Сцинтиллятор 621 задает границы второго диапазона по глубине. N дополнительных сцинтилляторов 64N, принадлежащих к N дополнительным детекторам системы ПЭТ, совмещены с первым сцинтиллятором 641 для задания границ от третьего до N-го диапазонов по глубине.

В одном варианте осуществления, показанном на Фиг.5, источник рентгеновского излучения содержит n распределенных источников 201, …, 20n рентгеновского излучения, где n означает целое число больше единицы, окружающих пациента по периферии области исследования. Например, при последовательном включении источников рентгеновского излучения активная область перемещается относительно области исследования в то время, как источник рентгеновского излучения остается неподвижным. Источники рентгеновского излучения могут содержать, например, углеродные нанотрубки (CNT). В приведенном примере ASG (противорассеивающую сетку) 22 поворачивают для установки напротив каждого источника по мере того, как его включают, для фокусировки рентгеновского излучения на детекторной матрице.

При формировании изображений КТ используют изображения проекций под разными углами наблюдения. В обычных системах применяют перемещающийся источник рентгеновского излучения для сбора данных отдельных проекций. Применение стационарного распределенного источника рентгеновского излучения с числом источников, которое равно числу проекций, исключает необходимость механического перемещения. Преимущества состоят в потенциально более высокой скорости получения изображения, более высоком пространственном и временном разрешении и более простой конструкции системы. Углеродные нанотрубки (CNT) содержат автоэлектронные катоды, которые доставляют электроны в активную область фокуса, которая вращается для генерации рентгеновского излучения. Эмиттеры на углеродных нанотрубках (CNT) обеспечивают стабильную эмиссию с высокой плотностью тока, холодную эмиссию, высокоточное управление испускаемыми электронами по времени и возможность изменения конфигурации. Противорассеивающую сетку 22 поворачивают для сохранения положения, диаметрально противоположного активной области фокуса углеродных нанотрубок (CNT), чтобы уменьшать рассеяние излучения на детекторе 20 и формировать более четкие изображения. Рассеяние ослабляется, когда излучение падает на детектор под ограниченным небольшим углом.

В другом варианте осуществления, изображенном на Фиг.6, источники 20a, 20b рентгеновского излучения установлены на противоположных сторонах области 14 исследования. Каждый источник рентгеновского излучения, либо поворотный, либо распределенный, содержит соответствующую сетку ASG 22a, 22b, которая поворачивается вместе с ним. При угловом смещении источников рентгеновского излучения и сеток ASG на угол больше максимального веерного угла источников рентгеновского излучения механическое взаимное влияние сеток (ASG) можно ослабить или исключить. В одном варианте осуществления сетка ASG 22a, 22b имеет исходное положение, в котором сетку ASG можно выдвигать электронным методом, механическим методом, вручную или другим методом из области исследования. В качестве альтернативы инъекция может также выполняться до сканирования.

Один вариант осуществления способа 100 детектирования излучения в системе комбинированного сканера ПЭТ/КТ изображен на Фиг.7. Хотя способ 100 представлен и описан ниже в виде последовательности действий или событий, следует понимать, что показанный порядок упомянутых действий или событий нельзя интерпретировать в смысле ограничения. Например, некоторые действия могут происходить в другом порядке и/или параллельно с другими действиями или событиями, кроме действий, показанных и/или описанных в настоящем документе. Кроме того, не все показанные действия могут потребоваться для реализации, по меньшей мере, одного аспекта или варианта осуществления, представленного в настоящем описании. Более того, по меньшей мере, одно из действий, описанных в настоящем документе, можно выполнять в виде, по меньшей мере, одного/ой отдельного/ой действия и/или фазы.

На этапе 102 контроллер 34 сбора данных собирает данные КТ из первого слоя 22 детекторов. Контроллер 34 сбора данных получает параметры 36 сбора данных, которые хранятся в буфере 38 данных КТ. На этапе 104 КТ-изображения реконструируются процессором 40 КТ-реконструкции. На этапе 106 противорассеивающую сетку выдвигают из области 14 исследования. На этапе 108 пациенту впрыскивают радиофармацевтический препарат, изображение которого необходимо сформировать во время ПЭТ-сканирования.

На этапе 110 контроллер 34 сбора данных получает параметры сбора данных ПЭТ, и данные ПЭТ собираются и записываются в память в режиме списка. Сбор данных ПЭТ может начинаться в то время, когда выполняется реконструкция данных КТ. В параллельном режиме данные ПЭТ и КТ собирают параллельно; вследствие большой разности по энергии между фотонами систем ПЭТ и КТ, сетка ASG, оптимизированная под (низкоэнергетические) фотоны системы КТ, не может оказывать значительного влияния на 511-кэВ фотоны системы ПЭТ. В параллельном режиме, возможно, было бы полезно исключить противорассеивающую сетку, чтобы данная сетка не мешала сбору данных ПЭТ. В альтернативном варианте данные ПЭТ можно соответственно корректировать для компенсации противорассеивающей сетки.

На этапе 112 процессор 46 ПЭТ-реконструкции реконструирует ПЭТ-изображения по данным ПЭТ. КТ-изображение можно использовать в качестве карты ослабления при ПЭТ-реконструкции.

На этапе 114 PET- и КТ-изображения комбинируют. Так как ПЭТ- и КТ-изображения получают с использованием одних и тех же матриц детекторов, то PET- и КТ-изображения, по существу, совмещены, и сложные алгоритмы совмещения могут не потребоваться. На этапе 116 комбинированное изображение и/или PET- и КТ-изображения отображают на дисплее 56 или сохраняют в запоминающем устройстве для временного хранения или больничных архивах в виде части истории болезни. На этапе 118 комбинированное или другие изображения используют как входные данные для дополнительных обработки или функций. Например, комбинированное изображение можно использовать в процедуре планирования лучевой терапии.

В настоящем документе приведено описание, по меньшей мере, одного предпочтительного варианта осуществления. После прочтения и изучения вышеприведенного подробного описания, специалистами могут быть созданы модификации и внесены изменения. Предполагается, что настоящий документ следует интерпретировать как содержащую упомянутые модификации и изменения в той мере, насколько находятся в пределах объема прилагаемой формулы изобретения или ее эквивалентов.


СИСТЕМА ПОЗИТРОН-ЭМИССИОННОЙ И КОМПЬЮТЕРНОЙ ТОМОГРАФИИ С ЕДИНЫМ ДЕТЕКТОРОМ
СИСТЕМА ПОЗИТРОН-ЭМИССИОННОЙ И КОМПЬЮТЕРНОЙ ТОМОГРАФИИ С ЕДИНЫМ ДЕТЕКТОРОМ
СИСТЕМА ПОЗИТРОН-ЭМИССИОННОЙ И КОМПЬЮТЕРНОЙ ТОМОГРАФИИ С ЕДИНЫМ ДЕТЕКТОРОМ
СИСТЕМА ПОЗИТРОН-ЭМИССИОННОЙ И КОМПЬЮТЕРНОЙ ТОМОГРАФИИ С ЕДИНЫМ ДЕТЕКТОРОМ
СИСТЕМА ПОЗИТРОН-ЭМИССИОННОЙ И КОМПЬЮТЕРНОЙ ТОМОГРАФИИ С ЕДИНЫМ ДЕТЕКТОРОМ
СИСТЕМА ПОЗИТРОН-ЭМИССИОННОЙ И КОМПЬЮТЕРНОЙ ТОМОГРАФИИ С ЕДИНЫМ ДЕТЕКТОРОМ
СИСТЕМА ПОЗИТРОН-ЭМИССИОННОЙ И КОМПЬЮТЕРНОЙ ТОМОГРАФИИ С ЕДИНЫМ ДЕТЕКТОРОМ
Источник поступления информации: Роспатент

Показаны записи 241-250 из 1 331.
27.02.2014
№216.012.a795

Осветительное устройство с сид и одним или более пропускающими окнами

Изобретение предоставляет осветительное устройство 100, содержащее полупрозрачное выходное окно 200, одно или более пропускающих окон 300, размещенных после одного или более LED и до полупрозрачного выходного окна 200, и один или более слоев 400 люминесцентного материала, которые могут, в...
Тип: Изобретение
Номер охранного документа: 0002508616
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a8ad

Автоматическая кофеварка с датчиком для обнаружения количества кофе в машине

Изобретение относится к области техники автоматических или полуавтоматических кофемашин. Автоматическая кофеварка содержит варочный блок; систему подачи воды на бойлер для получения горячей воды для снабжения упомянутого варочного блока; контейнер для кофе; электронный блок управления;...
Тип: Изобретение
Номер охранного документа: 0002508896
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a8b8

Определение перспективных карт оптимального представления с учетом формы поперечного сечения сосуда в сердечно-сосудистых рентгенографических системах

Группа изобретений относится к медицине, а именно к способам и системам для ангиографии. Способ включает этапы формирования множества проекций интересующего объекта, при этом проекции имеют различные проекционные углы, определения геометрических аспектов удлиненного элемента в каждой из...
Тип: Изобретение
Номер охранного документа: 0002508907
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a8c0

Способ и устройство для выравнивания иглы

Группа изобретений относится к медицине и может быть использована во время чрескожного вмешательства в сочетании со средством визуализации, для управления угловой ориентацией иглообразного объекта при его перемещении от заданной точки ввода до заданной целевой точки в теле. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002508915
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9cc

Утюг

Настоящее изобретение относится к утюгам, которые имеют элемент интуитивного выпуска пара, при сохранении возможности управления прочими функциональными элементами утюга. Предложенный утюг (1) содержит: основание (2); рукоятку (3), подвижную относительно основания (2); упругий элемент (9),...
Тип: Изобретение
Номер охранного документа: 0002509183
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa0d

Жидкостное устройство

Изобретение относится к арматуростроению и предназначено для использования в коммунальной системе водоснабжения или очистной установке для жидкости. Жидкостное устройство (1) имеет резервуар (20) для жидкости, впускное отверстие (24) для жидкости для подачи жидкости в резервуар (20) для...
Тип: Изобретение
Номер охранного документа: 0002509248
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa3d

Кювета и способ проверки подлинности кюветы

Группа изобретений относится к кювете для хранения биологического образца, способу ее изготовления, а также к способу проверки подлинности кюветы и способу анализа биологического образца, такого как пробы крови, с использованием указанной кюветы. Кювета (10) изготовлена из формуемого материала,...
Тип: Изобретение
Номер охранного документа: 0002509296
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa9e

Светоизлучающее устройство

Светоизлучающее устройство (100) согласно изобретению содержит по меньшей мере один излучатель (101) света, расположенный на подложке (102), и отражающий оптический корпус (103, 108), по меньшей мере частично окружающий по сторонам упомянутый по меньшей мере один излучатель (101) света, причем...
Тип: Изобретение
Номер охранного документа: 0002509393
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aad8

Временная синхронизация множества различных беспроводных сетей

Изобретение относится к технике беспроводной связи и может быть использовано для временной синхронизации беспроводных сетей нательных датчиков. Технический результат - предоставление возможности временной синхронизации различных сетей легким, эффективным и надежным образом. Способ временной...
Тип: Изобретение
Номер охранного документа: 0002509451
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ab1d

Робот-пылесос, содержащий сенсорную ручку

Изобретение относится к роботу-пылесосу, содержащему сенсорное средство для обнаружения физического контакта с неподвижными объектами в окружении пылесоса, и к способу контролирования траектории перемещения робота-пылесоса. Пылесос содержит ручку (1) для переноски пылесоса рукой (3). Ручка (1)...
Тип: Изобретение
Номер охранного документа: 0002509520
Дата охранного документа: 20.03.2014
+ добавить свой РИД