×
10.02.2016
216.014.c1f7

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ АКТИВАЦИИ ФАЗОВЫХ ПРЕВРАЩЕНИЙ ПРИ РАСПАДЕ МАРТЕНСИТА В СТАЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлографии и может быть использовано в описании процессов диффузии, превращений, образования зародышей и роста новой фазы в металлах. Способ определения энергии активации фазовых превращений при распаде мартенсита в стали, в котором для определения энергии активации фазовых превращений определяют энергию активации образования зародышей новых ферритной и цементитной фаз и энергию активации роста упомянутых зародышей. Проводят закалку стальных образцов, отпуск упомянутых образцов при различных температурах, определяют количество микроструктурных объектов (N), образующихся при распаде мартенсита, и среднюю площадь зерна (S), с помощью которой определяют температурный коэффициент (α) приращения среднего диаметра зерна по формуле: r
Основные результаты: Способ определения энергии активации фазовых превращений при распаде мартенсита в стали, отличающийся тем, что для определения энергии активации фазовых превращений определяют энергию активации образования зародышей новых ферритной и цементитной фаз и энергию активации роста упомянутых зародышей, для чего проводят закалку стальных образцов, отпуск упомянутых образцов при различных температурах, определяют количество микроструктурных объектов (N), образующихся при распаде мартенсита, и среднюю площадь зерна (S), с помощью которой определяют температурный коэффициент (α) приращения среднего диаметра зерна по формуле: где , Т - температура отпуска, °С, затем строят график зависимости натурального логарифма количества микроструктурных объектов (N) как функцию обратной величины произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации образования зародышей ферритной и цементитной фаз, затем строят график зависимости натурального логарифма температурного коэффициента (α) приращения среднего диаметра зерна как функцию обратного произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации роста упомянутых зародышей, а энергию активации фазовых превращений при распаде мартенсита в стали определяют как сумму энергий активации образования зародышей ферритной и цементитной фаз и энергии активации роста упомянутых зародышей.

Изобретение относится к области металлографии и может быть использовано в описании процессов диффузии, превращений, образования зародышей и роста новой фазы в металлах.

Известен дилатометрический анализ, позволяющий оценить энергию активации, основанный на изменении объема, происходящем в металле или сплаве в момент превращения [1].

Общим недостатком способа, в случае изучения внутренних превращений, является неточность количественных расчетов получающихся кривых, поскольку не удается количественно отделить объемный эффект превращения от чисто термического расширения или сжатия.

Также известен более простой способ определения энергии активации, который заключается в том, что экспериментально определяют коэффициенты в уравнении Аррениуса, представленной в логарифмической форме: lnk=lnk0-E0/RT, где k - константа скорости реакции с размерностью обратного времени, k0 - постоянная, Е0 - энергия активации при распаде мартенсита. Строят график зависимости в координатах lnk и l/RT, эта зависимость линейная. Тангенс угла наклона прямой Аррениуса определяет энергию активации [2].

Наиболее близким аналогом является SU 410299 А, МПК G01N 25/02, 05.01.1974, формула.

Недостаток данных способов заключается в том, что данные способы не позволяют раздельно оценить доли энергии активации, приходящиеся на зародышеобразование и рост новой фазы.

Задачей заявляемого способа является повышение достоверности сведений о свойствах металлов и сплавов при термической обработке.

Технический результат данного изобретения заключается в повышении точности определения энергии активации при распаде мартенсита в стали и в возможности оценки доли энергии активации, отдельно приходящейся на энергию активации зародышеобразования и энергию активации роста ферритной и цементитной фаз.

Технический результат настоящего изобретения достигается следующим образом.

Способ определения энергии активации фазовых превращений при распаде мартенсита в стали, в котором для определения энергии активации фазовых превращений определяют энергию активации образования зародышей новых ферритной и цементитной фаз и энергию активации роста упомянутых зародышей, для чего проводят закалку стальных образцов, отпуск упомянутых образцов при различных температурах, определяют количество микроструктурных объектов (N), образующихся при распаде мартенсита, и среднюю площадь зерна (Scp), с помощью которой определяют температурный коэффициент (αr) приращения среднего диаметра зерна по формуле:

(1)

где , Т - температура отпуска, °С.

Затем строят график зависимости натурального логарифма количества микроструктурных объектов (N) как функцию обратной величины произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации образования зародышей ферритной и цементитной фаз, затем строят график зависимости натурального логарифма температурного коэффициента (αr) приращения среднего диаметра зерна как функцию обратного произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации роста упомянутых зародышей, а энергию активации фазовых превращений при распаде мартенсита в стали определяют как сумму энергий активации образования зародышей ферритной и цементитной фаз и энергии активации роста упомянутых зародышей.

Мартенсит - пересыщенный твердый раствор углерода в α-железе. Образуется при закалке сталей в воду. Имеет «игольчатое» строение. При дальнейшей термической обработке (отпуске) происходит распад мартенсита. Различают 4 основных превращения при нагреве закаленной стали. Все процессы идут внутри мартенситных пластин (игл), поэтому характер игольчатой структуры сохраняется до высоких температур.

Первое превращение при отпуске происходит в интервале 80-200°C и называется «двухфазным» или «гетерогенным» расплавом мартенсита. Выделяются тончайшие пластины карбида (ε - карбид или FexC), уменьшается степень тетрагональности с/а→1 (где с и а - параметры кристаллической решетки), образуется «отпущенный мартенсит». Это превращение сопровождается сокращением объема образца.

Второе превращение происходит в интервале от 200-300°C. Одновременно идут процессы:

- образуются ε - и FexC - карбиды, когерентно связанные с решеткой мартенсита;

- остаточный аустенит переходит в «отпущенный мартенсит»;

(бейнит нижний). Процесс сопровождается увеличением объема;

- продолжается выделение углерода из мартенсита (с/а→1);

- начинается карбидное обособление - образование карбида железа по схеме: FexC→Fe2C→Fe5C→Fe3C.

Третье превращение происходит в интервале от 350-450°C. Увеличивается скорость диффузии, карбид железа выделяется из решетки мартенсита. Степень тетрагональности с/а→1. Образуется дисперсная смесь феррита и цементита (троостит отпуска).

Четвертое превращение происходит выше 400-450°C. Растут частицы карбида (коагуляция) и сливаются, округляются (сфероидизация). Тонкая феррито-цементитная структура троостита отпуска превращается при температуре 500-550°C в сорбит отпуска, а при более высоких температурах (600-650°C) - в перлит.

Энергия активации при распаде мартенсита - это энергия, которой должна обладать система, чтобы перескочить энергетический барьер, чтобы пошла реакция распада мартенсита. Чем больше энергия активации, тем сильнее возрастает скорость распада при увеличении температуры.

Распад мартенсита при отпуске можно разделить на ряд параллельно протекающих процессов: образование условных зародышей новой ферритной и цементитной фаз и их рост. Рост кристаллитов связан с переносом атомов железа через фазовую границу, представляющую определенный энергетический барьер, который определяет энергию активации роста новой структуры. В результате такого массопереноса происходит смещение самой фазовой границы, которое проявляется как миграция границы между исходной и новой структурой. Скорость образования условных зародышей и их суммарное количество, а также рост кристаллитов новых структур носит термофлуктуационную природу, при этом процесс роста зерен или миграция границ главным образом управляется самодиффузией. Тогда процесс распада мартенсита характеризуется суммой энергий активации, учитывающей энергию образования ферритных и цементитных зародышей, рост зерен новых структур, в частности феррита и перлита (ферритных и цементитных прослоек). Следовательно, кинетику процесса распада мартенсита при отпуске и отжиге нельзя однозначно оценить только миграцией атомов углерода, которая рассматривается как основной механизм в экспериментально-теоретических моделях разложения мартенсита.

Количество зародышей новой структуры отличается от количества зерен. Это связано с тем, что зародыши образуются не одновременно и отличаются устойчивостью и степенью привязки к матрице. Первичные зародыши имеют большую вероятность вырасти до зерна, а последующие - могут быть захвачены границей и мигрировать вместе с ней или поглощены растущим зерном и сформировать в нем субмикроструктуру. Часть зародышей может терять идентификационный признак при слиянии зерен.

Для определения энергии активации роста новых структур при распаде мартенсита используем температурный коэффициент приращения среднего диаметра зерна, определяемого по формуле (1).

Способ осуществляли следующим образом.

Провели закалку 7 образцов стали 45. Далее провели отпуск 6 образцов стали 45 при различных температурах. Затем готовили шлифы по стандартной методике. Затем образцы протравливали. Для стали 45 используется пятипроцентный спиртовой раствор HNO3. Затем провели фотографирование микроструктуры на металлографическом микроскопе (среднее количество фотографий 5 штук на каждой микроструктуре).

Фотографии микроструктур представлены на фиг. 1 (а-е). Фиг. 1а - микроструктура закаленной стали 45, фиг. 1б - микроструктура стали 45 после отпуска 200°C; фиг. 1в - микроструктура стали 45 после отпуска 300°C; фиг. 1г - микроструктура стали 45 после отпуска 400°C; фиг. 1д - микроструктура стали 45 после отпуска 500°C; фиг. 1е - микроструктура стали 45 после отпуска 600°C.

Оцифрованные фотографии микроструктур загружаются в программу, с помощью которой можно рассчитать различные количественные показатели микроструктуры, например Image.Pro.Plus.5.1, которая считает количество микроструктурных объектов на каждом снимке. Определили среднее значение микроструктурных объектов для каждой температуры отпуска.

В таблице представлены режимы термической обработки (Т, °C), среднее количество (N) и площадь микроструктурных объектов (S), определенных по фотографиям микроструктур с помощью программы Image.Pro.Plus.5.1.

Кинетику структурных изменений анализируем по характеру изменения количества микроструктурных объектов. Общее число микроструктурных объектов N на одной фотографии является самостоятельной количественной характеристикой, не связанной прямым образом с количеством зерен. Для мартенсита и других закалочных структур, не имеющих зеренную организацию, этот параметр можно использовать для оценки степени дисперсности. Из таблицы видно, что микроструктура после закалки отличается низким значением N, которое резко возрастает после отпуска, а с повышением температуры отпуска монотонно снижается до минимального уровня.

Далее строим зависимость натурального логарифма количества микроструктурных объектов от обратной величины больцмановского произведения RT. На фиг. 2 показана графическая зависимость определения энергии активации образования зародышей новой структуры при распаде мартенсита стали 45, где 1 - значение натурального логарифма количества микроструктурных объектов после закалки стали 45, 2 - значение натурального логарифма количества микроструктурных объектов после отпуска 200°C, 3 - значение натурального логарифма количества микроструктурных объектов после отпуска 300°C, 4 - значение натурального логарифма количества микроструктурных объектов после отпуска 400°C, 5 - значение натурального логарифма количества микроструктурных объектов после отпуска 500°C, 6 - значение натурального логарифма количества микроструктурных объектов после отпуска 600°C, 7 - уравнение наклонной прямой, которое приводим к уравнению Аррениуса lnk=lnk0-E0/RT, где lnk0=5,2124, Е0=7804,8 Дж/моль. Значение 7804,8 является энергией активации зародышеобразования.

Для определения энергии активации роста новых структур при распаде мартенсита используем температурный коэффициент приращения среднего диаметра зерна, рассчитанный по формуле 1.

На фиг. 3 показана зависимость натурального логарифма температурного коэффициента приращения среднего диаметра зерна как функция обратного произведения постоянной Больцмана и температуры l/RT, где 8 - значение натурального логарифма температурного коэффициента приращения среднего диаметрального размера зерна после отпуска 200°C, 9 - значение натурального логарифма температурного коэффициента приращения среднего диаметрального размера зерна после отпуска 300°C, 10 - значение натурального логарифма температурного коэффициента приращения среднего диаметрального размера зерна после отпуска 400°C, 11 - значение натурального логарифма температурного коэффициента приращения среднего диаметрального размера зерна после отпуска 500°C, 12 - значение натурального логарифма температурного коэффициента приращения среднего диаметрального размера зерна после отпуска 600°C, 13 - уравнение наклонной прямой, которое приводим к уравнению Аррениуса lnk=lnk0-E0/RT, где lnk0=5,2124, Е0=7066,2 Дж/моль. Значение 7066,2 является энергией активации роста новой фазы.

Для подтверждения достоверности рассчитанной энергии активации по предлагаемому способу дополнительно определяем энергию активации по дилатометрическим кривым (Фиг. 4), где 14 - дилатометрическая кривая после отжига, 15 - дилатометрическая кривая после закалки. Для проведения дилатометрического анализа подготавливаем образец из исследуемой закаленной стали 45. Для этого делаем образец в форме прямоугольного параллелепипеда, замеряем штангенциркулем длину, она составляет 25 мм (стандарт). На дилатометре, например Netzsch DIL 402РС, производим калибровку режима на эталонном образце. Нагреваем до температуры 850°C со скоростью 10 К/мин в воздушной среде. После этого кладем исследуемый образец в дилатометр и нагрев осуществляется по откалиброванному режиму. На мониторе компьютера, в прикладной программе, рисуется дилатометрическая кривая. Далее образец остывает до комнатной температуры. Затем производится повторный нагрев по тому же режиму, но образец уже находится в отожженном состоянии. И также на мониторе вырисовывается дилатометрическая кривая.

Для определения энергии активации берем участок 16 дилатометрических кривых 14 и 15 в интервале температур от 200°C до 450°C, так как в этом интервале на кривой 15 наблюдается изгиб. До 80°C распад мартенсита и аустенита протекает с незначительной скоростью и в небольшой степени. Далее распад мартенсита идет достаточно интенсивно. Из α-раствора выделяется углерод, при этом образуются дисперсные частицы карбида железа. При температуре 150-350°C происходит дальнейшее выделение углерода из твердого раствора, образование карбидов и их коагуляция, превращение остаточного аустенита. При температуре 350-450°C происходит интенсивное уменьшение углерода и полное завершение процесса выделения углерода из α-раствора и соответственно уменьшение плотности дефектов строения в этой фазе. Выше 450°C резко уменьшается плотность дефектов строения в α-фазе, а также рост (коагуляция) и сфероидизация карбидов. Следующий изгиб наблюдается выше температуры фазовых превращений, где происходит перестроение кристаллической решетки металла. Вычитанием производных получаем температурную зависимость разницы коэффициентов термических расширений закаленной и отожженной сталей 45 (фиг. 5). Для построения наклонных прямых разделяем параболу на восходящую и нисходящую кривую.

Численное значение энергии активации определяют путем построения в полулогарифмических координатах зависимости коэффициентов термических расширений ln(α) от обратной величины произведения постоянной Больцмана и температуры l/(RT). На фиг. 6 приведена зависимость для стали 45 (нисходящая кривая). На фиг. 7 приведена зависимость для стали 45 (восходящая кривая). Наклон аппроксимирующей кривой определяет энергию активации, где 17 - уравнение наклонной прямой, которое приводим к уравнению Аррениуса lnk=lnk0-E0/RT, где lnk0=6,9913, Е0=13159 Дж/моль, 18 - уравнение наклонной прямой, которое приводим к уравнению Аррениуса lnk=lnk0-E0/RT, где lnk0=18,68, Е0=19831 Дж/моль. Среднее значение энергии активации распада мартенсита по дилатометрическим кривым составляет 16495 Дж/моль.

Используя дилатометрический метод можно вычислить энергию активации распада мартенсита в целом. Энергия активации составляет 16495 Дж/моль. Используя метод определения энергии активации по оцифрованным фотографиям микроструктуры можно вычислить энергию активации различных стадий: образование зародышей новой фазы (энергия активации равна 7804,8 Дж/моль) и энергию роста новой фазы (равна 7066,2 Дж/моль). В сумме получаем энергию активации распада мартенсита 14871 Дж/моль, что численно удовлетворительно совпадает с энергией активации, полученной по дилатометрическим кривым.

Литература

1. Аматуни А.Н., Методы и приборы для определения температурных коэффициентов линейного расширения материалов. - М., 1972.

2. Ермаков С.С. Физика металлов и дефекты кристаллического строения. Учеб. пособие. - Л.: Издательство Ленинградского университета. 280 с., стр. 165-166.

Способ определения энергии активации фазовых превращений при распаде мартенсита в стали, отличающийся тем, что для определения энергии активации фазовых превращений определяют энергию активации образования зародышей новых ферритной и цементитной фаз и энергию активации роста упомянутых зародышей, для чего проводят закалку стальных образцов, отпуск упомянутых образцов при различных температурах, определяют количество микроструктурных объектов (N), образующихся при распаде мартенсита, и среднюю площадь зерна (S), с помощью которой определяют температурный коэффициент (α) приращения среднего диаметра зерна по формуле: где , Т - температура отпуска, °С, затем строят график зависимости натурального логарифма количества микроструктурных объектов (N) как функцию обратной величины произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации образования зародышей ферритной и цементитной фаз, затем строят график зависимости натурального логарифма температурного коэффициента (α) приращения среднего диаметра зерна как функцию обратного произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации роста упомянутых зародышей, а энергию активации фазовых превращений при распаде мартенсита в стали определяют как сумму энергий активации образования зародышей ферритной и цементитной фаз и энергии активации роста упомянутых зародышей.
СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ АКТИВАЦИИ ФАЗОВЫХ ПРЕВРАЩЕНИЙ ПРИ РАСПАДЕ МАРТЕНСИТА В СТАЛИ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ АКТИВАЦИИ ФАЗОВЫХ ПРЕВРАЩЕНИЙ ПРИ РАСПАДЕ МАРТЕНСИТА В СТАЛИ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ АКТИВАЦИИ ФАЗОВЫХ ПРЕВРАЩЕНИЙ ПРИ РАСПАДЕ МАРТЕНСИТА В СТАЛИ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ АКТИВАЦИИ ФАЗОВЫХ ПРЕВРАЩЕНИЙ ПРИ РАСПАДЕ МАРТЕНСИТА В СТАЛИ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ АКТИВАЦИИ ФАЗОВЫХ ПРЕВРАЩЕНИЙ ПРИ РАСПАДЕ МАРТЕНСИТА В СТАЛИ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 71.
27.04.2013
№216.012.3b42

Способ статического механического испытания сталей и сплавов в сложнонагруженном состоянии

Изобретение относится к металлургии и машиностроению, преимущественно к испытаниям материалов, и может использоваться при контроле качества сталей и сплавов. Сущность: осуществляют сплющивание трубного образца между двумя гладкими жесткими параллельными плоскостями с постоянной скоростью....
Тип: Изобретение
Номер охранного документа: 0002480731
Дата охранного документа: 27.04.2013
27.05.2013
№216.012.4492

Способ получения оксида скандия из красного шлама

Изобретение относится к металлургии цветных металлов, а именно к получению оксида скандия из красного шлама производства глинозема. Способ включает многократное выщелачивание красного шлама смесью растворов карбоната и гидрокарбоната натрия при пропускании через смесь дымовых газов печей...
Тип: Изобретение
Номер охранного документа: 0002483131
Дата охранного документа: 27.05.2013
27.10.2013
№216.012.7ad7

Способ механического испытания на сплющивание с анализом акустико-эмиссионных сигналов

Изобретение относится к области методов контроля качества сталей и сплавов. Технический результат - повышение точности измерений. Способ механического испытания труб включает сплющивание трубного образца между двумя гладкими жесткими параллельными плоскостями с постоянной скоростью, определение...
Тип: Изобретение
Номер охранного документа: 0002497109
Дата охранного документа: 27.10.2013
10.02.2014
№216.012.9e26

Способ разрушения ледяного покрова

Изобретение относится к ледокольным работам. Сущность изобретения: судно на воздушной подушке движется по ледяному покрову и возбуждает во льду резонансные изгибно-гравитационные волны (ИГВ), при этом на лед создаются дополнительные нагрузки с помощью гидропушки, предварительно установленной на...
Тип: Изобретение
Номер охранного документа: 0002506194
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9e27

Способ разрушения ледяного покрова

Изобретение относится к области судостроения, в частности к подводным судам, разрушающим ледяной покров резонансными изгибно-гравитационными волнами. Способ разрушения ледяного покрова осуществляют путем возбуждения во льду резонансных изгибно-гравитационных волн при движении подводного судна,...
Тип: Изобретение
Номер охранного документа: 0002506195
Дата охранного документа: 10.02.2014
10.07.2014
№216.012.db3a

Устройство уплотнения грузовых трюмов безлюковых контейнеровозов

Изобретение относится к области судостроения, а именно к судовым устройствам. Система уплотнений трюмов безлюковых контейнеровозов содержит мягкие надувные емкости из прочного маслобензостойкого воздухонепроницаемого материала, соразмерные по длине с длиной или шириной контейнеров, укладываемые...
Тип: Изобретение
Номер охранного документа: 0002521900
Дата охранного документа: 10.07.2014
10.08.2014
№216.012.e831

Теплогенерирующий электромеханический преобразователь

Изобретение относится к электротехнике, а именно к теплогенерирующему электромеханическому преобразователю, предназначенному для нагрева и/или перемещения жидкой или газообразной среды. Устройство содержит дополнительный неподвижный элемент, выполненный из антифрикционного неэлектропроводящего...
Тип: Изобретение
Номер охранного документа: 0002525234
Дата охранного документа: 10.08.2014
10.09.2014
№216.012.f40e

Режущая пластина колесотокарная чашечной формы со стружколомающим рельефом на передней поверхности

Режущая пластина имеет чашечную форму и предназначена для обработки бывших в эксплуатации железнодорожных колес. Пластина содержит стружкозавивающую канавку и расположенные в ней в шахматном порядке два ряда стружколомающих выступов, причем выступы первого ряда расположены на передней стороне...
Тип: Изобретение
Номер охранного документа: 0002528301
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f8ca

Устройство для удаления гололеда с провода линии электропередач

Изобретение относится к электротехнике и может быть использовано для удаления гололеда с проводов воздушных линий электропередач. Устройство содержит корпус, который выполнен с возможностью установки его на провод. Также оно снабжено средствами передвижения и удаления льда. Средство...
Тип: Изобретение
Номер охранного документа: 0002529527
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f8cb

Устройство для удаления гололеда с провода линии электропередач

Изобретение относится к электротехнике и может быть использовано для удаления гололеда с проводов воздушных линий электропередач. Устройство содержит корпус, который выполнен с возможностью установки его на провод. Также оно снабжено средствами передвижения и удаления льда. Средство...
Тип: Изобретение
Номер охранного документа: 0002529528
Дата охранного документа: 27.09.2014
Показаны записи 1-10 из 78.
27.05.2013
№216.012.4492

Способ получения оксида скандия из красного шлама

Изобретение относится к металлургии цветных металлов, а именно к получению оксида скандия из красного шлама производства глинозема. Способ включает многократное выщелачивание красного шлама смесью растворов карбоната и гидрокарбоната натрия при пропускании через смесь дымовых газов печей...
Тип: Изобретение
Номер охранного документа: 0002483131
Дата охранного документа: 27.05.2013
27.08.2013
№216.012.63b2

Способ оценки перед сваркой качества сварочной проволоки и заготовок сварной конструкции из титановых сплавов

Изобретение может быть использовано при изготовлении сваркой сложных конструкций из титановых сплавов, в частности объемных панелей. Перед сваркой определяют содержание водорода в поверхностном слое титанового сплава, из которого изготовлены проволока и заготовки, путем спектрального анализа....
Тип: Изобретение
Номер охранного документа: 0002491159
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.65d3

Способ получения электроэнергии от проезжающих транспортных средств

Изобретение относится к области электротехники и может быть использовано для получения энергии нетрадиционным способом. Техническим результатом является увеличение надежности и повышение КПД преобразования энергии движения воздуха, возникающего при движении транспорта, в электроэнергию. В...
Тип: Изобретение
Номер охранного документа: 0002491704
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.65d5

Устройство для стабилизации частоты вращения однофазного коллекторного электродвигателя

Изобретение относится к электротехнике и, в частности, к электрифицированному инструменту, бытовым и промышленным электроприборам, приборам специального назначения. Технический результат предлагаемого решения заключается в улучшении энергетических показателей электропривода. Сущность...
Тип: Изобретение
Номер охранного документа: 0002491706
Дата охранного документа: 27.08.2013
10.10.2013
№216.012.743b

Способ сравнительной оценки свойств материалов

Использование: для сравнительной оценки свойств материалов. Сущность заключается в том, что осуществляют инденторное нагружение исследуемых материалов, регистрацию сигналов акустической эмиссии в процессе нагружения, обработку сигналов акустической эмиссии и выявление параметра сигналов,...
Тип: Изобретение
Номер охранного документа: 0002495412
Дата охранного документа: 10.10.2013
10.12.2013
№216.012.8801

Стержневая смесь со связующим на основе сульфата магния

Изобретение относится к литейному производству. Смесь содержит, мас.%: кварцевый песок 85,5-87,5; MgSO·7HO 4,0-4,5; маршаллит 3,0-3,5 и воду 5,5-6,5. Обеспечивается увеличение прочности смеси. 2 табл.
Тип: Изобретение
Номер охранного документа: 0002500499
Дата охранного документа: 10.12.2013
20.01.2014
№216.012.9913

Способ направленного обмена энергией между электрическими сетями коммунального хозяйства и городского электрифицированного транспорта

Изобретение относится к области электротехники и может быть использовано в городских электрических сетях коммунального хозяйства и городского электрифицированного транспорта. Технический результат - снижение потерь в объединенной системе городского электроснабжения, увеличение срока службы...
Тип: Изобретение
Номер охранного документа: 0002504886
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9e26

Способ разрушения ледяного покрова

Изобретение относится к ледокольным работам. Сущность изобретения: судно на воздушной подушке движется по ледяному покрову и возбуждает во льду резонансные изгибно-гравитационные волны (ИГВ), при этом на лед создаются дополнительные нагрузки с помощью гидропушки, предварительно установленной на...
Тип: Изобретение
Номер охранного документа: 0002506194
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9e27

Способ разрушения ледяного покрова

Изобретение относится к области судостроения, в частности к подводным судам, разрушающим ледяной покров резонансными изгибно-гравитационными волнами. Способ разрушения ледяного покрова осуществляют путем возбуждения во льду резонансных изгибно-гравитационных волн при движении подводного судна,...
Тип: Изобретение
Номер охранного документа: 0002506195
Дата охранного документа: 10.02.2014
20.03.2014
№216.012.ad43

Способ включения трехфазных нагрузок

Изобретение относится к электротехнике, в частности к электроэнергетическим системам. Технический результат заключается в устранении дополнительных пусковых токов и влияния включения трехфазных нагрузок на соседних потребителей в результате провалов напряжения. Технический результат достигается...
Тип: Изобретение
Номер охранного документа: 0002510070
Дата охранного документа: 20.03.2014
+ добавить свой РИД