×
10.02.2016
216.014.c2f7

Результат интеллектуальной деятельности: ФОТОКАТОДНЫЙ УЗЕЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к фотокатодным узлам вакуумных высокочувствительных, термо- и радиационно-стойких приемников излучений и приемников изображений для спектрального диапазона 0,19-0,45 мкм. Технический результат - расширение спектральной области чувствительности к электромагнитному излучению. Фотокатодный узел состоит из оптического окна для входного излучения и фотокатода, который выполнен в виде сплошной либо сетчатой мембранной конструкций на основе поликристаллической алмазной пленки, слаболегированной акцепторами, или сплошной поликристаллической алмазной пленки, слаболегированной акцепторами с нано- и микроструктурированной поверхностью, и многощелочного фотокатода, содержащего цезий и сурьму, расположенного на тыльной стороне входного оптического окна в виде пленки наноразмерной толщины в 10-30 нм на расстоянии 0,1-1,0 мм от приемной поверхности алмазного фотокатода. 1 ил.
Основные результаты: Фотокатодный узел, состоящий из оптического окна для входного излучения и фотокатода, отличающийся тем, что фотокатод выполнен в виде сплошной либо сетчатой мембранной конструкций на основе поликристаллической алмазной пленки, слаболегированной акцепторами, или сплошной поликристаллической алмазной пленки, слаболегированной акцепторами с нано- и микроструктурированной поверхностью, а многощелочной фотокатод, содержащий цезий и сурьму, выполнен на тыльной стороне входного оптического окна в виде пленки наноразмерной толщины в 10-30 нм и расположен на расстоянии 0,1-1,0 мм от приемной поверхности алмазного фотокатода.

Изобретение выполняет функцию устройства, предназначенного для пропорционального преобразования оптического излучения в электрический сигнал, либо преобразования картины изображений в потоках квантов УФ части спектрального диапазона в картину изображений в фотоэлектронах. Изобретение может быть использовано в качестве фотокатодных узлов вакуумных оптоэлектронных приемников излучений (например, в ФЭУ), либо фотокатодных узлов оптоэлектронных приемников оптических изображений (например, в ЭОП). Актуальность изобретения обусловлена резко выросшим интересом к детекторам ультрафиолетового излучения, что связано как с новыми научными данными о влиянии УФ излучения на жизнь и здоровье людей, так и с реализацией технических условий для срочного решения ряда задач промышленного, медицинского, экологического и охранного характера массового назначения [1, 2].

Детекторы электромагнитных излучений ультрафиолетового диапазона различаются по типу их применения, который определяется спектральным диапазоном регистрируемого излучения. В УФ-диапазоне обычно выделяют три поддиапазона: длинноволновый, или UV-A (λ=320-400 нм); средневолновый, или UV-B (λ=280-320 нм); коротковолновый, или UV-C (λ=120-280 нм). Регистрация излучений поддиапазонов UV-А (λ=320-400 нм) и UV-B (λ=280-320 нм) возможна твердотельными широкозонными полупроводниковыми фотоприемными устройствами резистивной либо p-n переходной конструкций, работающими на эффекте собственного поглощения (например, на основе нитрида галлия либо алмаза, с шириной запрещенной зоны большей 4…5 эВ), либо транзисторными фотоприемниками на основе мультислойных структур из традиционных материалов (например, на основе кремния), но с приемным слоем наноразмерной толщины и экстремально высокого качества, включая качество поверхности. В частности, высокочистый кремний с термическим образом пассивируемой двуоксидом кремния поверхностью, с плотностью состояний на границе раздела не более 109 см-2, с уровнем загрязненности фоновой примесью не превышающем 1012 см-3 пригоден для конструирования фотоприемников УФ диапазона, вплоть до границы в ~0,2 мкм [3]. Однако столь высокие требования к материалу доступны считанному числу производителей, а технология его получения крайне затратная. Что же касается эффективности использования для регистрации УФ квантов приемниками на основе широкозонных материалов с соответствующей шириной запрещенной зоны, то и здесь существуют свои физические и технологические проблемы. Основной из них является высокая дефектность широкозонных материалов, их загрязненность фоновой примесью, резко снижающая пороговую чувствительность и квантовую эффективность устройства в целом. В настоящее время существуют фоторезистивные и p-n переходные УФ приемники излучений чувствительные в указанной области спектра, выполненные на базе поликристаллических алмазных пленках [4]. Их токовая чувствительность достигает ~40 мА/Вт, темновой ток ~0,1-1 нА, а спектральный диапазон чувствительности 0,19-0,27 мкм при квантовой эффективности ~12%. Однако структурное совершенство поликристаллического материала низкое, а степень загрязненности неконтролируемой фоновой примесью высока. Все это ограничивает быстродействие твердотельных полупроводниковых широкозонных приемников излучений, их динамический диапазон по входу и, что крайне важно, исключает возможность их эффективного использования в качестве твердотельных (полупроводниковых) приемников изображений с приемлемым пространственным разрешением.

Существует и другой подход - использование вакуумных фотоприемников с архитектурой ФЭУ и ЭОП [5]. Приемники этой архитектуры имеют наиболее высокую фоточувствительность, наименьшие токи утечки и стойки к температурным и дозовым радиационным воздействиям. В частности, существуют опытные разработки «солнечно-слепых» фотокатодов для спектрального диапазона 120-360 нм, выполненные на основе теллурида (теллур-цезиевые фотокатоды) [6]. Квантовый выход в таких фотокатодах достигает 8-9%, токовая чувствительность (в максимуме, 240-250 нм) - 15-20 мА/Вт.

Многощелочные наноразмерной толщины фотокатоды, содержащие цезий и сурьму, чувствительны в диапазоне свыше 200 нм и при оптимальных толщинах слоев сурьмы (~60-65 нм) диапазон их максимальной токовой чувствительности (285-290 нм) достигает 60 мА/Вт, при квантовом выходе ~в 20% [7]. В настоящем изобретении предлагается использовать многощелочные фотокатоды в качестве прототипа настоящего изобретения.

Задачей настоящего изобретения является создание радиационностойкого и стабильного «солнечно-слепого» УФ фотокатодного узла с расширенной спектральной областью чувствительности к электромагнитному излучению, с повышенными значениями токовой чувствительности и квантовой эффективности.

Поставленная задача реализуется в конструкции фотокатодного узла, реализацию которого предлагается осуществить на основе слаболегированных акцепторами поликристаллических алмазных пленок. Такой фотокатодный узел представляет гибридную сборку из следующих базовых элементов: оптическое окно для входного излучения (для диапазона 0,19-0,45 мкм им может быть окно из MgF2) с пленкой из многощелочного фотокатода толщиной ~50-70 нм (источник атомов цезия, на уровне поглощения ~50-60%), осажденной на внутренней поверхности входного окна; собственно фотокатод на основе поликристаллической алмазной пленки, слаболегированной акцепторами и отстоящий от внутренней поверхности окна входного излучения на расстоянии, оптимальном для эффективного осаждения на поверхность алмазного фотокатода эмитируемых входным излучением из пленки многощелочного фотокатода атомов цезия. В зависимости от конструкции приемника изображений (ЭОП) собственно алмазный фотокатод может быть изготовлен в различном конструктивном исполнении: для схемы работы «на прострел» - в виде сплошной либо сетчатой алмазной мембраны (толщиной, соответственно, 2-3 мкм и 5-10 мкм); для ФЭУ, либо ЭОП работающий в режиме «на отражение» - в виде сплошной алмазной пленки с нано- либо микроструктурированной поверхностью.

Положительный эффект от использования фотокатодного узла ожидается в силу следующих обстоятельств:

- собственное эффективное поглощение излучения в алмазной пленке соответствует спектральному диапазону 0,12-0,27 мкм;

- некоторым граням алмазных кристаллитов свойственно отрицательная энергия сродства, что существенно понизит барьер для выхода вторичных электронов (до 1,5 эВ - из-за сил зеркального изображения);

- использование массивов из наноразмерных острий позволит существенно понизить рабочие напряжения и расширить спектральный диапазон фоточувствительности;

- использование наноразмерной толщины мультищелочной пленки будет служить источником цезия, потоки которого на поверхность алмазной пленки понизят работу выхода и с других граней алмазных кристаллитов, что позволит существенно увеличить квантовых выход фотоэлектронов и расширить спектральный диапазон фоточувствительности в «красную» область;

- алмазные пленки стойки к дозовым нагрузкам ионизирующих излучений, что обеспечит изделиям большой рабочий ресурс, а мультищелочные пленки наноразмерной толщины имеют ничтожно малое сечение взаимодействия с жестким ионизирующим излучением, что с учетом фотокатода на основе алмазной пленки повысит их радиационную стойкость.

На фиг. 1 представлено схематическое изображение фотокатодного узла. Фотокатодный узел состоит из следующих базовых компонент: оптического окна (1) для входного излучения выполненного, например из MgF2; фотокатода (2), выполненного в виде сплошной либо сетчатой мембранной конструкций на основе поликристаллической алмазной пленки слаболегированной акцепторами; многощелочного фотокатода (3) содержащего цезий и сурьму, выполненного на тыльной стороне входного оптического окна в виде пленки наноразмерной толщины в 10-30 нм, расположенного на расстоянии 0,1-1,0 мм от приемной поверхности алмазного фотокатода (2). Фотокатод (2) может быть выполнен и на основе сплошной поликристаллической алмазной пленки слаболегированной акцепторами с нано- и микро- структурированной поверхностью.

Таким образом, появляется возможность реализовать УФ быстродействующий с высокой токовой чувствительностью фотокатодный узел, эффективно работающий в расширенной спектральной области и стойкий к радиации.

Для реализации обсуждаемой конструкции эффективного УФ фотокатодного узла, чувствительного в оптическом диапазоне 0,19-0,45 мкм, ниже предлагается выполнить совокупность следующего ряда технологических процедур. Так, для изготовления фотокатодного узла для ЭОП, работающего в схеме «на прострел» следует: нанести на поверхность подложки порошок из нанокристалитов алмаза; применяя PECVD метод вырастить на поверхности подложки с нанесенными алмазными нанокристаллитами сплошную поликристаллическую алмазную пленку слаболегированную бором, либо пленку в виде алмазной сетки; с использованием фотолитографических процедур и маскирующих покрытий изготовить мембрану из алмазной пленки сплошной либо сетчатой конструкции, локально удалив (вытравив) объем материала подложки в соответствии с условиями задачи, либо с особенностями конструкции корпуса. Затем, следует сформировать на тыльной стороне пластины оптического входного окна пленку многощелочного фотокатода наноразмерной толщины содержащую цезий и сурьму, и с использованием стандартных методов осуществить сборку перечисленных базовых элементов в высоковакуумный корпус.

Для изготовления фотокатодного узла для ФЭУ либо ЭОП, работающего в схеме «на «отражение» следует выполнить следующую совокупность процедур: нанести на поверхность подложки порошок из нанокристалитов алмаза; применяя PECVD метод вырастить на поверхности подложки с нанесенными алмазными нанокристаллитами поликристаллическую алмазную пленку, слаболегированную бором; в ряде случаев для снижения величины порогового напряжения фотоэмиссии электронов в приемном устройстве на основе собственно алмазного фотокатода, может быть дополнительно выполнено формирование на поверхности алмазной пленки массивов из алмазных наноразмерных объектов с большим аспектным отношением (например, наноразмерных алмазных конусов); это может быть реализовано посредством совместного использования методов плазмо-химического высокочастотного и ионного травлений поверхности алмазной пленки, покрытой массивами из наноразмерных массирующих покрытий.

Затем следует сформировать на тыльной стороне пластины оптического входного окна наноразмерной толщины пленку многощелочного фотокатода, содержащую цезий и сурьму, и с использованием стандартных способов осуществить сборку перечисленных базовых элементов в высоковакуумный корпус.

Фотокатодный узел для ФЭУ либо ЭОП для работы в режиме «на отражение» представляет собой сборку в вакуумированный корпус следующих базовых элементов: оптического окна на основе MgF2; наноразмерной толщины пленки мультищелочного фотокатода содержащей в своем составе цезий и сурьму, и осажденной на внутреннюю поверхность входного окна; собственно фотокатода на основе поликристаллической алмазной пленки, легированной бором, на поверхности которой сформирован массив наноразмерных конусов с аспектным отношением не менее 3:1. На подготовленную известными методами (отмывка в органических растворителях, например, в бензоле либо в изопропиловом спирте, и последующая обработка низкомощностными потоками кислородоаргонной плазмы) поверхность подложки наносим (например, центрифугированием) порошок из нанокристаллитов алмаза (предварительно сепарированный по размерам с использованием ультразвуковых методов. Затем, используя PECVD метод, выращиваем на поверхности подложки с упомянутыми нанокристаллическими зародышами алмазную поликристаллическую пленку, слаболегированную бором. Затем на поверхность поликристаллической (либо крупноблочной) алмазной пленки наносим (например, методом термического напыления) двухслойное пленочное покрытие ванадий/никель, с толщинами слоев, соответственно, 30 нм/100 нм. Известными методами (например, посредством электронной литографии, с последующим травлением перечисленных слоев) выполняем по нанесенному покрытию рисунок, например, в виде совокупности регулярно расположенных кружков диаметром 0,05…0,3 мкм с плотностью расположения 106-108 см-2. Затем помещаем образец в рабочую камеру установки сухого плазмохимического травления, например, травления в среде кислородно-аргонной плазмы (0,2:0,8). При мощности плазмы ~300-500 Вт и времени травления ~20 минут на поверхности алмазных пленок формируем совокупность (массивы) из микроразмерных острий высотой ~0,7…1,0 мкм с наноразмерным диаметром вершин упомянутых острий (~10-20 нм). Формируем гальваническую связь приемной области алмазной пленки с тыльным либо периферийным контактом к подложке.

На поверхности тыльной стороны входного окна формируем наноразмерной толщины (-50-60 нм) пленку многощелочного фотокатода состава CsxSb1-x.

Указанные базовые элементы с помощью стандартной технологии гибридно собирают в колбу высоковакуумного корпуса.

Фотокатодный узел для ЭОП для работы в режиме «на прострел» представляет собой сборку в вакуумированный корпус следующих базовых элементов: оптического окна на основе MgF2; наноразмерной толщины пленки мультищелочного фотокатода, содержащей в своем составе цезий и сурьму, и осажденной на внутреннюю поверхность алмазного фотокатода мембранной конструкции, выполненного на основе сплошной поликристаллической алмазной пленки, легированной бором, толщиной не более 2-3 мкм, либо на основе алмазной сетчатой мембраны толщиной 5-10 мкм, с контактом по периферии к ее поверхности. На подготовленную известными методами (отмывка в органических растворителях, например, в бензоле либо в изопропиловом спирте, и последующая обработка низкомощностными потоками кислородо-аргонной плазмы) поверхность подложки наносим (например, центрифугированием) порошок из нанокристаллитов алмаза (предварительно сепарированный по размерам с использованием ультразвуковых методов). Затем, используя PECVD метод, выращиваем на поверхности подложки с упомянутыми нанокристаллическими зародышами алмазную поликристаллическую пленку, слаболегированную бором, сплошной либо сетчатой конструкций (в последнем случае перед ростом, посредством фотолитографии формируем в из массива зародышей рисунок в виде сетки). Формируем гальваническую связь приемной области алмазной пленки с тыльным либо периферийным контактом к подложке.

На поверхности тыльной стороны входного окна формируем наноразмерной толщины (~10-30 нм) пленку многощелочного фотокатода состава CsxSb1-x.

Указанные базовые элементы с помощью стандартной технологии собирают, гибридно, в колбу высоковакуумного корпуса. Используемые материалы и структура в целом являются радиационностойкими и термостойкими.

Источники информации

1. http://www. sensorica.ru/news3.shtml>

2. В. Зотов, Ε Виноградова. Ультрафиолетовое излучение - это опасно.//Мир и безопасность.2006, №4. С. 48-50

3. (a). Korde R. et al. Stable, high quantum efficiency silicon photodiodes for vacuum-UV applications. - Proc. SPIE, 1988, v. 932, p. 153.

(b). Talmi Y., Simpson R.W. Self-scanned photodiode array: a multichannel spectrometric detector. - Applied Optics, 1980, v. 19, p. 1401.

4. Marchywka M. et al. Ultraviolet photoresponse characteristics of diamond diodes. -Applied Optics, 1991, v. 30, p. 5010.

5. Ulmer M.P. Future detectors for space applications. - Proc. SPIE, 2006, v. 6189, p. 61890.

6. Image Intensifiers. Проспект фирмы HAMAMATSU. 2009 г.

7. Image Intensifiers. Проспект фирмы PHOTONIS - DEP. 2006 г. - прототип

Фотокатодный узел, состоящий из оптического окна для входного излучения и фотокатода, отличающийся тем, что фотокатод выполнен в виде сплошной либо сетчатой мембранной конструкций на основе поликристаллической алмазной пленки, слаболегированной акцепторами, или сплошной поликристаллической алмазной пленки, слаболегированной акцепторами с нано- и микроструктурированной поверхностью, а многощелочной фотокатод, содержащий цезий и сурьму, выполнен на тыльной стороне входного оптического окна в виде пленки наноразмерной толщины в 10-30 нм и расположен на расстоянии 0,1-1,0 мм от приемной поверхности алмазного фотокатода.
ФОТОКАТОДНЫЙ УЗЕЛ
ФОТОКАТОДНЫЙ УЗЕЛ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 96.
26.10.2019
№219.017.daf8

Устройство и способ ультразвукового диспергирования жидкостей

Устройство предназначено для приготовления, а также поддержания во взвешенном состоянии дисперсий в сменных емкостях небольшого объема типа шприцев, пробирок с патрубком в дне или аналогичных и дает возможность в процессе работы подавать в емкость или забирать из нее обрабатываемую жидкость или...
Тип: Изобретение
Номер охранного документа: 0002704189
Дата охранного документа: 24.10.2019
12.12.2019
№219.017.ec5b

Устройство прогнозирования буксования колесных пар рельсового транспорта

Изобретение относится к устройствам, указывающим на пробуксовку или юз колес. Устройство прогнозирования буксования колесных пар рельсового транспорта содержит датчик колебаний механической части привода колесной пары, аналого-цифровой преобразователь, полосовой фильтр, настроенный на...
Тип: Изобретение
Номер охранного документа: 0002708522
Дата охранного документа: 09.12.2019
18.12.2019
№219.017.ee2d

Способ получения покрытия с высокой гидрофильностью на основе биодеградируемого полимера

Изобретение относится к биоразлагаемым полимерным покрытиям с улучшенной гидрофильностью поверхности, имеющей полярные группы, и может быть использовано для улучшения биоинтеграции имплантов, культивирования клеток. Предложен способ получения покрытия на основе биодеградируемого полимера из...
Тип: Изобретение
Номер охранного документа: 0002709091
Дата охранного документа: 13.12.2019
22.01.2020
№220.017.f883

Способ активной защиты акустической информации от утечки по техническим каналам с использованием эндовибраторов

Изобретение относится к области радиотехники и электроники и может быть использовано для защиты акустической информации, обрабатываемой в защищаемом помещении, от утечки по техническим каналам с использованием специальных технических средств несанкционированного съема акустической информации....
Тип: Изобретение
Номер охранного документа: 0002711439
Дата охранного документа: 17.01.2020
13.02.2020
№220.018.0248

Способ создания радиолокационной завесы из дипольных отражателей

Изобретение относится к области противодействия радиоэлектронной разведке, создания ложной радиолокационной обстановки, пассивной маскировки от радиолокационных систем оружия и может использоваться, в частности, в маскирующих завесах, создаваемых из дипольных отражателей. Для создания...
Тип: Изобретение
Номер охранного документа: 0002713957
Дата охранного документа: 11.02.2020
15.02.2020
№220.018.02ad

Способ корреляционного детектирования фазоманипулированных сигналов

Изобретение относится к области электрической радиосвязи и может быть использовано для детектирования фазоманипулированных сигналов в радиолокационных и радионавигационных системах связи, а также в мобильных системах приема и передачи данных. Техническим результатом является устранение...
Тип: Изобретение
Номер охранного документа: 0002714199
Дата охранного документа: 13.02.2020
05.04.2020
№220.018.1365

Способ измерения микрорельефа разнородной поверхности

Изобретение относится к измерительной технике, а конкретнее к оптической профилометрии, и может быть использовано для измерения поверхностного микрорельефа, полученного любым способом в произвольной разнородной структуре, обладающей различными оптическими характеристиками. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002718404
Дата охранного документа: 02.04.2020
07.07.2020
№220.018.3026

Способ радиолокации с использованием цифровых антенных решеток (цар) и устройство для его осуществления

Изобретение относится к радиолокации и может быть использовано для обнаружения объектов и детектирования их координат в широком секторе обзора. Достигаемый технический результат - формирование виртуальной антенной решетки с большим числом элементов при использовании малого числа реальных...
Тип: Изобретение
Номер охранного документа: 0002725757
Дата охранного документа: 06.07.2020
07.07.2020
№220.018.3043

Тканеинженерная конструкция для регенерации сердечной ткани

Изобретение относится к медицине и касается тканеинженерной конструкции для регенерации сердечной мышцы, включающей электропроводящий слой композиционного наноматериала из бычьего сывороточного альбумина и наполнителя из одностенных углеродных нанотрубок, содержащей конструкцию из слоев с общей...
Тип: Изобретение
Номер охранного документа: 0002725860
Дата охранного документа: 06.07.2020
09.07.2020
№220.018.30cf

Устройство контроля работы генератора шума

Изобретение относится к области радиотехники. Устройство может применяться для защиты информации, обрабатываемой СВТ самостоятельно или в составе любого генератора электромагнитного шума без каких либо дополнительных согласующих устройств. Технический результат - повышение достоверности...
Тип: Изобретение
Номер охранного документа: 0002725907
Дата охранного документа: 07.07.2020
Показаны записи 41-43 из 43.
12.04.2023
№223.018.4764

Оптико-электронный микроскоп

Микроскоп содержит телевизионную систему наблюдения с матричным фотоприемником, систему подсветки, первый объектив, электронно-оптический преобразователь и второй объектив. Первый объектив выполнен из двух сферических зеркал, главного вогнутого и вторичного выпуклого, и его предметная...
Тип: Изобретение
Номер охранного документа: 0002745099
Дата охранного документа: 19.03.2021
01.06.2023
№223.018.7492

Вакуумный эмиссионный приемник изображений ультрафиолетового диапазона

Изобретение относится к приемникам-преобразователям оптических изображений с внутренним усилением. Оно может быть использовано для регистрации и усиления оптических изображений объектов в спектральном диапазоне 40…270 нм вакуумного ультрафиолета (ВУФ), с возможностью последующего цифрового...
Тип: Изобретение
Номер охранного документа: 0002738767
Дата охранного документа: 16.12.2020
01.06.2023
№223.018.7506

Способ эллипсометрического контроля топографического рельефа, механических напряжений и дефектности пленок на подложках

Способ может использоваться при межоперационном контроле механических напряжений и дефектов в функциональных слоях. Способ включает эллипсометрические измерения показателя преломления на локальных участках пленки, однократное определение на каждом участке пленки толщины d и показателей...
Тип: Изобретение
Номер охранного документа: 0002744821
Дата охранного документа: 16.03.2021
+ добавить свой РИД