×
10.02.2016
216.014.c2d1

Результат интеллектуальной деятельности: СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к горной промышленности, в частности к системам автоматизации вентиляторных установок, и может быть использовано для обеспечения безопасного, энерго- и ресурсосберегающего проветривания подземных горнодобывающих предприятий. Технический результат - расширение функциональных возможностей за счет высокоэффективной работы системы в теплое время года с учетом параметров наружного воздуха. Система автоматизации главной вентиляторной установки (ГВУ) включает микроконтроллерный блок (МКБ), связанный с датчиками контроля параметров воздуха, участвующего в процессе проветривания, задающее устройство электропривода ГВУ, а также датчики расхода воздуха, установленные в околоствольных дворах воздухоподающих стволов рудника. Воздухоподающий ствол, расположенный дальше от вентиляционного ствола, снабжен поверхностным устройством кондиционирования воздуха (УКВ). Воздухоподающий ствол, ближний к вентиляционному стволу, снабжен подземным УКВ. Оба УКВ связаны с устройством задания их хладопроизводительности. Испаритель подземной УКВ расположен в околоствольном дворе воздухоподающего ствола, ближнего к вентиляционному стволу, а конденсатор - в одной из главных вентиляционных выработок, подходящих к вентиляционному стволу. МКБ выполнен с возможностью подачи управляющих команд на устройство задания хладопроизводительности поверхностной и подземной УКВ в зависимости от параметров наружного воздуха. 5 ил.
Основные результаты: Система автоматизации главной вентиляторной установки (ГВУ), включающая микроконтроллерный блок (МКБ), связанный с датчиками контроля параметров воздуха, участвующего в процессе проветривания, задающее устройство электропривода ГВУ, а также датчики расхода воздуха, установленные в околоствольных дворах воздухоподающих стволов рудника, отличающаяся тем, что воздухоподающий ствол, расположенный дальше от вентиляционного ствола, снабжен поверхностным устройством кондиционирования воздуха (УКВ), а воздухоподающий ствол, ближний к вентиляционному стволу, снабжен подземным УКВ, оба УКВ связаны с устройством задания их хладопроизводительности, причем испаритель подземной УКВ расположен в околоствольном дворе воздухоподающего ствола, ближнего к вентиляционному стволу, а конденсатор - в одной из главных вентиляционных выработок, подходящих к вентиляционному стволу, при этом МКБ выполнен с возможностью подачи управляющих команд на устройство задания хладопроизводительности поверхностной и подземной УКВ в зависимости от параметров наружного воздуха.

Изобретение относится к горной промышленности, в частности к системам автоматизации вентиляторных установок, и может быть использовано для обеспечения безопасного, энерго- и ресурсосберегающего проветривания подземных горнодобывающих предприятий глубиной до 500 м.

Известна система автоматизации главной вентиляторной установки (ГВУ), состоящая из рабочей станции диспетчера шахты и рабочей станции оператора ГВУ, соединенных между собой и с общим контроллером, связанным с контроллером вентиляционных агрегатов, к которым подключены посты местного управления, высоковольтные ячейки двигателей вентиляторов, пускатели вспомогательных механизмов, датчики температуры, датчики контроля состояния вспомогательных механизмов и счетчики электроэнергии, а также соединенным с постом местного управления общими механизмами, пускателем общих механизмов, датчиками параметров воздуха и датчиками контроля состояния общих механизмов (RU 59779 U1, 27.12.2006).

Однако известная система не позволяет учитывать общешахтную естественную тягу и не исключает вероятность возникновения «воздушных пробок» в воздухоподающих стволах шахты, что снижает ее кпд, энергоэффективность и не обеспечивает требуемые правилами безопасности условия проветривания.

Наиболее близкой к заявляемой является система автоматизации главной вентиляторной установки (RU 131083 U1, опубл. 10.08.2013), включающая микроконтроллерный блок (МКБ), связанный с датчиками контроля параметров воздуха, участвующего в процессе проветривания, а также калориферные установки с возможностью изменения их теплопроизводительности и задающее устройство электропривода ГВУ. Датчиками контроля параметров воздуха служат датчики температуры и давления (либо плотномеры), а также датчики расхода воздуха, причем указанные датчики установлены в околоствольных дворах воздухоподающих стволов рудника, в месте пересечения главных вентиляционных выработок с вентиляционным стволом, в канале ГВУ, в калориферных каналах рудника и связаны с МКБ интерфейсами связи, при этом МКБ включает модуль ввода, связанный с датчиками температуры и давления, модуль вывода, соединенный с задающим устройством электропривода ГВУ, а также модуль ввода, связанный с датчиками расхода воздуха, модуль вывода, соединенный с механизмами изменения теплопроизводительности калориферных установок. МКБ выполнен с возможностью опроса датчиков, расчета средней плотности столбов воздуха в воздухоподающих и вентиляционном стволах рудника, абсолютного значения тепловых депрессий, действующих между стволами рудника и общешахтной естественной тяги, а также подачи управляющих команд на задающее устройство электропривода ГВУ и механизмы изменения теплопроизводительности калориферных установок.

Однако известная система предполагает автоматизировать процесс управления ГВУ только в холодное время года, т.е. при работе шахтных калориферных установок.

Технический результат - расширение функциональных возможностей за счет высокоэффективной работы системы в теплое время года с учетом параметров наружного воздуха.

Технический результат достигается за счет того, что в системе автоматизации главной вентиляторной установки (ГВУ), включающей микроконтроллерный блок (МКБ), связанный с датчиками контроля параметров воздуха, участвующего в процессе проветривания, задающее устройство электропривода ГВУ, а также датчики расхода воздуха, установленные в околоствольных дворах воздухоподающих стволов рудника, согласно формуле воздухоподающий ствол, расположенный дальше от вентиляционного ствола, снабжен поверхностным устройством кондиционирования воздуха (УКВ), а воздухоподающий ствол, ближний к вентиляционному стволу, снабжен подземным УКВ, оба УКВ связаны с устройством задания их хладопроизводительности, причем испаритель подземной УКВ расположен в околоствольном дворе воздухоподающего ствола, ближнего к вентиляционному стволу, а конденсатор - в одной из главных вентиляционных выработок, подходящих к вентиляционному стволу, при этом МКБ выполнен с возможностью подачи управляющих команд на устройство задания хладопроизводительности поверхностной и подземной УКВ в зависимости от параметров наружного воздуха.

В зависимости от параметров наружного воздуха (температуры, атмосферного давления, относительной влажности и т.д.), определяемых датчиками, а также от объема воздуха, необходимого для проветривания рудника (Qш) и поверхностных утечек (Qут), МКБ имеет возможность управлять режимами работы поверхностной и подземной УКВ, т.е. их хладопроизводительностью, которая регулируется устройством задания хладопроизводительности поверхностной и подземной УКВ. За счет охлаждения воздуха в испарителях обоих УКВ, а также изменения температуры исходящей струи воздуха, в которую поступает нагретый воздух, будет увеличиваться значение общерудничной естественной тяги и объем воздуха, поступающего в рудник. Заявляемая система автоматизации, изменяя режим работы ГВУ при помощи МКБ и задающего устройства электропривода ГВУ, снижает объем воздуха, подаваемого в рудник (Qш) до требуемого, тем самым обеспечивая высокую эффективность работы системы в теплое время года с учетом параметров наружного воздуха.

Система иллюстрируется следующим образом.

На фиг. 1 представлена принципиальная схема автоматизации ГВУ, на фиг. 2 показана схема проветривания неглубокого рудника. На фиг. 3, 4 представлена схема расположения датчиков в воздухоподающих стволах, а на фиг. 5 - расположение датчиков в вентиляционном стволе. Фиг. 6 представляет собой схему расположения элементов обоих УКВ в заявляемой системе.

1 - воздухоподающий ствол, расположенный дальше от вентиляционного ствола;

2 - воздухоподающий ствол, расположенный ближе к вентиляционному стволу;

3 - вентиляционный ствол;

4 - трубопровод с хладоносителем;

5 - подземная часть рудника;

6 - главная вентиляторная установка (ГВУ);

7 - 1-я главная вентиляционная выработка, подходящая к вентиляционному стволу 3;

8 - 2-я главная вентиляционная выработка, подходящая к вентиляционному стволу 3;

9 - охлаждаемый воздух;

10 - охлажденный воздух;

11 - исходящая струя воздуха;

12 - надшахтное здание воздухоподающего ствола 1;

13 - надшахтное здание воздухоподающего ствола 2;

14 - испаритель поверхностной УКВ;

15 - испаритель подземной УКВ;

16 - конденсатор поверхностной УКВ;

17 - конденсатор подземной УКВ;

18 - надшахтное здание вентиляционного ствола 3;

19 - наружный воздух, подсасываемый через надшахтное здание;

20 - калориферный канал;

21 - воздух, охлажденный в поверхностной УКВ;

22 - воздух, нагретый в конденсаторе 16;

23 - воздух, нагретый в конденсаторе 17;

24 - датчики температуры и давления (или плотномеры);

25 - датчик расхода воздуха;

26 - околоствольный двор воздухоподающего ствола 1;

27 - здание калориферной установки;

28 - околоствольный двор воздухоподающего ствола 2;

29 - канал ГВУ;

30 - МКБ;

31 - устройство задания хладопроизводительности поверхностной и подземной УКВ;

32 - задающее устройство электропривода;

33 - электропривод ГВУ;

34 - регулирующий вентиль;

35 - нагнетательный вентилятор;

36 - теплообменники испарителя 15;

37 - теплообменники конденсатора 17;

38 - охлаждающий вентилятор;

39 - компрессор конденсатора 17;

40 - 1-й модуль ввода МКБ;

41 - 1-й модуль вывода МКБ;

42 - 2-й модуль ввода МКБ;

43 - 2-й модуль вывода МКБ;

44 - автоматизированное рабочее место (АРМ) оператора;

45 - датчики параметров наружного воздуха (температура, давление, относительная влажность и т.д.)

В рудник по воздухоподающим стволам 1 и 2 за счет разрежения, создаваемого ГВУ 6, поступает наружный воздух, далее - в подземную часть рудника 5 и после проветривания всех рабочих зон подземной части рудника 5 выдается через вентиляционный ствол 3 и канал ГВУ 29 на поверхность. В теплое время года в неглубоких рудниках (500 м и менее) происходит конденсация влаги на стенках горного массива. В результате чего, например, в соленых рудниках образуются растворы солей (электролиты), которые выводят из строя электрооборудование, разрушают покрытие дорог, ведут к затоплению выработок и уменьшают несущую способность целиков. Оборудование неглубоких рудников установками кондиционирования позволит избежать таких негативных последствий.

Основная часть воздуха в воздухоподающие стволы 1 и 2 подается через калориферный канал 20, а часть подсасывается через надшахтные здания 12 и 13 за счет общешахтной депрессии, создаваемой ГВУ 6. На воздухоподающем стволе 1 располагается испаритель поверхностной УКВ 14. Охлаждаемый воздух 9 за счет общешахтной депрессии, создаваемой ГВУ 6, а также за счет работы нагнетательных вентиляторов 35 поступает в теплообменники испарителя 36, где он охлаждается, и через калориферный канал 20 после смешения с воздухом 19, подсасываемым через надшахтное здание 12, поступает в воздухоподающий ствол 1.

Хладопроизводительность испарителя должна быть такой, чтобы температура и влагосодержание воздуха 10, поступающего в воздухоподающий ствол 1, после смешения потоков воздуха 21 и 19 поддерживались на уровне, при котором влага в руднике выпадать не будет либо будет выпадать в значительно меньшем объеме. Охлажденный воздух 10 поступает в околоствольный двор 26 воздухоподающего ствола 1, где он за счет барометрического давления, создаваемого столбом воздуха в стволе, нагревается. Следуя по горным выработкам подземной части рудника 5, воздух вновь охлаждается до температуры горных пород. В связи с тем, что воздух охлаждается в испарителе 14 поверхностной УКВ до температуры, при которой происходит его осушение, влага в руднике выпадать не будет либо будет выпадать в значительно меньшем объеме.

В воздухоподающий ствол 2 охлаждаемый воздух поступает через здание калориферной установки 27, теплообменники которой в теплое время года отключены, по калориферному каналу 20 и через надшахтное здание 13. Далее охлаждаемый воздух 9 поступает в испаритель 15 подземной УКВ, который располагается в околоствольном дворе 28 воздухоподающего ствола 2. В испарителе 15 подземной УКВ воздух 10 охлаждается и поступает в подземную часть рудника 5.

Согласно ЕПБ (Единые правила безопасности при разработке рудных, нерудных и россыпных месторождений полезных ископаемых подземным способом (ПБ 03-553-03). Серия 03. Вып. 33 / ГУП «НТЦ по безопасности в промышленности Госгортехнадзора России». М., 2003) для каждого горнодобывающего предприятия устанавливается требуемый объем наружного воздуха, который необходимо в него подавать (Qш). В зависимости от утечек воздуха (Qут) определяют производительность ГВУ 6 (QВ). Кроме поверхностных утечек воздуха производительность ГВУ 6 будет зависеть от величины тепловых депрессий, действующих между стволами 1, 2 и 3 (hei), и общешахтной естественной тяги he.

Величина и направление тепловых депрессий (hei), действующих между стволами 1, 2 и 3, зависит от средних значений температуры и давления (средних плотностей) воздуха в стволах. Система, в которой охлаждение воздуха производится на поверхности воздухоподающего ствола 1 и в околоствольном дворе 28 воздухоподающего ствола 2, способствует возникновению положительных тепловых депрессий (hei) и общерудничной естественной тяги (he).

С помощью нагнетательных вентиляторов 35 охлаждаемый воздух 9 подают в теплообменники 36. Система из нагнетательного вентилятора 35 и теплообменников 36 представляет собой испаритель 14 поверхностной УКВ. В теплообменниках 36 воздух 9 охлаждается за счет теплообмена с хладоносителем, циркулирующим в трубопроводе 4. В качестве хладоносителя может использоваться, например, фреон или аммиак.

В испарителе 14 хладоноситель кипит за счет тепла, отнимаемого от охлаждаемого воздуха 9. Далее по трубопроводу 4 хладоноситель в газообразном состоянии поступает в компрессор 39 конденсатора 16 поверхностной УКВ, где он сжимается. Сжатие сопровождается соответствующим повышением температуры. В теплообменниках 37 конденсатора 16 хладоноситель охлаждается до температуры насыщения и, конденсируясь, переходит в жидкое состояние. Тепло нагрева и конденсации отводится охлаждающей средой за счет охлаждающих вентиляторов 38. Для регулирования давления хладоносителя в трубопроводе 4 предназначен регулирующий вентиль 34.

При изменении положения регулирующего вентиля 34 меняется величина давления хладоносителя в трубопроводе 4, тем самым регулируется хладопроизводительность поверхностной УКВ. Аналогичным образом работает испаритель 15 и конденсатор 17 подземной УКВ. Также давление хладоносителя в трубопроводе 4 можно регулировать за счет работы компрессора 39.

Теплый воздух 23, нагретый в конденсаторе 17 подземной УКВ, выбрасывается в исходящую по вентиляционному стволу 3 струю воздуха 11, повышая ее температуру. За счет повышения температуры воздуха 11, выбрасываемого по вентиляционному стволу 3, увеличивается значение положительной общерудничной естественной тяги.

В случае небольшой глубины рудника (до 500 м) в одной из главных вентиляционных выработок, например 8, подходящих к вентиляционному стволу 3, может быть размещен конденсатор 16 поверхностной УКВ, который будет выбрасывать в вентиляционный ствол 3 нагретый в процессе работы конденсатора 16 поверхностной УКВ поток воздуха 22. В этом случае будет наблюдаться дополнительный положительный эффект, заключающийся в повышении величины общерудничной естественной тяги.

Работу всех устройств контролирует МКБ 30, который включает 1-й модуль ввода 40, связанный с датчиками температуры и давления (плотномерами) 24 и с датчиками параметров наружного воздуха 45, 1-й модуль вывода 41, соединенный с задающим устройством 32 электропривода 33 ГВУ 6, а также 2-й модуль ввода 42, связанный с датчиками расхода воздуха 25 и 2-й модуль вывода 43, соединенный с устройством задания хладопроизводительности УКВ 31.

МКБ 30 имеет возможность опроса датчиков 24, 25,45, расчета средней плотности столбов воздуха в стволах 1, 2 и 3, абсолютного значения тепловых депрессий, действующих между стволами рудника и общерудничной естественной тяги, а также подачи управляющих команд на задающее устройство 32 электропривода 33 ГВУ 6 и устройства управления хладопроизводительностью УКВ 31.

Задающее устройство 32 электропривода 33 ГВУ 6 выполнено с возможностью регулирования скорости вращения вала вентилятора ГВУ 6 или/и изменения угла установки лопаток осевого направляющего аппарата (не показаны).

МКБ 30 связан с автоматизированным рабочим местом (АРМ) 44 с возможностью контроля работы системы и процесса проветривания. На АРМ 44 в случае возникновения нештатной ситуации поступает сигнал аварийной сигнализации, согласно которому диспетчер АРМа предпринимает меры для безостановочной работы ГВУ и УКВ.

Хладопроизводительность УКВ регулируется устройством 31 за счет изменения положения регулирующих вентилей 34, работы компрессоров 39 и нагнетательных вентиляторов 35 и 38 (поверхностной и подземной УКВ).

Система работает следующим образом.

В зависимости от параметров наружного воздуха (температуры, атмосферного давления, относительной влажности и т.д.), определяемых датчиками 45, а также от объема воздуха, необходимого для проветривания рудника (Qш) и поверхностных утечек (Qут), МКБ 30 задает режим работы поверхностной и подземной УКВ, т.е. их хладопроизводительности, которые регулируются устройством 31. За счет охлаждения воздуха в испарителях 14 и 15 УКВ, а также изменения температуры исходящей струи воздуха 11, в которую поступает нагретый воздух 22, увеличивается значение общерудничной естественной тяги и, следовательно, объем воздуха, поступающего в рудник.

Регулирование хладопроизводительности поверхностной и подземной УКВ с учетом действия тепловых депрессий, действующих между стволами (hei), позволит избежать возникновения в стволах «воздушных пробок».

Система автоматизации, изменив режим работы ГВУ 6 за счет задающего устройства 32, изменяет производительность ГВУ 6 (Qв) до требуемой. При этом за счет действия положительной общерудничной естественной тяги (he) в рудник будет поступать требуемый объем воздуха (Qш), что повысит энергоэффективность проветривания и воздухоподготовки и обеспечит расширение функциональных возможностей за счет высокоэффективной работы системы в теплое время года с учетом параметров наружного воздуха.

Система автоматизации главной вентиляторной установки (ГВУ), включающая микроконтроллерный блок (МКБ), связанный с датчиками контроля параметров воздуха, участвующего в процессе проветривания, задающее устройство электропривода ГВУ, а также датчики расхода воздуха, установленные в околоствольных дворах воздухоподающих стволов рудника, отличающаяся тем, что воздухоподающий ствол, расположенный дальше от вентиляционного ствола, снабжен поверхностным устройством кондиционирования воздуха (УКВ), а воздухоподающий ствол, ближний к вентиляционному стволу, снабжен подземным УКВ, оба УКВ связаны с устройством задания их хладопроизводительности, причем испаритель подземной УКВ расположен в околоствольном дворе воздухоподающего ствола, ближнего к вентиляционному стволу, а конденсатор - в одной из главных вентиляционных выработок, подходящих к вентиляционному стволу, при этом МКБ выполнен с возможностью подачи управляющих команд на устройство задания хладопроизводительности поверхностной и подземной УКВ в зависимости от параметров наружного воздуха.
СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ
СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ
СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ
СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ
СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ
СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ
Источник поступления информации: Роспатент

Показаны записи 121-130 из 131.
10.05.2016
№216.015.3b52

Способ контроля и диагностики устойчивости покрытия к действию внешних нагрузок

Изобретение относится к области контроля и диагностики совокупности эксплуатационных свойств износостойких покрытий, связанных, прежде всего, с твердостью, адгезионной прочностью, износостойкостью, и может быть использовано в машиностроении, судостроении и других отраслях, а также для покрытий,...
Тип: Изобретение
Номер охранного документа: 0002583332
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b6c

Вискозиметр

Изобретение относится к области технической физики, а именно к технике определения вязкостных свойств жидких сред. Вискозиметр содержит вертикальный калиброванный капилляр, заполненный исследуемой жидкостью. Внутри капилляра с зазором помещена калиброванная игла. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002583957
Дата охранного документа: 10.05.2016
27.05.2016
№216.015.4241

Способ комплексной оценки энергетической эффективности технологической установки для перекачивания жидких сред во время ее эксплуатации

Изобретение относится к области насосостроения. Способ комплексной оценки энергетической эффективности (ЭЭ) технологической установки (ТУ) для перекачивания жидких сред при заданном технологическом режиме во время ее эксплуатации включает первоначальную регистрацию номинальных параметров каждой...
Тип: Изобретение
Номер охранного документа: 0002585345
Дата охранного документа: 27.05.2016
27.08.2016
№216.015.51a1

Подвеска объекта бронетанковой техники

Изобретение относится к объектам бронетанковой техники, а именно к подвескам танков. Подвеска включает опорные катки, балансиры, торсионы и амортизаторы. Подвеска дополнена установленными на наружных поверхностях носовой и кормовой (передней и задней) частей корпуса роторными гасителями...
Тип: Изобретение
Номер охранного документа: 0002596206
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.5e8f

Система управления шахтной энергетической установкой

Изобретение относится к горной промышленности и может быть использовано для управления режимом работы шахтной главной вентиляторной установки (ГВУ) подземного горнодобывающего предприятия с одновременной выработкой электроэнергии. Технический результат заключается в повышении производительности...
Тип: Изобретение
Номер охранного документа: 0002590920
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.83ed

Способ проветривания подземного горнодобывающего предприятия

Изобретение относится к горной промышленности и может быть использовано при проветривании подземных горнодобывающих предприятий. Согласно способу подают наружный воздух по воздухоподающему стволу за счет работы главной вентиляторной установки (ГВУ), нагревают его в шахтной калориферной...
Тип: Изобретение
Номер охранного документа: 0002601342
Дата охранного документа: 10.11.2016
19.01.2018
№218.016.0552

Шахтная калориферная установка

Изобретение относится к горной промышленности и может быть использовано в системе вентиляции подземных горнодобывающих предприятий. Шахтная калориферная установка включает нагнетательные вентиляторы, ряд пластинчатых элементов, установленных в нижней части калориферного канала, прилегающего к...
Тип: Изобретение
Номер охранного документа: 0002630838
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.09af

Способ проветривания тупиковой выработки

Изобретение относится к вентиляции горных выработок и может использоваться при проветривании тупиковых выработок. Эффективность проветривания тупиковой выработки повышается за счет выполнения регулирующего устройства в виде трубопровода с развилкой, на входе которого установлен вентилятор....
Тип: Изобретение
Номер охранного документа: 0002631946
Дата охранного документа: 29.09.2017
17.02.2018
№218.016.2af8

Система проветривания уклонного блока нефтешахты

Изобретение относится к горной промышленности и может быть использовано для экономичного проветривания уклонных блоков на месторождениях высоковязкой нефти и природного битума, разрабатываемых термошахтным способом. Технический результат заключается в снижении энергозатрат на проветривание...
Тип: Изобретение
Номер охранного документа: 0002642893
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3397

Система проветривания уклонного блока нефтешахты

Изобретение относится к горной промышленности и может быть использовано для проветривания уклонных блоков на месторождениях высоковязкой нефти и природного битума, подземная добыча которых производится шахтным способом с использованием тепловых методов воздействия на пласт. Технический...
Тип: Изобретение
Номер охранного документа: 0002645690
Дата охранного документа: 27.02.2018
Показаны записи 121-130 из 144.
10.05.2016
№216.015.3b52

Способ контроля и диагностики устойчивости покрытия к действию внешних нагрузок

Изобретение относится к области контроля и диагностики совокупности эксплуатационных свойств износостойких покрытий, связанных, прежде всего, с твердостью, адгезионной прочностью, износостойкостью, и может быть использовано в машиностроении, судостроении и других отраслях, а также для покрытий,...
Тип: Изобретение
Номер охранного документа: 0002583332
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b6c

Вискозиметр

Изобретение относится к области технической физики, а именно к технике определения вязкостных свойств жидких сред. Вискозиметр содержит вертикальный калиброванный капилляр, заполненный исследуемой жидкостью. Внутри капилляра с зазором помещена калиброванная игла. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002583957
Дата охранного документа: 10.05.2016
27.05.2016
№216.015.4241

Способ комплексной оценки энергетической эффективности технологической установки для перекачивания жидких сред во время ее эксплуатации

Изобретение относится к области насосостроения. Способ комплексной оценки энергетической эффективности (ЭЭ) технологической установки (ТУ) для перекачивания жидких сред при заданном технологическом режиме во время ее эксплуатации включает первоначальную регистрацию номинальных параметров каждой...
Тип: Изобретение
Номер охранного документа: 0002585345
Дата охранного документа: 27.05.2016
27.08.2016
№216.015.51a1

Подвеска объекта бронетанковой техники

Изобретение относится к объектам бронетанковой техники, а именно к подвескам танков. Подвеска включает опорные катки, балансиры, торсионы и амортизаторы. Подвеска дополнена установленными на наружных поверхностях носовой и кормовой (передней и задней) частей корпуса роторными гасителями...
Тип: Изобретение
Номер охранного документа: 0002596206
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.5e8f

Система управления шахтной энергетической установкой

Изобретение относится к горной промышленности и может быть использовано для управления режимом работы шахтной главной вентиляторной установки (ГВУ) подземного горнодобывающего предприятия с одновременной выработкой электроэнергии. Технический результат заключается в повышении производительности...
Тип: Изобретение
Номер охранного документа: 0002590920
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.83ed

Способ проветривания подземного горнодобывающего предприятия

Изобретение относится к горной промышленности и может быть использовано при проветривании подземных горнодобывающих предприятий. Согласно способу подают наружный воздух по воздухоподающему стволу за счет работы главной вентиляторной установки (ГВУ), нагревают его в шахтной калориферной...
Тип: Изобретение
Номер охранного документа: 0002601342
Дата охранного документа: 10.11.2016
19.01.2018
№218.016.0552

Шахтная калориферная установка

Изобретение относится к горной промышленности и может быть использовано в системе вентиляции подземных горнодобывающих предприятий. Шахтная калориферная установка включает нагнетательные вентиляторы, ряд пластинчатых элементов, установленных в нижней части калориферного канала, прилегающего к...
Тип: Изобретение
Номер охранного документа: 0002630838
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.09af

Способ проветривания тупиковой выработки

Изобретение относится к вентиляции горных выработок и может использоваться при проветривании тупиковых выработок. Эффективность проветривания тупиковой выработки повышается за счет выполнения регулирующего устройства в виде трубопровода с развилкой, на входе которого установлен вентилятор....
Тип: Изобретение
Номер охранного документа: 0002631946
Дата охранного документа: 29.09.2017
17.02.2018
№218.016.2af8

Система проветривания уклонного блока нефтешахты

Изобретение относится к горной промышленности и может быть использовано для экономичного проветривания уклонных блоков на месторождениях высоковязкой нефти и природного битума, разрабатываемых термошахтным способом. Технический результат заключается в снижении энергозатрат на проветривание...
Тип: Изобретение
Номер охранного документа: 0002642893
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3397

Система проветривания уклонного блока нефтешахты

Изобретение относится к горной промышленности и может быть использовано для проветривания уклонных блоков на месторождениях высоковязкой нефти и природного битума, подземная добыча которых производится шахтным способом с использованием тепловых методов воздействия на пласт. Технический...
Тип: Изобретение
Номер охранного документа: 0002645690
Дата охранного документа: 27.02.2018
+ добавить свой РИД