×
10.02.2016
216.014.c2d1

Результат интеллектуальной деятельности: СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к горной промышленности, в частности к системам автоматизации вентиляторных установок, и может быть использовано для обеспечения безопасного, энерго- и ресурсосберегающего проветривания подземных горнодобывающих предприятий. Технический результат - расширение функциональных возможностей за счет высокоэффективной работы системы в теплое время года с учетом параметров наружного воздуха. Система автоматизации главной вентиляторной установки (ГВУ) включает микроконтроллерный блок (МКБ), связанный с датчиками контроля параметров воздуха, участвующего в процессе проветривания, задающее устройство электропривода ГВУ, а также датчики расхода воздуха, установленные в околоствольных дворах воздухоподающих стволов рудника. Воздухоподающий ствол, расположенный дальше от вентиляционного ствола, снабжен поверхностным устройством кондиционирования воздуха (УКВ). Воздухоподающий ствол, ближний к вентиляционному стволу, снабжен подземным УКВ. Оба УКВ связаны с устройством задания их хладопроизводительности. Испаритель подземной УКВ расположен в околоствольном дворе воздухоподающего ствола, ближнего к вентиляционному стволу, а конденсатор - в одной из главных вентиляционных выработок, подходящих к вентиляционному стволу. МКБ выполнен с возможностью подачи управляющих команд на устройство задания хладопроизводительности поверхностной и подземной УКВ в зависимости от параметров наружного воздуха. 5 ил.
Основные результаты: Система автоматизации главной вентиляторной установки (ГВУ), включающая микроконтроллерный блок (МКБ), связанный с датчиками контроля параметров воздуха, участвующего в процессе проветривания, задающее устройство электропривода ГВУ, а также датчики расхода воздуха, установленные в околоствольных дворах воздухоподающих стволов рудника, отличающаяся тем, что воздухоподающий ствол, расположенный дальше от вентиляционного ствола, снабжен поверхностным устройством кондиционирования воздуха (УКВ), а воздухоподающий ствол, ближний к вентиляционному стволу, снабжен подземным УКВ, оба УКВ связаны с устройством задания их хладопроизводительности, причем испаритель подземной УКВ расположен в околоствольном дворе воздухоподающего ствола, ближнего к вентиляционному стволу, а конденсатор - в одной из главных вентиляционных выработок, подходящих к вентиляционному стволу, при этом МКБ выполнен с возможностью подачи управляющих команд на устройство задания хладопроизводительности поверхностной и подземной УКВ в зависимости от параметров наружного воздуха.

Изобретение относится к горной промышленности, в частности к системам автоматизации вентиляторных установок, и может быть использовано для обеспечения безопасного, энерго- и ресурсосберегающего проветривания подземных горнодобывающих предприятий глубиной до 500 м.

Известна система автоматизации главной вентиляторной установки (ГВУ), состоящая из рабочей станции диспетчера шахты и рабочей станции оператора ГВУ, соединенных между собой и с общим контроллером, связанным с контроллером вентиляционных агрегатов, к которым подключены посты местного управления, высоковольтные ячейки двигателей вентиляторов, пускатели вспомогательных механизмов, датчики температуры, датчики контроля состояния вспомогательных механизмов и счетчики электроэнергии, а также соединенным с постом местного управления общими механизмами, пускателем общих механизмов, датчиками параметров воздуха и датчиками контроля состояния общих механизмов (RU 59779 U1, 27.12.2006).

Однако известная система не позволяет учитывать общешахтную естественную тягу и не исключает вероятность возникновения «воздушных пробок» в воздухоподающих стволах шахты, что снижает ее кпд, энергоэффективность и не обеспечивает требуемые правилами безопасности условия проветривания.

Наиболее близкой к заявляемой является система автоматизации главной вентиляторной установки (RU 131083 U1, опубл. 10.08.2013), включающая микроконтроллерный блок (МКБ), связанный с датчиками контроля параметров воздуха, участвующего в процессе проветривания, а также калориферные установки с возможностью изменения их теплопроизводительности и задающее устройство электропривода ГВУ. Датчиками контроля параметров воздуха служат датчики температуры и давления (либо плотномеры), а также датчики расхода воздуха, причем указанные датчики установлены в околоствольных дворах воздухоподающих стволов рудника, в месте пересечения главных вентиляционных выработок с вентиляционным стволом, в канале ГВУ, в калориферных каналах рудника и связаны с МКБ интерфейсами связи, при этом МКБ включает модуль ввода, связанный с датчиками температуры и давления, модуль вывода, соединенный с задающим устройством электропривода ГВУ, а также модуль ввода, связанный с датчиками расхода воздуха, модуль вывода, соединенный с механизмами изменения теплопроизводительности калориферных установок. МКБ выполнен с возможностью опроса датчиков, расчета средней плотности столбов воздуха в воздухоподающих и вентиляционном стволах рудника, абсолютного значения тепловых депрессий, действующих между стволами рудника и общешахтной естественной тяги, а также подачи управляющих команд на задающее устройство электропривода ГВУ и механизмы изменения теплопроизводительности калориферных установок.

Однако известная система предполагает автоматизировать процесс управления ГВУ только в холодное время года, т.е. при работе шахтных калориферных установок.

Технический результат - расширение функциональных возможностей за счет высокоэффективной работы системы в теплое время года с учетом параметров наружного воздуха.

Технический результат достигается за счет того, что в системе автоматизации главной вентиляторной установки (ГВУ), включающей микроконтроллерный блок (МКБ), связанный с датчиками контроля параметров воздуха, участвующего в процессе проветривания, задающее устройство электропривода ГВУ, а также датчики расхода воздуха, установленные в околоствольных дворах воздухоподающих стволов рудника, согласно формуле воздухоподающий ствол, расположенный дальше от вентиляционного ствола, снабжен поверхностным устройством кондиционирования воздуха (УКВ), а воздухоподающий ствол, ближний к вентиляционному стволу, снабжен подземным УКВ, оба УКВ связаны с устройством задания их хладопроизводительности, причем испаритель подземной УКВ расположен в околоствольном дворе воздухоподающего ствола, ближнего к вентиляционному стволу, а конденсатор - в одной из главных вентиляционных выработок, подходящих к вентиляционному стволу, при этом МКБ выполнен с возможностью подачи управляющих команд на устройство задания хладопроизводительности поверхностной и подземной УКВ в зависимости от параметров наружного воздуха.

В зависимости от параметров наружного воздуха (температуры, атмосферного давления, относительной влажности и т.д.), определяемых датчиками, а также от объема воздуха, необходимого для проветривания рудника (Qш) и поверхностных утечек (Qут), МКБ имеет возможность управлять режимами работы поверхностной и подземной УКВ, т.е. их хладопроизводительностью, которая регулируется устройством задания хладопроизводительности поверхностной и подземной УКВ. За счет охлаждения воздуха в испарителях обоих УКВ, а также изменения температуры исходящей струи воздуха, в которую поступает нагретый воздух, будет увеличиваться значение общерудничной естественной тяги и объем воздуха, поступающего в рудник. Заявляемая система автоматизации, изменяя режим работы ГВУ при помощи МКБ и задающего устройства электропривода ГВУ, снижает объем воздуха, подаваемого в рудник (Qш) до требуемого, тем самым обеспечивая высокую эффективность работы системы в теплое время года с учетом параметров наружного воздуха.

Система иллюстрируется следующим образом.

На фиг. 1 представлена принципиальная схема автоматизации ГВУ, на фиг. 2 показана схема проветривания неглубокого рудника. На фиг. 3, 4 представлена схема расположения датчиков в воздухоподающих стволах, а на фиг. 5 - расположение датчиков в вентиляционном стволе. Фиг. 6 представляет собой схему расположения элементов обоих УКВ в заявляемой системе.

1 - воздухоподающий ствол, расположенный дальше от вентиляционного ствола;

2 - воздухоподающий ствол, расположенный ближе к вентиляционному стволу;

3 - вентиляционный ствол;

4 - трубопровод с хладоносителем;

5 - подземная часть рудника;

6 - главная вентиляторная установка (ГВУ);

7 - 1-я главная вентиляционная выработка, подходящая к вентиляционному стволу 3;

8 - 2-я главная вентиляционная выработка, подходящая к вентиляционному стволу 3;

9 - охлаждаемый воздух;

10 - охлажденный воздух;

11 - исходящая струя воздуха;

12 - надшахтное здание воздухоподающего ствола 1;

13 - надшахтное здание воздухоподающего ствола 2;

14 - испаритель поверхностной УКВ;

15 - испаритель подземной УКВ;

16 - конденсатор поверхностной УКВ;

17 - конденсатор подземной УКВ;

18 - надшахтное здание вентиляционного ствола 3;

19 - наружный воздух, подсасываемый через надшахтное здание;

20 - калориферный канал;

21 - воздух, охлажденный в поверхностной УКВ;

22 - воздух, нагретый в конденсаторе 16;

23 - воздух, нагретый в конденсаторе 17;

24 - датчики температуры и давления (или плотномеры);

25 - датчик расхода воздуха;

26 - околоствольный двор воздухоподающего ствола 1;

27 - здание калориферной установки;

28 - околоствольный двор воздухоподающего ствола 2;

29 - канал ГВУ;

30 - МКБ;

31 - устройство задания хладопроизводительности поверхностной и подземной УКВ;

32 - задающее устройство электропривода;

33 - электропривод ГВУ;

34 - регулирующий вентиль;

35 - нагнетательный вентилятор;

36 - теплообменники испарителя 15;

37 - теплообменники конденсатора 17;

38 - охлаждающий вентилятор;

39 - компрессор конденсатора 17;

40 - 1-й модуль ввода МКБ;

41 - 1-й модуль вывода МКБ;

42 - 2-й модуль ввода МКБ;

43 - 2-й модуль вывода МКБ;

44 - автоматизированное рабочее место (АРМ) оператора;

45 - датчики параметров наружного воздуха (температура, давление, относительная влажность и т.д.)

В рудник по воздухоподающим стволам 1 и 2 за счет разрежения, создаваемого ГВУ 6, поступает наружный воздух, далее - в подземную часть рудника 5 и после проветривания всех рабочих зон подземной части рудника 5 выдается через вентиляционный ствол 3 и канал ГВУ 29 на поверхность. В теплое время года в неглубоких рудниках (500 м и менее) происходит конденсация влаги на стенках горного массива. В результате чего, например, в соленых рудниках образуются растворы солей (электролиты), которые выводят из строя электрооборудование, разрушают покрытие дорог, ведут к затоплению выработок и уменьшают несущую способность целиков. Оборудование неглубоких рудников установками кондиционирования позволит избежать таких негативных последствий.

Основная часть воздуха в воздухоподающие стволы 1 и 2 подается через калориферный канал 20, а часть подсасывается через надшахтные здания 12 и 13 за счет общешахтной депрессии, создаваемой ГВУ 6. На воздухоподающем стволе 1 располагается испаритель поверхностной УКВ 14. Охлаждаемый воздух 9 за счет общешахтной депрессии, создаваемой ГВУ 6, а также за счет работы нагнетательных вентиляторов 35 поступает в теплообменники испарителя 36, где он охлаждается, и через калориферный канал 20 после смешения с воздухом 19, подсасываемым через надшахтное здание 12, поступает в воздухоподающий ствол 1.

Хладопроизводительность испарителя должна быть такой, чтобы температура и влагосодержание воздуха 10, поступающего в воздухоподающий ствол 1, после смешения потоков воздуха 21 и 19 поддерживались на уровне, при котором влага в руднике выпадать не будет либо будет выпадать в значительно меньшем объеме. Охлажденный воздух 10 поступает в околоствольный двор 26 воздухоподающего ствола 1, где он за счет барометрического давления, создаваемого столбом воздуха в стволе, нагревается. Следуя по горным выработкам подземной части рудника 5, воздух вновь охлаждается до температуры горных пород. В связи с тем, что воздух охлаждается в испарителе 14 поверхностной УКВ до температуры, при которой происходит его осушение, влага в руднике выпадать не будет либо будет выпадать в значительно меньшем объеме.

В воздухоподающий ствол 2 охлаждаемый воздух поступает через здание калориферной установки 27, теплообменники которой в теплое время года отключены, по калориферному каналу 20 и через надшахтное здание 13. Далее охлаждаемый воздух 9 поступает в испаритель 15 подземной УКВ, который располагается в околоствольном дворе 28 воздухоподающего ствола 2. В испарителе 15 подземной УКВ воздух 10 охлаждается и поступает в подземную часть рудника 5.

Согласно ЕПБ (Единые правила безопасности при разработке рудных, нерудных и россыпных месторождений полезных ископаемых подземным способом (ПБ 03-553-03). Серия 03. Вып. 33 / ГУП «НТЦ по безопасности в промышленности Госгортехнадзора России». М., 2003) для каждого горнодобывающего предприятия устанавливается требуемый объем наружного воздуха, который необходимо в него подавать (Qш). В зависимости от утечек воздуха (Qут) определяют производительность ГВУ 6 (QВ). Кроме поверхностных утечек воздуха производительность ГВУ 6 будет зависеть от величины тепловых депрессий, действующих между стволами 1, 2 и 3 (hei), и общешахтной естественной тяги he.

Величина и направление тепловых депрессий (hei), действующих между стволами 1, 2 и 3, зависит от средних значений температуры и давления (средних плотностей) воздуха в стволах. Система, в которой охлаждение воздуха производится на поверхности воздухоподающего ствола 1 и в околоствольном дворе 28 воздухоподающего ствола 2, способствует возникновению положительных тепловых депрессий (hei) и общерудничной естественной тяги (he).

С помощью нагнетательных вентиляторов 35 охлаждаемый воздух 9 подают в теплообменники 36. Система из нагнетательного вентилятора 35 и теплообменников 36 представляет собой испаритель 14 поверхностной УКВ. В теплообменниках 36 воздух 9 охлаждается за счет теплообмена с хладоносителем, циркулирующим в трубопроводе 4. В качестве хладоносителя может использоваться, например, фреон или аммиак.

В испарителе 14 хладоноситель кипит за счет тепла, отнимаемого от охлаждаемого воздуха 9. Далее по трубопроводу 4 хладоноситель в газообразном состоянии поступает в компрессор 39 конденсатора 16 поверхностной УКВ, где он сжимается. Сжатие сопровождается соответствующим повышением температуры. В теплообменниках 37 конденсатора 16 хладоноситель охлаждается до температуры насыщения и, конденсируясь, переходит в жидкое состояние. Тепло нагрева и конденсации отводится охлаждающей средой за счет охлаждающих вентиляторов 38. Для регулирования давления хладоносителя в трубопроводе 4 предназначен регулирующий вентиль 34.

При изменении положения регулирующего вентиля 34 меняется величина давления хладоносителя в трубопроводе 4, тем самым регулируется хладопроизводительность поверхностной УКВ. Аналогичным образом работает испаритель 15 и конденсатор 17 подземной УКВ. Также давление хладоносителя в трубопроводе 4 можно регулировать за счет работы компрессора 39.

Теплый воздух 23, нагретый в конденсаторе 17 подземной УКВ, выбрасывается в исходящую по вентиляционному стволу 3 струю воздуха 11, повышая ее температуру. За счет повышения температуры воздуха 11, выбрасываемого по вентиляционному стволу 3, увеличивается значение положительной общерудничной естественной тяги.

В случае небольшой глубины рудника (до 500 м) в одной из главных вентиляционных выработок, например 8, подходящих к вентиляционному стволу 3, может быть размещен конденсатор 16 поверхностной УКВ, который будет выбрасывать в вентиляционный ствол 3 нагретый в процессе работы конденсатора 16 поверхностной УКВ поток воздуха 22. В этом случае будет наблюдаться дополнительный положительный эффект, заключающийся в повышении величины общерудничной естественной тяги.

Работу всех устройств контролирует МКБ 30, который включает 1-й модуль ввода 40, связанный с датчиками температуры и давления (плотномерами) 24 и с датчиками параметров наружного воздуха 45, 1-й модуль вывода 41, соединенный с задающим устройством 32 электропривода 33 ГВУ 6, а также 2-й модуль ввода 42, связанный с датчиками расхода воздуха 25 и 2-й модуль вывода 43, соединенный с устройством задания хладопроизводительности УКВ 31.

МКБ 30 имеет возможность опроса датчиков 24, 25,45, расчета средней плотности столбов воздуха в стволах 1, 2 и 3, абсолютного значения тепловых депрессий, действующих между стволами рудника и общерудничной естественной тяги, а также подачи управляющих команд на задающее устройство 32 электропривода 33 ГВУ 6 и устройства управления хладопроизводительностью УКВ 31.

Задающее устройство 32 электропривода 33 ГВУ 6 выполнено с возможностью регулирования скорости вращения вала вентилятора ГВУ 6 или/и изменения угла установки лопаток осевого направляющего аппарата (не показаны).

МКБ 30 связан с автоматизированным рабочим местом (АРМ) 44 с возможностью контроля работы системы и процесса проветривания. На АРМ 44 в случае возникновения нештатной ситуации поступает сигнал аварийной сигнализации, согласно которому диспетчер АРМа предпринимает меры для безостановочной работы ГВУ и УКВ.

Хладопроизводительность УКВ регулируется устройством 31 за счет изменения положения регулирующих вентилей 34, работы компрессоров 39 и нагнетательных вентиляторов 35 и 38 (поверхностной и подземной УКВ).

Система работает следующим образом.

В зависимости от параметров наружного воздуха (температуры, атмосферного давления, относительной влажности и т.д.), определяемых датчиками 45, а также от объема воздуха, необходимого для проветривания рудника (Qш) и поверхностных утечек (Qут), МКБ 30 задает режим работы поверхностной и подземной УКВ, т.е. их хладопроизводительности, которые регулируются устройством 31. За счет охлаждения воздуха в испарителях 14 и 15 УКВ, а также изменения температуры исходящей струи воздуха 11, в которую поступает нагретый воздух 22, увеличивается значение общерудничной естественной тяги и, следовательно, объем воздуха, поступающего в рудник.

Регулирование хладопроизводительности поверхностной и подземной УКВ с учетом действия тепловых депрессий, действующих между стволами (hei), позволит избежать возникновения в стволах «воздушных пробок».

Система автоматизации, изменив режим работы ГВУ 6 за счет задающего устройства 32, изменяет производительность ГВУ 6 (Qв) до требуемой. При этом за счет действия положительной общерудничной естественной тяги (he) в рудник будет поступать требуемый объем воздуха (Qш), что повысит энергоэффективность проветривания и воздухоподготовки и обеспечит расширение функциональных возможностей за счет высокоэффективной работы системы в теплое время года с учетом параметров наружного воздуха.

Система автоматизации главной вентиляторной установки (ГВУ), включающая микроконтроллерный блок (МКБ), связанный с датчиками контроля параметров воздуха, участвующего в процессе проветривания, задающее устройство электропривода ГВУ, а также датчики расхода воздуха, установленные в околоствольных дворах воздухоподающих стволов рудника, отличающаяся тем, что воздухоподающий ствол, расположенный дальше от вентиляционного ствола, снабжен поверхностным устройством кондиционирования воздуха (УКВ), а воздухоподающий ствол, ближний к вентиляционному стволу, снабжен подземным УКВ, оба УКВ связаны с устройством задания их хладопроизводительности, причем испаритель подземной УКВ расположен в околоствольном дворе воздухоподающего ствола, ближнего к вентиляционному стволу, а конденсатор - в одной из главных вентиляционных выработок, подходящих к вентиляционному стволу, при этом МКБ выполнен с возможностью подачи управляющих команд на устройство задания хладопроизводительности поверхностной и подземной УКВ в зависимости от параметров наружного воздуха.
СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ
СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ
СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ
СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ
СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ
СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 131.
10.02.2013
№216.012.234f

Цветное шлакокаменное литье и шихта для его получения

Изобретение относится к производству художественных изделий и строительных материалов. Технический результат изобретения заключается в расширении сырьевой базы для декоративного каменного литья с использованием дешевых и распространенных трудноутилизируемых отходов производств. Цветное...
Тип: Изобретение
Номер охранного документа: 0002474541
Дата охранного документа: 10.02.2013
27.03.2013
№216.012.31a7

Трехфазный асинхронный электрический двигатель

Изобретение относится к области электротехники, а именно к асинхронным трехфазным двигателям, осуществляющим преобразование электрической энергии переменного тока в механическую энергию. Технический результат, на достижение которого направлено данное изобретение, состоит в повышении...
Тип: Изобретение
Номер охранного документа: 0002478249
Дата охранного документа: 27.03.2013
10.04.2013
№216.012.3389

Устройство катодной защиты погружного нефтенасоса

Изобретение относится к устройствам для катодной защиты нефтепромысловго оборудования, в частности погружного насоса. Техническим результатом является расширение арсенала технических средств. Устройство катодной защиты погружного нефтенасоса содержит трансформатор с первичной и вторичной...
Тип: Изобретение
Номер охранного документа: 0002478736
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3392

Способ получения вторичных целлюлозных волокон переработкой макулатуры из гофрокартона

Изобретение относится к способу подготовки вторичного волокна и может быть использовано в целлюлозно-бумажной промышленности в производстве волокнистых материалов, в частности картона. Способ получения вторичных целлюлозных волокон переработкой макулатуры из гофрокартона включает роспуск...
Тип: Изобретение
Номер охранного документа: 0002478745
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3478

Способ контроля состояния изоляции в трехфазной электрической сети

Изобретение относится к электроэнергетике и предназначено для эксплуатационного контроля состояния изоляции относительно земли объектов под рабочим напряжением в трехфазных сетях с изолированной нейтралью, а также в сетях, где нейтраль заземлена через резистор или реактор. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002478975
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3994

Способ волочения биметаллических прутковых и проволочных изделий

Изобретение предназначено для снижения энергоемкости процесса волочения биметаллических прутковых и проволочных изделий и повышения качества протягиваемых изделий. Способ включает формирование на изделии захватки с заостренным и коническим участками и последующее волочение через конический...
Тип: Изобретение
Номер охранного документа: 0002480301
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4c17

Способ получения цветного декоративного покрытия на камнелитом изделии

Изобретение относится к способам нанесения цветных декоративных износо- и коррозионно-стойких покрытий на поверхность строительных и художественных изделий из каменного литья. Технический результат изобретения заключается в снижении трудоемкости и энергоемкости способа с одновременным...
Тип: Изобретение
Номер охранного документа: 0002485061
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4db6

Способ оценки ударной вязкости высоковязких листовых конструкционных сталей

Изобретение относится к области материаловедения, в частности к металловедению, определяющему ударную вязкость, динамическую трещиностойкость металлов. Сущность: изготавливают, по меньшей мере, четыре стандартных образца, получают в двух из них усталостную трещину-концентратор стандартной...
Тип: Изобретение
Номер охранного документа: 0002485476
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4dbd

Способ оценки сопротивления коррозионной усталости сварных соединений

Изобретение относится к машиностроению, а именно к способам оценки работоспособности сварных соединений в условиях одновременного воздействия циклических нагрузок и коррозионных сред, и может быть использовано для решения научно-исследовательских задач. Сущность: осуществляют определение...
Тип: Изобретение
Номер охранного документа: 0002485483
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fef

Устройство для мундштучного формования

Изобретение относится к устройствам для изготовления изделий методом экструдирования. Техническим результатом изобретения является расширение технологических возможностей устройства и повышение качества получаемых заготовок или изделий. Технический результат достигается устройством для...
Тип: Изобретение
Номер охранного документа: 0002486056
Дата охранного документа: 27.06.2013
Показаны записи 1-10 из 144.
10.02.2013
№216.012.234f

Цветное шлакокаменное литье и шихта для его получения

Изобретение относится к производству художественных изделий и строительных материалов. Технический результат изобретения заключается в расширении сырьевой базы для декоративного каменного литья с использованием дешевых и распространенных трудноутилизируемых отходов производств. Цветное...
Тип: Изобретение
Номер охранного документа: 0002474541
Дата охранного документа: 10.02.2013
27.03.2013
№216.012.31a7

Трехфазный асинхронный электрический двигатель

Изобретение относится к области электротехники, а именно к асинхронным трехфазным двигателям, осуществляющим преобразование электрической энергии переменного тока в механическую энергию. Технический результат, на достижение которого направлено данное изобретение, состоит в повышении...
Тип: Изобретение
Номер охранного документа: 0002478249
Дата охранного документа: 27.03.2013
10.04.2013
№216.012.3389

Устройство катодной защиты погружного нефтенасоса

Изобретение относится к устройствам для катодной защиты нефтепромысловго оборудования, в частности погружного насоса. Техническим результатом является расширение арсенала технических средств. Устройство катодной защиты погружного нефтенасоса содержит трансформатор с первичной и вторичной...
Тип: Изобретение
Номер охранного документа: 0002478736
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3392

Способ получения вторичных целлюлозных волокон переработкой макулатуры из гофрокартона

Изобретение относится к способу подготовки вторичного волокна и может быть использовано в целлюлозно-бумажной промышленности в производстве волокнистых материалов, в частности картона. Способ получения вторичных целлюлозных волокон переработкой макулатуры из гофрокартона включает роспуск...
Тип: Изобретение
Номер охранного документа: 0002478745
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3478

Способ контроля состояния изоляции в трехфазной электрической сети

Изобретение относится к электроэнергетике и предназначено для эксплуатационного контроля состояния изоляции относительно земли объектов под рабочим напряжением в трехфазных сетях с изолированной нейтралью, а также в сетях, где нейтраль заземлена через резистор или реактор. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002478975
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3994

Способ волочения биметаллических прутковых и проволочных изделий

Изобретение предназначено для снижения энергоемкости процесса волочения биметаллических прутковых и проволочных изделий и повышения качества протягиваемых изделий. Способ включает формирование на изделии захватки с заостренным и коническим участками и последующее волочение через конический...
Тип: Изобретение
Номер охранного документа: 0002480301
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4c17

Способ получения цветного декоративного покрытия на камнелитом изделии

Изобретение относится к способам нанесения цветных декоративных износо- и коррозионно-стойких покрытий на поверхность строительных и художественных изделий из каменного литья. Технический результат изобретения заключается в снижении трудоемкости и энергоемкости способа с одновременным...
Тип: Изобретение
Номер охранного документа: 0002485061
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4db6

Способ оценки ударной вязкости высоковязких листовых конструкционных сталей

Изобретение относится к области материаловедения, в частности к металловедению, определяющему ударную вязкость, динамическую трещиностойкость металлов. Сущность: изготавливают, по меньшей мере, четыре стандартных образца, получают в двух из них усталостную трещину-концентратор стандартной...
Тип: Изобретение
Номер охранного документа: 0002485476
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4dbd

Способ оценки сопротивления коррозионной усталости сварных соединений

Изобретение относится к машиностроению, а именно к способам оценки работоспособности сварных соединений в условиях одновременного воздействия циклических нагрузок и коррозионных сред, и может быть использовано для решения научно-исследовательских задач. Сущность: осуществляют определение...
Тип: Изобретение
Номер охранного документа: 0002485483
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fef

Устройство для мундштучного формования

Изобретение относится к устройствам для изготовления изделий методом экструдирования. Техническим результатом изобретения является расширение технологических возможностей устройства и повышение качества получаемых заготовок или изделий. Технический результат достигается устройством для...
Тип: Изобретение
Номер охранного документа: 0002486056
Дата охранного документа: 27.06.2013
+ добавить свой РИД