×
10.02.2016
216.014.c24d

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ

Вид РИД

Изобретение

№ охранного документа
0002574213
Дата охранного документа
10.02.2016
Аннотация: Изобретение может быть использовано в системах управления топливоподачей в форсажную камеру сгорания турбореактивным двухконтурным двигателем с форсажной камерой (ТРДДФ) на форсированных режимах. Способ управления ТРДДФ заключается в том, что измеряют давление за компрессором и давление за турбиной , вычисляют перепад давления на турбине . Далее определяют скорость изменения указанного перепада и определяют скорость изменения расхода топлива (δG), подаваемого в форсажную камеру сгорания. На максимальных форсированных режимах регулируют подачу топлива в форсажную камеру сгорания в зависимости от величины отношения скорости изменения перепада давления на турбине к скорости изменения расхода топлива , обеспечивая его значение близким к нулю. Технический результат - повышение точности регулирования расхода топлива. 1 з.п. ф-лы, 4 ил..

Изобретение относится к области авиационной техники, а более точно касается управления турбореактивным двухконтурным двигателем с форсажной камерой (ТРДДФ). Изобретение преимущественно может быть использовано в системах управления топливоподачей в форсажную камеру сгорания ТРДДФ на форсированных режимах.

Общеизвестно, что для управления газотурбинным двигателем (ГТД) летательного аппарата используют информацию, полученную с датчиков измерения термогазодинамических параметров и частоты вращения ротора ГТД.

Известен способ автоматического управления подачей топлива, при котором управляющее воздействие регулятора на исполнительный механизм, воздействующий на подачу топлива в форсажную камеру сгорания двигателя, корректируют электронным программным регулятором, осуществляющим управление в соответствии со встроенным в систему управления алгоритмом управления, включающим значения настроечного и регулирующих параметров, определяющих подачу топлива в двигатель (патент РФ №2308605).

Также известен способ управления турбореактивным двухконтурным двигателем с форсажной камерой (ФК) на форсированных режимах, при котором на основании, по меньшей мере, одной управляющей величины и, по меньшей мере, одной измеряемой величины, характеризующей режим работы турбокомпрессорной части двигателя, с помощью математической модели определяют величину, характеризующую, по меньшей мере, один управляющий сигнал, подаваемый на исполнительный орган; при этом в качестве измеряемых величин используют расход топлива в основную камеру сгорания, частоту вращения вала низкого давления, полное давление воздуха за компрессором, в качестве управляющей величины используют полную температуру воздуха на входе в двигатель и угол (αруд), характеризующий положение рычага управления двигателем (РУД); в качестве величины, характеризующей управляющий сигнал, используют расход топлива Gтф, подаваемый в форсажную камеру сгорания на форсированных режимах, который определяют в соответствии с программой по закону , и подают для воздействия на исполнительный орган, определяющий топливоподачу в форсажную камеру сгорания (патент РФ №2464437).

Известен также способ управления максимальными форсированными режимами, основанными на программе типа , где - давление воздуха за компрессором, - температура воздуха на входе в ГТД, а функция - расчетная зависимость, полученная по математической модели из условия поддержания для данного «нового» (соответствующего состоянию на начало эксплуатации) двигателя в стандартных атмосферных условиях (САУ) при использовании «стандартного» топлива наиболее рационального (соответствующего наибольшему значению тяги) коэффициента избытка воздуха в форсажной камере αΣ (см., например, под ред. Ю.Н. Нечаев, Теория авиационных двигателей, ч. 2, М., 2006, стр. 136-138).

Однако применяемый в известных технических решениях закон, соответствуя «новому» двигателю по состоянию на начало его эксплуатации, не отражает возможного влияния изменения (ухудшения) характеристик узлов двигателя при его эксплуатации, отклонения атмосферных условий от САУ, а также других факторов (особенностей используемой марки топлива, влажности воздуха, параметров течения в форсажной камере, качества распыла топлива и т.д.), вследствие влияния которых происходит рассогласование режимов работы основных узлов двигателя и, как следствие, изменение его характеристик. В связи с этим количество топлива, реально подаваемого в ФК на максимальных форсированных режимах, может отличаться от той «расчетной» величины, которая соответствует максимальному значения тяги ТРДДФ. Это приводит к тому, что управление газотурбинным двигателем становится менее эффективным в силу невозможности обеспечения оптимального горения во всем диапазоне режимов работы двигателя и, как следствие, ухудшения основных параметров двигателя - его тяги и удельного расхода топлива. Таким образом, эта и другие существующие системы подачи топлива в ФК обеспечивают подачу заранее определенного расхода топлива, не учитывающие реального процесса горения в ФК конкретного ТРДДФ. В связи с этим требуется коррекция расхода топлива в ФК, величина которой зависит от различных факторов, влияние которых может быть взаимно противоположным, и его заблаговременное определение крайне затруднительно.

Определение необходимой коррекции расхода топлива в ФК теоретически может быть осуществлено либо путем прямых замеров, способных показать эффективность процесса горения (например, температуры газа или состава продуктов сгорания на выходе из ФК), либо с помощью косвенной оценки процесса горения по динамике изменения доступных для измерения параметров, в первую очередь, изменения давления за турбиной (перепада давления на турбине) вследствие роста температуры газа на выходе из ФК при изменении подачи топлива.

В качестве наиболее близкого аналога выбран способ управления газотурбинным двигателем с форсажной камерой сгорания (патент РФ №2389890), в котором на установившихся форсированных режимах измеряют давление и температуру газов в ФК. При этом подают возрастающее по частоте пульсирующее воздействие на расход топлива в ФК и в момент увеличения полноты сгорания форсажного топлива, определяемый по скачкообразному росту давления и температуры газов в ФК, фиксируют частоту пульсирующего воздействия на расход топлива. Далее уменьшают расход форсажного топлива до тех пор, пока температура газов в ФК не снизится до исходной. Известный способ обеспечивает повышение экономичности двигателя на форсажных режимах.

В известном техническом решении коррекция расхода топлива, подаваемого в ФК на форсированных режимах, производится в результате оценки темпа изменения температуры и давления газа в ФК при увеличении расхода топлива GТФ; при этом достижение температурой исходного значения (определенного по математической модели или в результате испытаний «нового двигателя», соответствующего началу эксплуатации) и свидетельствует о достижении «оптимального» значения расхода топлива GТФ.

Вместе с тем, измерение давления и температуры газа в ФК двигателя в процессе его эксплуатации с достаточной степенью точности практически невозможно вследствие высокого уровня температуры и выше, а также высокой радиальной и окружной неравномерности распределения этих параметров и .

В основу изобретения положена задача повышения эффективности работы ТРДДФ путем получения максимально возможной тяги на максимальных форсированных режимах с помощью коррекции программы подачи топлива в форсажную камеру сгорания; при этом величина этой коррекции определяется путем косвенной оценки процесса горения по динамике изменения доступных для измерения параметров, в первую очередь, изменения давления за турбиной (перепада на турбине) при изменении скорости подачи топлива.

Технический результат - повышение точности регулирования расхода топлива, что необходимо для поддержания наибольшей тяги на максимальных форсированных режимах при изменении характеристик топлива, состава воздуха (влажности и т.п.), изменения характеристик его узлов в эксплуатации и изменении характеристик течения в ФК.

Достижение заявленного технического результата обеспечивается тем, что в способе управления турбореактивным двухконтурным двигателем с форсажной камерой, заключающемся в измерении на форсированных режимах параметров работы двигателя и регулировании по результатам измерений расхода топлива, подаваемого в форсажную камеру сгорания, согласно изобретению, измеряют давление за компрессором и давление за турбиной , вычисляют перепад давления на турбине и определяют скорость изменения указанного перепада , определяют скорость изменения расхода топлива (δGТФ), подаваемого в форсажную камеру сгорания, и на максимальных форсированных режимах регулируют подачу топлива в форсажную камеру сгорания в зависимости от величины отношения скорости изменения перепада давления на турбине к скорости изменения расхода топлива .

При этом целесообразно регулировать подачу топлива в форсажную камеру сгорания, обеспечивая значение отношения скорости изменения перепада давления на турбине к скорости изменения расхода топлива , близким к нулю.

Оценка эффективности горения при изменении (увеличении) относительной подачи топлива определяется путем косвенного определения изменения температуры газа в ФК через изменение давления за турбиной (перепада давления на турбине), характеризующего изменение этой температуры. В данном случае косвенное определение температуры газа в ФК обеспечивает получение более точного значения этого параметра, поскольку в условиях реальной эксплуатации невозможно с достаточной точностью измерять температуры порядка 2000К и выше. Невысокая точность прямого измерения температуры газа в ФК, например, с использованием термопары обусловлена ее высокой радиальной и окружной неравномерностью распределения.

Изобретение поясняется далее со ссылкой на иллюстрации и таблицы, где на фиг. 1 приведена зависимость полноты сгорания топлива в ФК от коэффициента избытка воздуха. На фиг. 2 приведены расчетные зависимости тяги двигателя, температуры газа в ФК и скорости изменения давления за турбиной в зависимости от скорости изменения расхода топлива в ФК. На фиг. 3 - блок-схема системы управления подачи топлива в ФК. На фиг. 4 приведены таблицы 1 и 2.

Заявленный способ управления турбореактивным двухконтурным двигателем с форсажной камерой заключается в том, что на форсированных режимах измеряют параметры работы двигателя и по результатам измерений регулируют расход топлива, подаваемого в ФК. В данном случае, к существенным измеряемым параметрам относятся давление за компрессором и давление за турбиной . Далее вычисляют перепад давления на турбине и определяют скорость изменения указанного перепада . Обычно расход форсажного топлива (до коррекции) регулируют по давлению за компрессором . На максимальных форсированных режимах определяют скорость изменения расхода топлива (δGТФ), подаваемого в ФК, и регулируют подачу топлива в ФК в зависимости от величины отношения скорости изменения перепада давления на турбине к скорости изменения расхода топлива . Причем подачу топлива в форсажную камеру сгорания регулируют, обеспечивая значение отношения скорости изменения перепада давления на турбине к скорости изменения расхода топлива , близким к нулю.

При изменении (например, увеличении) относительной подачи топлива GТФ в ФК происходит динамическое изменение температуры газа в ФК, что вследствие ограничения приведенного расхода через критическое сечение сопла приводит к росту полного давления перед соплом , а следовательно, за турбиной и уменьшению перепада давления на турбине . Хотя система автоматического управления двигателя в дальнейшем начнет «раскрывать» критическое сечение реактивного сопла для сохранения перепада давления на турбине , но этот процесс гораздо более инерционный, чем рост температуры и давления в ФК. Таким образом, при увеличении подачи топлива в ФК имеет место снижение перепада давления на турбине со скоростью, определяемой инерционностью системы автоматического управления двигателя и изменением температуры вследствие подачи дополнительного топлива.

При одном и том же темпе роста подачи топлива рост температуры (следовательно, снижения перепада полного давления на турбине ) в разных условиях будет неодинаковым. В области более высоких значений коэффициента избытка воздуха αΣ значение коэффициента полноты сгорания ηф в ФК также имеет высокий и практически постоянный уровень (см. фиг. 1). Следовательно, при увеличении подачи топлива GТФ также увеличивается и температура . Однако по мере приближения к стехиометрическому значению в ядре потока (коэффициент избытка воздуха αΣядра=1) полнота сгорания топлива начинает резко уменьшаться. При этом темп прироста температуры также падает, а с дальнейшим ростом подачи топлива GТФ вследствие уменьшения эффективности его сгорания температура сначала перестает расти, а затем начинает падать.

Момент прекращения роста температуры и будет теоретическим пределом повышения тяги двигателя при форсировании при данных условиях.

В заявленном изобретении предлагается ограничивать и прекращать повышение расхода топлива при резком снижении градиента давления за турбиной (перепада на турбине), которое свидетельствует о прекращении роста температуры вследствие снижения полноты сгорания топлива, а следовательно, и достижения максимально возможной тяги двигателя (см. фиг. 2).

Принятый закон управления способствует поддержанию требуемой тяги ТРДДФ на форсированных режимах при ухудшении характеристик его узлов с наработкой и тем самым повышает эффективность работы ТРДДФ.

В предлагаемом способе максимальное количество топлива, подаваемое в ФК ТРДДФ, определяется не заранее заложенной статической зависимостью расхода топлива, задаваемой априорно заложенной программой с целью поддержания коэффициента избытка воздуха на наиболее оптимальном (минимальном) уровне, а динамической системой. Динамическая система корректирует исходную программу подачи топлива на основе обратной связи в зависимости от темпа изменения перепада (скорости изменения) давления на турбине , который, в свою очередь, зависит от фактического изменения температуры газа в форсажной камере при изменении относительной величины подачи топлива. Момент достижения величиной близкого к нулю значения и соответствует наиболее оптимальной величине расхода топлива, подаваемого в форсажную камеру. При указанном расходе топлива горение остается эффективным и обеспечивается получение максимально возможной тяги двигателя независимо от внешних факторов (погрешностей программы управления, изменения характеристик узлов в процессе эксплуатации, отклонения атмосферных условий на входе, теплотворной способности конкретного топлива и т.д.).

На фиг. 3 приведена блок-схема системы управления, реализующей заявленный способ. В соответствии с приведенной блок-схемой системы управления подачи топлива в ФК, по измеренным параметрам двигателя 1 традиционным образом формируются сигналы, пропорциональные значению температуры воздуха на входе в двигатель (в блоке 3), давлению за компрессором (в блоке 4) и давлению за турбиной (в блоке 5). По сигналам, поступающим с выходов блоков 3 и 4, в блоке 6 формируется и передается в насос-регулятор 2 сигнал, определяющий расход форсажного топлива GТФ по условию . При этом насос-регулятор 2 подает соответствующий расход топлива в форсажную камеру двигателя 1. Одновременно с этим по сигналам, поступающим с выходов блоков 4 и 5, в блоке 7 формируется сигнал, пропорциональный суммарной степени понижения давления в турбине . Управляющий блок 10, первоначально задавая некоторое приращение расхода форсажного топлива, формирует сигнал, пропорциональный скорости изменения расхода топлива (δGТФ), а дозирующее устройство 8 в соответствии с этим сигналом корректирует сигнал блока 6, в результате чего насос-регулятор 2 изменяет расход форсажного топлива, подаваемого в двигатель 1. В блоке 9 формируется сигнал, пропорциональный скорости изменения значения суммарной степени понижения давления в турбине , на основании этого сигнала и самого приращения расхода топлива ΔGтф в блоке 10 формируется сигнал на коррекцию расхода форсажного топлива в зависимости от отношения скорости изменения перепада давления на турбине к скорости изменения расхода топлива .

В качестве примера, иллюстрирующего получаемый эффект, рассмотрен ТРДДФ типа АЛ-31Ф в условиях полета на высоте Н=11 км при максимальной скорости.

В таблице 1 (см. фиг. 4) для имитации влияния возможного ухудшения параметров двигателя по мере его эксплуатации представлено изменение основных параметров с “ухудшенными” на 1% значениями КПД основных узлов (КНД, КВД, ТВД и ТНД) по сравнению с «расчетным» случаем при использовании применяемого в настоящее время закона подачи топлива в форсажную камеру сгорания . При этом следует иметь в виду, что одной из причин падения тяги двигателя является снижение степени форсирования (то есть повышение значения коэффициента избытка воздуха в форсажной камере αΣ=1,13369 до αΣ=1,15096).

В соответствии с описанием, изложенным выше, предлагаемая система подачи топлива в форсажную камеру сгорания будет увеличивать степень форсирования двигателя (увеличивать подачу топлива) до достижения максимального значения тяги.

В таблице 2 (см. фиг. 4) представлена расчетная зависимость относительной тяги рассматриваемого двигателя от коэффициента избытка воздуха в форсажной камере αΣ в данных условиях полета без учета возможного изменения полноты сгорания топлива в форсажной камере ηф (за единицу принято значение тяги двигателя при αΣ=1,15096, соответствующей исходному закону регулирования подачи топлива в форсажную камеру сгорания.

Для учета влияния изменения полноты сгорания топлива в форсажной камере ηф на зависимость Rф=f(αΣ) следует воспользоваться результатами испытаний этого двигателя в ТБК ЦИАМ им. П.И. Баранова, которые показали, что с увеличением форсирования двигателя (т.е. уменьшением значения коэффициента избытка воздуха до αΣ≈1,05) имело место постоянное увеличение значения форсажной тяги, а при αΣ<1,05 - наблюдалось ее снижение. Если принять значение αΣ≈1,05 (см. табл. 2 жирный курсив) оптимальным значением с точки зрения максимума форсажной тяги, то можно считать, что применение предложенной системы регулирования подачи топлива в ФК позволит получить в данных условиях полета прирост тяги ΔR=2,9%.

Предложенный способ управления двигателем, заключающийся в регулировании подачи топлива в форсажную камеру на максимальных форсированных режимах по показателю , позволяет учитывать изменение параметров состояния двигателя и характеристик окружающей среды и обеспечивает прирост тяги.


СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ
СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ
СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ
СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ
СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ
СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ
СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ
СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ
СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ
СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ
СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ
СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ
СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ
СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ
СПОСОБ УПРАВЛЕНИЯ ТУРБОРЕАКТИВНЫМ ДВУХКОНТУРНЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 52.
13.01.2017
№217.015.9211

Способ размещения двигателя на летательном аппарате типа "летающее крыло"

Изобретение относится к авиационной технике. Способ размещения двигателя на летательном аппарате типа «летающее крыло» заключается в том, что мотогондолу (1) двигателя устанавливают в хвостовой части крыла (2) таким образом, что зазор между нижней точкой мотогондолы (1) двигателя и...
Тип: Изобретение
Номер охранного документа: 0002605653
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.9b9f

Способ испытания высокоскоростного летательного аппарата

Изобретение относится к области стендовой доработки летательных аппаратов. Способ испытания высокоскоростного летательного аппарата на силоизмерительной платформе под заданным углом атаки в испытательной камере, где создают разряжение, продувают испытательную камеру рабочей средой с протоком...
Тип: Изобретение
Номер охранного документа: 0002610329
Дата охранного документа: 09.02.2017
25.08.2017
№217.015.9d78

Способ работы двигателя внутреннего сгорания с использованием синглетного кислорода

Изобретение относится к двигателестроению и может быть использовано при организации рабочего процесса в поршневом двигателе (ПД). Технический результат заключается в уменьшении затрат энергии на производство необходимого количества синглетного кислорода (СК). Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002610858
Дата охранного документа: 16.02.2017
25.08.2017
№217.015.a386

Способ сертификационных испытаний корпуса на непробиваемость при разрушении диска ротора стартера гтд

Изобретение относится к области авиационного двигателестроения и может быть использовано при сертификационных испытаниях корпуса на непробиваемость при разрушении диска ротора стартера газотурбинного двигателя. Перед испытаниями предварительно выполняют опытный образец диска, соответствующий...
Тип: Изобретение
Номер охранного документа: 0002607145
Дата охранного документа: 10.01.2017
26.08.2017
№217.015.d5b8

Стенд для температурных испытаний изделий авиационной техники

Изобретение относится к испытательной технике, а именно к стендам для температурных испытаний авиационной техники. Стенд для температурных испытаний содержит устройство нагрева рабочей среды, основание, размещенные на нем камеру для испытуемого изделия, трубопровод и защитное устройство в виде...
Тип: Изобретение
Номер охранного документа: 0002623137
Дата охранного документа: 22.06.2017
26.08.2017
№217.015.de9e

Газотурбинная установка и способ функционирования газотурбинной установки

Изобретение относится к энергетике. Газотурбинная установка (ГТУ) содержит компрессор, камеру сгорания, турбину, потребитель энергии, магистраль топливоподачи и котел утилизатор, снабженный контурами горячего и холодного теплоносителей. Контур горячего теплоносителя выполнен в виде выпускного...
Тип: Изобретение
Номер охранного документа: 0002624690
Дата охранного документа: 05.07.2017
29.12.2017
№217.015.f3d1

Способ работы трехконтурного турбореактивного двигателя

Способ работы трехконтурного турбореактивного двигателя с форсажной камерой заключается в том, что сжатый воздух из адаптивного вентилятора разделяют на три потока. Поток первого контура подают в газогенератор, выхлопные газы из которого подают в турбину низкого давления, а от нее через...
Тип: Изобретение
Номер охранного документа: 0002637153
Дата охранного документа: 30.11.2017
04.04.2018
№218.016.2f76

Авиационная силовая установка

Авиационная силовая установка содержит турбореактивный двухконтурный двигатель с внешним и внутренним контурами и по меньшей мере один выносной вентиляторный модуль. Выносной вентиляторный модуль имеет корпус с установленными в нем тяговым вентилятором, приводом вентилятора, размещенными на...
Тип: Изобретение
Номер охранного документа: 0002644721
Дата охранного документа: 13.02.2018
03.07.2018
№218.016.6a21

Газотурбинная силовая установка летательного аппарата

Изобретение относится к авиационному двигателестроению, в частности к малоразмерным газотурбинным двигателям летательных аппаратов. Газотурбинная силовая установка летательного аппарата содержит расположенные в корпусе воздухозаборный канал с полым центральным обтекателем, стойками и...
Тип: Изобретение
Номер охранного документа: 0002659426
Дата охранного документа: 02.07.2018
04.07.2018
№218.016.6a75

Способ определения предзадирного состояния в сопряжении цилиндро-поршневой группы двигателя внутреннего сгорания

Изобретение относится к машиностроению, а именно к способам испытания двигателей внутреннего сгорания. Технический результат, достигаемый при осуществлении предлагаемого способа, заключается в определении момента срыва толщины масляного слоя в режимах рабочего хода и газообмена,...
Тип: Изобретение
Номер охранного документа: 0002659659
Дата охранного документа: 03.07.2018
Показаны записи 31-40 из 44.
13.01.2017
№217.015.9211

Способ размещения двигателя на летательном аппарате типа "летающее крыло"

Изобретение относится к авиационной технике. Способ размещения двигателя на летательном аппарате типа «летающее крыло» заключается в том, что мотогондолу (1) двигателя устанавливают в хвостовой части крыла (2) таким образом, что зазор между нижней точкой мотогондолы (1) двигателя и...
Тип: Изобретение
Номер охранного документа: 0002605653
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.9b9f

Способ испытания высокоскоростного летательного аппарата

Изобретение относится к области стендовой доработки летательных аппаратов. Способ испытания высокоскоростного летательного аппарата на силоизмерительной платформе под заданным углом атаки в испытательной камере, где создают разряжение, продувают испытательную камеру рабочей средой с протоком...
Тип: Изобретение
Номер охранного документа: 0002610329
Дата охранного документа: 09.02.2017
25.08.2017
№217.015.9d78

Способ работы двигателя внутреннего сгорания с использованием синглетного кислорода

Изобретение относится к двигателестроению и может быть использовано при организации рабочего процесса в поршневом двигателе (ПД). Технический результат заключается в уменьшении затрат энергии на производство необходимого количества синглетного кислорода (СК). Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002610858
Дата охранного документа: 16.02.2017
25.08.2017
№217.015.a386

Способ сертификационных испытаний корпуса на непробиваемость при разрушении диска ротора стартера гтд

Изобретение относится к области авиационного двигателестроения и может быть использовано при сертификационных испытаниях корпуса на непробиваемость при разрушении диска ротора стартера газотурбинного двигателя. Перед испытаниями предварительно выполняют опытный образец диска, соответствующий...
Тип: Изобретение
Номер охранного документа: 0002607145
Дата охранного документа: 10.01.2017
26.08.2017
№217.015.d5b8

Стенд для температурных испытаний изделий авиационной техники

Изобретение относится к испытательной технике, а именно к стендам для температурных испытаний авиационной техники. Стенд для температурных испытаний содержит устройство нагрева рабочей среды, основание, размещенные на нем камеру для испытуемого изделия, трубопровод и защитное устройство в виде...
Тип: Изобретение
Номер охранного документа: 0002623137
Дата охранного документа: 22.06.2017
26.08.2017
№217.015.de9e

Газотурбинная установка и способ функционирования газотурбинной установки

Изобретение относится к энергетике. Газотурбинная установка (ГТУ) содержит компрессор, камеру сгорания, турбину, потребитель энергии, магистраль топливоподачи и котел утилизатор, снабженный контурами горячего и холодного теплоносителей. Контур горячего теплоносителя выполнен в виде выпускного...
Тип: Изобретение
Номер охранного документа: 0002624690
Дата охранного документа: 05.07.2017
29.12.2017
№217.015.f3d1

Способ работы трехконтурного турбореактивного двигателя

Способ работы трехконтурного турбореактивного двигателя с форсажной камерой заключается в том, что сжатый воздух из адаптивного вентилятора разделяют на три потока. Поток первого контура подают в газогенератор, выхлопные газы из которого подают в турбину низкого давления, а от нее через...
Тип: Изобретение
Номер охранного документа: 0002637153
Дата охранного документа: 30.11.2017
04.04.2018
№218.016.2f76

Авиационная силовая установка

Авиационная силовая установка содержит турбореактивный двухконтурный двигатель с внешним и внутренним контурами и по меньшей мере один выносной вентиляторный модуль. Выносной вентиляторный модуль имеет корпус с установленными в нем тяговым вентилятором, приводом вентилятора, размещенными на...
Тип: Изобретение
Номер охранного документа: 0002644721
Дата охранного документа: 13.02.2018
10.05.2018
№218.016.43e6

Способ полетной диагностики авиационного турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к авиадвигателестроению, касается определения в полете параметров двухконтурного турбореактивного двигателя со смешением потоков и может быть использовано для диагностики его состояния в условиях эксплуатации. Предварительно измеряют степень неравномерности полного...
Тип: Изобретение
Номер охранного документа: 0002649715
Дата охранного документа: 04.04.2018
29.08.2018
№218.016.814f

Способ полетной диагностики узлов турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к способу полетной диагностики узлов турбореактивного двухконтурного двигателя (ТРДД) со смешением потоков. Для диагностики узлов измеряют определенным образом рабочие параметры двигателя на стационарном полетном режиме работы двигателя, измеряют параметры окружающей...
Тип: Изобретение
Номер охранного документа: 0002665142
Дата охранного документа: 28.08.2018
+ добавить свой РИД