×
10.02.2016
216.014.c4a7

Результат интеллектуальной деятельности: СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области теплофизических измерений и может быть использовано в строительной теплотехнике и различных отраслях промышленности. Согласно заявленному способу на поверхность исследуемого твердого строительного материала воздействуют электромагнитным полем СВЧ-диапазона с частотой не менее 10 ГГц, осуществляя нагрев исследуемого полуограниченного в тепловом отношении тела. Имея информацию о мощности генератора СВЧ-излучения, воздействующего на исследуемый объект, информацию о тепловом потоке с поверхности круговой области, искомые теплофизические характеристики (ТФХ) определяют по математическим соотношениям, полученным на основании модельных представлений физических процессов, происходящих в исследуемых объектах при воздействии на их поверхность высокочастотным электромагнитным полем. Технический результат - повышение точности получаемых данных. 3 ил., 2 табл.
Основные результаты: Способ определения теплофизических характеристик строительных материалов и изделий, состоящий в нагреве исследуемого полуограниченного в тепловом отношении тела через круговую область, измерении температурно-временных изменений в центре круговой области и определении искомых теплофизических характеристик по соответствующим зависимостям, отличающийся тем, что на поверхность исследуемого твердого строительного материала воздействуют электромагнитным полем СВЧ-диапазона с частотой не менее 10 ГГц, осуществляя нагрев исследуемого полуограниченного в тепловом отношении тела, измеряют тепловой поток с поверхности круговой области, имея информацию о мощности генератора СВЧ-излучения, воздействующего на исследуемый объект, искомые теплофизические характеристики (ТФХ) определяют по математическим соотношениям, полученным на основании модельных представлений физических процессов, происходящих в исследуемых объектах при воздействии на их поверхность высокочастотным электромагнитным полем.

Изобретение относится к теплофизическим измерениям и может быть использовано при определении таких теплофизических характеристик строительных материалов и изделий, как коэффициенты тепло- и температуропроводности.

Известен способ [3] для определения теплофизических характеристик твердых материалов (авт. св. СССР N 1770871, кл. G01N 25/18, 1992 г., бюл. N 39), заключающийся в том, что полубесконечные в тепловом отношении исследуемое и эталонное тела приводят в тепловой контакт по ограничивающей плоскости, в которой действует локальный источник тепла постоянной мощности, подводят тепло, измеряют температуру нагревателя, а искомые теплофизические характеристики вычисляют по формулам, приведенным в описании. Этот способ обеспечивает возможность неразрушающего определения теплофизических свойств - теплопроводности и температуропроводности. Однако точность определения теплофизических свойств недостаточна вследствие субъективности графической обработки экспериментальных данных, применения для определения теплофизических свойств закономерности развития температурного поля системы эталон - исследуемый материал, которое основано только на действии сферического источника тепла постоянной мощности, неучета конечности размеров образца и эталонного тела, недостаточности контроля за ходом термостатирования при подготовке к испытаниям.

За прототип взят способ комплексного определения теплофизических свойств материалов [пат. 2167412 РФ, МПК G01N 25/18]. Исследуемое тело приводят в тепловой контакт с эталонным телом по плоскости, в которой находится локальный нагреватель, измеряют разность температур между нагревателем и точкой плоскости контакта исследуемого и эталонного тел, расположенной на определенном расстоянии, до тех пор, когда эта разность температур не станет меньше наперед заданной величины. Через равные промежутки времени измеряют разность температур, на каждом шаге измерения контролируют величину динамического параметра, испытания заканчивают при превышении контролируемым динамическим параметром заданного значения и определяют теплофизические свойства. Основным недостатком способа-прототипа является зависимость точности получаемых результатов от шероховатости поверхности исследуемого тела и теплоемкости нагревателя. Также недостатком следует считать сложные математические вычисления.

Техническая задача предлагаемого изобретения - повышение точности и оперативности определения искомых ТФХ строительных материалов и изделий.

Поставленная техническая задача достигается тем, что на поверхность исследуемого твердого строительного материала воздействуют электромагнитным полем СВЧ-диапазона с частотой не менее 10 ГГц, осуществляя нагрев исследуемого полуограниченного в тепловом отношении тела, измеряют тепловой поток с поверхности круговой области, имея информацию о мощности генератора СВЧ-излучения, воздействующего на исследуемый объект, искомые теплофизические характеристики (ТФХ) определяют по математическим соотношениям, полученным на основании модельных представлений физических процессов, происходящих в исследуемых объектах при воздействии на их поверхность высокочастотным электромагнитным полем.

Сущность предлагаемого способа заключается в следующем. Электромагнитная волна, попадающая в диэлектрик с потерями, которыми являются традиционные строительные материалы (кирпич, бетон и т.д.), ослабляется в направлении распространения. Поэтому для определения мощности теплового воздействия, участвующего в формировании контролируемого температурного поля, рассчитывают глубину проникновения поля плоской волны в материал с потерями, используя выражение для удельной мощности рассеивания в диэлектрике, приведенное в работе [Пюшнер. Г. Нагрев энергией сверхвысоких частот. - М.: Энергия, 1968. - 312 с.]:

где E - напряженность переменного электрического поля; f - частота излучения; ε - диэлектрическая проницаемость исследуемого материала.

Из теории распространения электромагнитных волн микроволнового диапазона известно, что электромагнитная волна в диэлектрике ослабляется в направлении распространения в соответствии с зависимостью:

где α - коэффициент затухания, определяемый по формуле:

где λ - длина волны, - действительная и мнимая составляющие диэлектрической проницаемости смеси (вода + исследуемый материал).

Анализ соотношений (1) и (2) показал, что глубина проникновения электромагнитного поля СВЧ-диапазона, а следовательно, и скорость рассеяния (потерь) по глубине диэлектрика в наибольшей степени зависит от частоты СВЧ-излучения. На Фиг. 1 показано, как зависит глубина проникновения электромагнитных волн от частоты СВЧ-излучения, а следовательно, и глубина тепловыделяющей области от частоты излучения СВЧ-генератора при воздействии на традиционные строительные материалы, например пенобетон, известной влажности. На основании проведенных расчетов и полученных результатов (графиков) можно сделать вывод, что при воздействии на исследуемые строительные материалы электромагнитным излучением СВЧ-диапазона в виде круга с частотой не менее 10 ГГц практически вся тепловая мощность выделяется в поверхностном слое глубиной около 2 мм, т.е в объеме исследуемого материала в виде диска толщиной 2…3 мм.

Поскольку для достоверного определения ТФХ исследуемых строительных материалов необходимо их прогревать на глубину не менее чем на 5-10 см., то для определения температурного поля в исследуемых объектах при воздействии на их поверхность СВЧ-излучения через круг заданного радиуса можно перейти к теплофизической модели (см. Фиг. 2), состоящей из полуограниченного в тепловом отношении тела, нагреваемого диском через круглую область на поверхности удельным тепловым потоком мощностью q(τ). При этом поверхность вне круга теплоизолирована.

Для определения распределения температуры в любой точке полуограниченного тела в любой момент времени τ необходимо решить следующую систему дифференциальных уравнений:

для области 0≤х≤Rн, z≥0; τ>0;

для области ∝>х>Rн; z>0, τ>0.

Начальные и граничные условия для системы (4) и (5) имеют следующий вид:

где Т0 - начальная температура исследуемого объекта, λ, а - тепло- и температуропроводность.

Применяя методы интегральных преобразований Фурье и Лапласа в системе (4) и (5) и используя начальные и граничные условия (6-12), получим решение для температурного поля на поверхности исследуемого тела (х=0) для полуограниченного тела z≥0 в следующем виде:

где - коэффициент тепловой активности тела, ierfc(z) - интеграл вероятности (функция ошибок Гаусса), - удельный тепловой поток через круг радиуса Rн, S - площадь крута. Pн=P-Pnom, где Pnom - тепловой поток с поверхности круга в окружающую среду (тепловые потери), измеряется ваттметром марки РСЕ IR-10, P - мощность СВЧ-генератора.

Из уравнения (13) при z=0 можно получить выражение для определения температурного поля в следующем виде:

так как .

После несложных математических преобразований зависимости (14) и при условии малых значений времени τ, получим формулу для определения тепловой активности исследуемого объекта:

Для определения коэффициента температуропроводности из соотношения (14) выведем функцию вероятности:

Преобразуем функцию вероятности следующим образом:

где

Для функции ierfc(x) существуют подробные таблицы, согласно которым по вычисленному значению правой части выражения (17) легко можно найти значение числа Fo. Тогда из выражения (18) искомый коэффициент температуропроводности определяем по соотношению:

Искомая теплопроводность определяется из известного в работе [5] соотношения:

Устройство, реализующее предлагаемый способ, представлено на Фиг. 3.

На поверхность исследуемого строительного материала или изделия воздействуют электромагнитным полем СВЧ-диапазона, подаваемого через рупорную антенну 1, соединенную с СВЧ-генератором 2 волноводом 3, осуществляя нагрев исследуемого полуограниченного в тепловом отношении тела 4 через круговую область 5. При этом расстояние от рупорной антенны 1 СВЧ-генератора 2 подобрано так, чтобы минимизировать рассеивание электромагнитных волн в окружающую среду. Остальную поверхность исследуемого объекта 4 теплоизолируют от окружающей среды. После начала воздействия электромагнитного излучения СВЧ-диапазона измеряют избыточную температуру в центре круга бесконтактным датчиком инфракрасного диапазона 6. Тепловой поток с поверхности круга замеряют с помощью ваттметра 7. Полученные данные с бесконтактного датчика 6, ваттметра 7 и СВЧ-генератора 2 поступают на коммутатор 8, затем на нормирующий прецизионный усилитель 9 и через аналого-цифровой преобразователь 10 поступают на микропроцессор 11. Микропроцессор 11 соединен с СВЧ-генератором 1 через порт ввода-вывода 12 и цифро-аналоговый преобразователь 13. Используя полученную измерительную информацию, в микропроцессоре 11 определяются искомые ТФХ по алгоритмам, построенным на основе аналитических соотношений, описывающих тепловые процессы в исследуемых объектах. Данные эксперимента могут быть вызваны оператором на индикатор 14.

Для подтверждения работоспособности вышеизложенного метода были произведены эксперименты на строительных материалах - красный кирпич, керамзитный бетон. Нагрев образцов осуществлялся при температуре окружающей среды 21°C.

В таблицах 1 и 2 приведены данные экспериментов соответственно для красного кирпича и керамзитного бетона.

Основным преимуществом разработанного метода является неразрушающий бесконтактный контроль теплофизических характеристик материалов, что позволяет получать данные о исследуемых объектах с большой оперативностью и точностью.

Кроме того, использование бесконтактного СВЧ-нагрева исследуемого объекта позволяет получить результаты, независимые от коэффициента степени черноты, шероховатости исследуемых объектов, что исключает дополнительную погрешность в полученных результатах.

Нагрев происходит на поверхности материала без применения каких-либо нагревательных элементов (в роли нагревателя выступает часть исследуемого материала), что исключает зависимость от собственной теплоемкости нагревателя, искажающей температурное поле в исследуемых материалах, и повышает точность полученных результатов.

Следует также считать достоинством достаточно простые математические вычисления и возможность доступной реализации данного метода в строительной отрасли.

Таким образом, разработанный способ определения теплофизических характеристик строительных материалов имеет существенное преимущество в точности определения теплофизических характеристик перед известными способами указанного назначения, что, несомненно, позволит использовать его в практике теплофизических измерений, в строительной теплотехнике и различных отраслях промышленности.

Способ определения теплофизических характеристик строительных материалов и изделий, состоящий в нагреве исследуемого полуограниченного в тепловом отношении тела через круговую область, измерении температурно-временных изменений в центре круговой области и определении искомых теплофизических характеристик по соответствующим зависимостям, отличающийся тем, что на поверхность исследуемого твердого строительного материала воздействуют электромагнитным полем СВЧ-диапазона с частотой не менее 10 ГГц, осуществляя нагрев исследуемого полуограниченного в тепловом отношении тела, измеряют тепловой поток с поверхности круговой области, имея информацию о мощности генератора СВЧ-излучения, воздействующего на исследуемый объект, искомые теплофизические характеристики (ТФХ) определяют по математическим соотношениям, полученным на основании модельных представлений физических процессов, происходящих в исследуемых объектах при воздействии на их поверхность высокочастотным электромагнитным полем.
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 53.
20.06.2015
№216.013.5739

Электробаромембранный аппарат рулонного типа

Изобретение относится к мембранным аппаратам рулонного типа и может быть использовано для фильтрации и обратного осмоса. Аппарат содержит коллекторы отвода прикатодного и прианодного пермеата, образованные пространством между полуцилиндрами корпуса аппарата, корпусом аппарата и полимерной...
Тип: Изобретение
Номер охранного документа: 0002553859
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.573b

Гидродинамический смеситель

Изобретение относится к устройствам для перемешивания, эмульгирования, гомогенизации жидких сред и может быть использовано для проведения и интенсификации различных физико-химических, тепломассообменных процессов в системах "жидкость-жидкость" и "газ-жидкость". Смеситель содержит корпус с...
Тип: Изобретение
Номер охранного документа: 0002553861
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.58e1

Устройство контроля плотности

Изобретение относится к области измерительной техники, в частности к устройствам контроля плотности твердой фазы гетерогенных систем и тел неправильной формы, и может найти применение в различных отраслях промышленности. Устройство контроля плотности содержит измерительную емкость с крышкой, к...
Тип: Изобретение
Номер охранного документа: 0002554294
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.58e2

Устройство для измерения температуры

Изобретение относится к области измерительной техники, в частности к термометрии. Устройство содержит термопреобразователь 1, выход которого соединен с индикатором 2 температуры и через последовательно соединенные первый вход первого блока вычитания 3, усилитель 4, масштабирующий элемент 5,...
Тип: Изобретение
Номер охранного документа: 0002554295
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5cf0

Устройство для исследования физико-механических свойств корнеклубнеплодов

Изобретение относится к области сельского хозяйства и может быть использовано для исследования физико-механических свойств корнеклубнеплодов. Устройство для исследования физико-механических свойств корнеклубнеплодов содержит раму (1) с прикрепленными к ней электродвигателем (2), на валу...
Тип: Изобретение
Номер охранного документа: 0002555333
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6255

Устройство для измельчения

Изобретение относится к сельскохозяйственному производству, в частности к устройствам для измельчения корнеклубнеплодов, используемых в технологических линиях на животноводческих фермах и комплексах. Устройство для измельчения содержит цилиндрический корпус со сменным блоком ножей, вертикально...
Тип: Изобретение
Номер охранного документа: 0002556720
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6551

Способ сегментации изображения

Изобретение относится к средствам сегментации изображения. Техническим результатом является повышение быстродействия сегментации. В способе для выделения участков изображения, содержащих движущиеся объекты, производят обнуление пикселей с одинаковыми номерами в обоих кадрах последовательно с...
Тип: Изобретение
Номер охранного документа: 0002557484
Дата охранного документа: 20.07.2015
20.08.2015
№216.013.6f82

Конвективно-вакуумная сушилка

Изобретение относится к сушильной технике, а более конкретно к сушильным аппаратам с активными гидродинамическими режимами, предназначенными для сушки дисперсных материалов во взвешенном закрученном слое, и может найти применение при переработке сельскохозяйственных продуктов, получении...
Тип: Изобретение
Номер охранного документа: 0002560116
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.717a

Способ производства конфет с комбинированными корпусами

Изобретение относится к пищевой промышленности, к ее кондитерской отрасли, и может быть использовано для производства конфет с комбинированными корпусами. Предложен способ производства конфет с комбинированными желейно-сбивными корпусами, включающий приготовление сбивной и желейной конфетных...
Тип: Изобретение
Номер охранного документа: 0002560620
Дата охранного документа: 20.08.2015
10.12.2015
№216.013.9840

Способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий

Изобретение относится к области теплофизических измерений и может быть использовано в строительной теплотехнике и различных отраслях промышленности. Согласно заявленному способу осуществляют нагрев исследуемого объекта воздействием импульса СВЧ-излучения, измерение в заданный момент времени...
Тип: Изобретение
Номер охранного документа: 0002570596
Дата охранного документа: 10.12.2015
Показаны записи 31-40 из 72.
10.02.2015
№216.013.22ce

Электробаромембранный аппарат трубчатого типа

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа и может быть использовано для осуществления процессов мембранной технологии. Электробаромембранный аппарат трубчатого типа содержит цилиндрический корпус с расположенными на его внешней поверхности патрубком для ввода...
Тип: Изобретение
Номер охранного документа: 0002540363
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.254e

Декоративная плита на основе фанеры

Изобретение используется в строительстве в качестве финишной облицовки фасадов зданий и сооружений. Техническая задача - разработать альтернативный вид финишной облицовки фасадов. Причем данный вид не должен по основным эксплуатационным свойствам и внешнему виду уступать существующим видам...
Тип: Изобретение
Номер охранного документа: 0002541003
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2a20

Способ непрерывного приготовления многокомпонентных смесей сыпучих материалов

Изобретение относится к области переработки сыпучих материалов и может быть использовано для непрерывного приготовления многокомпонентных смесей в химической и других родственных с ней отраслях промышленности. Способ включает в себя непрерывное дозирование компонентов, их загрузку в смеситель...
Тип: Изобретение
Номер охранного документа: 0002542241
Дата охранного документа: 20.02.2015
20.03.2015
№216.013.33a5

Способ удаления водорастворимых примесей из суспензий органических продуктов

Изобретение относится к очистке тонкодисперсных органических веществ от водорастворимых примесей и может быть использовано в химической, нефтехимической, фармацевтической, пищевой отраслях промышленности. Описывается способ удаления водорастворимых примесей из суспензий органических продуктов...
Тип: Изобретение
Номер охранного документа: 0002544696
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.360e

Устройство для измерения температуры

Изобретение относится к измерительной технике и может быть использовано для проведения температурных измерений. Устройство для измерения температуры содержит мост, собранный на резисторах R1, R2, R3, R4, питаемый от источника стабилизированного напряжения U (точки b, c). К измерительной...
Тип: Изобретение
Номер охранного документа: 0002545322
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3f7d

Способ отмывки тонкодисперсных осадков на фильтрующей перегородке

Изобретение относится к отмывке тонкодисперсных осадков органических пигментов от водорастворимых примесей на фильтрующей перегородке и может быть использовано в других отраслях химической промышленности. Удаление водорастворимых примесей ведут с цикличной подачей промывной воды. При этом...
Тип: Изобретение
Номер охранного документа: 0002547741
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.415c

Энергосберегающая двухступенчатая сушильная установка для растительных материалов

Изобретение относится к области сушки растительных материалов, в частности к вакуумным сушилкам периодического действия, и может быть использовано для сушки пищевых продуктов, а именно овощей, грибов, фруктов, зелени и др. Энергосберегающая двухступенчатая сушильная установка для растительных...
Тип: Изобретение
Номер охранного документа: 0002548230
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4201

Способ определения вида и концентрации наночастиц в неорганических аморфных средах и композитах на основе полимеров

Способ определения вида и концентрации наночастиц в неорганических аморфных средах и композитах на основе полимеров может найти применение в электронике, радиотехнике, природоохранной, химической и нефтяной отраслях для контроля качества проведения технологических процессов и качества готовой...
Тип: Изобретение
Номер охранного документа: 0002548395
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4382

Способ определения функционального состояния системы гемостаза

Изобретение относится к медицине, а именно к гемокоагулогии, и может быть использовано для выявления лиц группы риска развития гемокоагуляционных осложнений. Сущность способа: проводят измерение амплитуды записи процесса свертывания крови в его начале, определяют показатели начала и конца...
Тип: Изобретение
Номер охранного документа: 0002548780
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.46bd

Способ определения коэффициента диффузии растворителей в массивных изделиях из ортотропных капиллярно-пористых материалов

Использование: для исследования процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из ортотропных капиллярно-пористых материалов в строительной, химической и других отраслях промышленности. Сущность изобретения заключается в том, что способ определения...
Тип: Изобретение
Номер охранного документа: 0002549613
Дата охранного документа: 27.04.2015
+ добавить свой РИД