×
27.02.2016
216.014.bec8

Результат интеллектуальной деятельности: ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ОПТИЧЕСКОГО ДАТЧИКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к датчикам оптического излучения. Чувствительный элемент оптического датчика содержит подложку 1, массив углеродных нанотрубок 2, электропроводящий слой 3, диэлектрический слой 4, а также верхний оптически прозрачный слой 5. В подложке 1 выполнено углубление 6, в котором на слое алюминия или оксида алюминия 7 сформирован массив углеродных нанотрубок 2. На поверхности подложки 1 за исключением места углубления 6 сформирован диэлектрический слой 4, над которым сформирован электропроводящий слой 3. Электропроводящий слой 3 образует электрический контакт с боковой поверхностью массива углеродных нанотрубок 2. Массив углеродных нанотрубок 2 имеет электрический контакт с подложкой 1 через слой алюминия или оксида алюминия 7. Верхний оптически прозрачный слой 5, обеспечивающий герметизацию массива углеродных нанотрубок, может быть выполнен как по всей поверхности, так и только в области массива углеродных нанотрубок 2. Технический результат заключается в повышении надежности функционирования чувствительного элемента оптического датчика без уменьшения чувствительности оптического датчика за счет исключения влияния внешних факторов окружающей среды на функционирование датчика. 7 з.п. ф-лы, 2 ил.

Изобретение относится к датчикам оптического излучения. Изобретение может быть использовано в микро- и наноэлектромеханических системах для детектирования оптического излучения.

В настоящее время известно техническое решение «Optical sensor including photoconductive material and carbon nanotube» по патенту США на изобретение №7750285 (В2) (МПК H01L 27/30; H01L 31/0203; H01L 31/0232; H01L 31/0248; H01L 31/08; H01L 31/09; H01L 31/112; H01L 31/113; H01L 51/00; H01L 51/30 опубликован 06.07.2010 г.). В изобретении описан чувствительный элемент оптического датчика, детектирующий оптическое излучение посредством изменения электрической проводимости углеродной нанотрубки (УНТ) в результате генерации носителей заряда в фоточувствительном материале. Чувствительный элемент оптического датчика содержит подложку из фоточувствительного материала с сформированным на ее поверхности диэлектрическим слоем и расположенной на его поверхности углеродной нанотрубкой, на концах которой сформированы электрические контакты. Недостатком данного технического решения являются неэффективное использование рабочей области чувствительного элемента оптического датчика из-за использования отдельных углеродных нанотрубок; сложность изготовления чувствительных элементов оптического датчика на базе микроэлектронного производства из-за использования отдельных углеродных нанотрубок при изготовлении чувствительного элемента оптического датчика.

Наиболее близкой по совокупности существенных признаков (прототипом) изобретения является структура чувствительного элемента оптического датчика на основе массива углеродных нанотрубок, описанная в диссертации Teng-Fang Kuo «Infrared Detection and Electron Transport Characteristics of a Carbon nanotubes / Si Heterodimensional Heterostructure» (Brown University, May 2008). В данной работе описана структура чувствительного элемента оптического датчика на основе массива углеродных нанотрубок, выращенных в матрице пористого оксида алюминия. Согласно диссертационной работе для формирования функционального элемента оптического датчика на кремниевой подложке формируется пористый оксид алюминия посредством последовательного осаждения на поверхность кремния тонкого слоя титана и алюминия толщиной 6 мкм и последующего анодирования алюминия электрохимическим способом, полученная структура помещается в 0,5 мольный раствор Н3РО4 на 3 часа, синтез углеродных нанотрубок в порах оксида алюминия проводится методом химического парофазного осаждения в потоке метана при температуре 950°С, на поверхность сформированной структуры наносят слой золота для обеспечения контакта к углеродным нанотрубкам. Изготовленный согласно описанному способу чувствительный элемент оптического датчика, содержит кремниевую подложку, на которой сформирован массив углеродных нанотрубок в пористой матрице оксида алюминия, который образует электрические контакты внизу с кремниевой подложкой, а сверху со слоем золота.

Недостатками данного технического решения являются: уменьшение чувствительности оптического датчика из-за создания электрического контакта на поверхности массива углеродных нанотрубок посредством нанесения слоя золота, который отражает и/или поглощает часть падающего излучения; зависимость морфологии углеродных нанотрубок от структуры пор оксида алюминия, что накладывает существенные ограничения на диаметр и плотность упаковки углеродных нанотрубок; ограниченная сфера использования чувствительного элемента оптического датчика ввиду отсутствия защиты от экстремальных внешних воздействий на массив углеродных нанотрубок.

Задачей настоящего изобретения является разработка чувствительного элемента оптического датчика на основе массивов углеродных нанотрубок с высокой степенью надежности работы.

Технический результат заключается в повышении надежности функционирования чувствительного элемента оптического датчика без уменьшения чувствительности оптического датчика за счет исключения влияния внешних факторов окружающей среды на функционирование датчика.

Для достижения вышеуказанного технического результата чувствительный элемент оптического датчика содержит подложку с электропроводящим слоем, отделенным от подложки диэлектрическим слоем, массив углеродных нанотрубок и верхний оптически прозрачный слой, причем массив углеродных нанотрубок расположен в углублении, выполненном в подложке с сформированными на ней диэлектрическим и электропроводящим слоями, на дне углубления между подложкой и массивом углеродных нанотрубок сформирован слой алюминия или оксида алюминия, верхний оптически прозрачный слой расположен, по меньшей мере, над массивом углеродных нанотрубок, подложка выполнена из полупроводникового материала, причем подложка и электропроводящий слой выполнены с возможностью включения в электрическую цепь.

От прототипа датчик отличается тем, что массив углеродных нанотрубок сформирован в углублении, электрический контакт к верхней части массива углеродных нанотрубок реализован через боковую поверхность массива посредством электропроводящего слоя, электрический контакт к нижней части массива углеродных нанотрубок реализован через слой алюминия или оксида алюминия, сформированный на дне углубления, также чувствительный элемент оптического датчика содержит верхний оптически прозрачный слой, расположенный, по меньшей мере, над массивом углеродных нанотрубок.

Наличие углубления в подложке и размещение в нем массива углеродных нанотрубок обеспечивает защиту чувствительного элемента от влияния внешних факторов окружающей среды, что повышает надежность. Верхний оптически прозрачный слой, расположенный, по меньшей мере, над массивом углеродных нанотрубок, герметизирует массив углеродных нанотрубок, что позволяет исключить влияние рабочей среды на электрофизические свойства углеродных нанотрубок. Надежность электрических контактов обеспечивается наличием электропроводящего слоя на диэлектрическом подслое, последовательно сформированных на подложке, и слоя алюминия или оксида алюминия, сформированного на дне углубления. Подложка выполнена из полупроводникового материала, т.к. для полупроводников характерно возникновение фотовольтаического эффекта при облучении полупроводника оптическим излучением. Фотовольтаический эффект заключается в возникновении ЭДС под действием света в результате пространственного разделения возбужденных носителей заряда электрическим полем на границе двух контактирующих материалов, в изобретении такими материалами являются полупроводниковый материал подложки и массив углеродных нанотрубок.

В частных случаях выполнения изобретения углубление в подложке выполнено в виде меандра, или прямоугольника, или овала.

В частных случаях выполнения изобретения электропроводящий слой может быть выполнен, по меньшей мере, из одного слоя титана, и/или молибдена, и/или золота, и/или платины, и/или алюминия, и/или меди, и/или хрома.

В частных случаях выполнения изобретения подложка содержит, по меньшей мере, один слой кремния, и/или германия, и/или арсенида галлия, и/или арсенида индия, и/или арсенида индия-галлия, и/или арсенида индия-галлия, и/или кадмий-ртуть-телура.

В частных случаях выполнения изобретения углубление в подложке выполнено глубиной от 0,1 мкм до 5 мкм.

В частных случаях выполнения изобретения диэлектрический слой выполнен из оксида кремния, и/или оксида алюминия, и/или нитрида кремния толщиной от 50 нм до 1 мкм.

В частных случаях выполнения изобретения верхний слой выполнен из кремния и/или оптически прозрачного стекла толщиной от 0,3 мкм до 1000 мкм.

В частных случаях выполнения изобретения верхний слой соединен с поверхностью методом сращивания.

В частных случаях выполнения изобретения верхний слой сформирован методом осаждения.

Совокупность признаков, характеризующих изобретение, позволяет повысить надежность функционирования с сохранением чувствительности оптического датчика.

Изобретение поясняется чертежами, где

на фиг. 1 - схема чувствительного элемента оптического датчика;

на фиг. 2 - график зависимости напряжения от времени при облучении чувствительного элемента оптического датчика импульсами излучения с длинной волны 880 нм длительностью 0,5 мс с интервалом между импульсами 0,5 мс.

Чувствительный элемента оптического датчика содержит подложку 1, массив углеродных нанотрубок 2, электропроводящий слой 3, диэлектрический слой 4, а также верхний оптически прозрачный слой 5.

В подложке 1 выполнено углубление 6, в котором на слое алюминия или оксида алюминия 7, сформирован массив углеродных нанотрубок 2 (фиг. 1). На поверхности подложки 1 за исключением места углубления 6 сформирован диэлектрический слой 4, над которым сформирована электропроводящий слой 3. Электропроводящий слой 3 образует электрический контакт с боковой поверхностью массива углеродных нанотрубок 2. Массив углеродных нанотрубок 2 имеет электрический контакт с подложкой 1 через слой алюминия или оксида алюминия 7. Верхний оптически прозрачный слой 5, обеспечивающий герметизацию массива углеродных нанотрубок, может быть выполнен как по всей поверхности, так и только в области массива углеродных нанотрубок 2.

Форма углубления 6 подложки 1 может быть выполнена в виде меандра, или прямоугольника, или овала, а глубина может составлять от 0,1 мкм до 5 мкм.

Электропроводящий слой 3 может быть выполнен, по меньшей мере, из одного слоя титана, и/или молибдена, и/или золота, платины, и/или алюминия, и/или меди, и/или хрома. Подложка 1 может быть выполнена, по меньшей мере, из одного слоя кремния, и/или германия, и/или арсенида галлия, и/или арсенида индия, и/или арсенида индия-галлия, и/или арсенида индия-галлия, и/или кадмий-ртуть-телура.

Верхний оптически прозрачный слой 5, обеспечивающий герметизацию, может быть выполнен из кремния, оптически прозрачного стекла толщиной от 0,3 мкм до 1000 мкм. Верхний оптически прозрачный слой 5 может быть соединен с поверхностью методом сращивания или сформирован методом осаждения.

Чувствительный элемент оптического датчика работает следующим образом. При облучении верхнего оптически прозрачного слоя 5 оптическое излучение проникает в область контакта «массив углеродных нанотрубок - подложка», в результате чего происходит генерация свободных носителей заряда, что приводит к возникновению разности потенциалов (напряжения). При облучении чувствительного элемента оптическим излучением между контактами «электропроводящий слой-массив углеродных нанотрубок» и «подложка-массив углеродных нанотрубок» возникает разность потенциалов, которая зависит от интенсивности оптического излучения.

Способ изготовления чувствительного элемента оптического датчика включает следующие операции: нанесение диэлектрического слоя 4 на поверхность подложки 1, формирование на подложке 1 литографией топологии электропроводящего слоя 3, формирование литографией топологии, определяющей область роста массива углеродных нанотрубок виде углубления 6 заданной глубины в подложке, на дне углубления 6 подложки 1 формируют подслой 7, над ним формируют функциональный слой, содержащий катализатор роста углеродных нанотрубок или активатор распада металлорганического соединения. Проводят синтез углеродных нанотрубок в реакторе путем введения в нагретый реактор углеродсодержащего газа или раствора металлорганического соединения. Для проведения синтеза может быть использовано устройство по евразийскому патенту №015412.

Пример

Для формирования чувствительного элемента оптического датчика на подложке из кремния сформирован диэлектрический слой из оксида кремния толщиной 0,5 мкм. Для формирования электропроводящего слоя 3 осажден слой титана толщиной 0,2 мкм и литографией сформирован топологический рисунок электропроводящего слоя. На электропроводящий слой осажден слой фоторезиста толщиной 1,5 мкм. Затем методом литографии сформировано углубление 6 в подложке 1 глубиной 2 мкм. Далее в углублении сформирован буферный слой из алюминия толщиной 10 нм, поверх которого осажден слой, содержащий катализатор металлоорганического соединения - слой никеля толщиной 3 нм. После чего был удален фоторезист. Далее был проведен синтез углеродных нанотрубок путем введения образца в рабочую зону нагретого реактора при температуре 630°С и подачи в поток газа-носителя прошедшего через испаритель раствора ферроцена в этаноле. После синтеза массива углеродных нанотрубок был сформирован методом сращивания верхний оптически прозрачный слой из борсиликатного стекла толщиной 300 мкм.

На фиг. 2 представлены результаты измерений зависимости напряжения от времени при облучении сформированного чувствительного элемента оптического датчика импульсами излучения с длинной волны 880 нм длительностью 0,5 мс с интервалом между импульсами 0,5 мс.


ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ОПТИЧЕСКОГО ДАТЧИКА
Источник поступления информации: Роспатент

Показаны записи 51-51 из 51.
26.05.2023
№223.018.6feb

Холоднокатаный симметричный профильный элемент для каркасов ворот

Изобретение относится к области строительства, а именно к изготовлению металлических каркасов для раздвижных и распашных ворот и калиток. Технический результат заключается в экономии металла, в снижении трудоемкости. Холоднокатаный симметричный профильный элемент для каркаса ворот содержит...
Тип: Изобретение
Номер охранного документа: 0002796149
Дата охранного документа: 17.05.2023
Показаны записи 51-60 из 89.
19.04.2019
№219.017.3097

Способ изготовления кмоп транзисторов с приподнятыми электродами

Использование: микроэлектроника, технология изготовления МОП и биполярных транзисторов в составе ИМС. Сущность изобретения: в способе изготовления КМОП транзисторов с приподнятыми электродами после вскрытия окон под сток-истоковые области и формирования разделительного диэлектрика на стенках...
Тип: Изобретение
Номер охранного документа: 0002329566
Дата охранного документа: 20.07.2008
19.04.2019
№219.017.30b2

Устройство для получения слоев из газовой фазы при пониженном давлении

Изобретение относится к микроэлектронике, а именно к технологии осаждения полупроводниковых, диэлектрических и металлических слоев при пониженном давлении. Устройство для получения слоев из газовой фазы при пониженном давлении включает камеру осаждения, состоящую из внутреннего реактора в виде...
Тип: Изобретение
Номер охранного документа: 0002324020
Дата охранного документа: 10.05.2008
19.04.2019
№219.017.30bc

Способ изготовления магниторезистивных датчиков

Изобретение может быть использовано для измерения постоянного и переменного магнитного поля. В способе согласно изобретению после нанесения защитного слоя на первую магниторезистивную наноструктуру производится травление защитного слоя и первой магниторезистивной наноструктуры на той части...
Тип: Изобретение
Номер охранного документа: 0002320051
Дата охранного документа: 20.03.2008
23.04.2019
№219.017.3696

Униполярный датчик деформации

Использование: для создания тензорезисторных датчиков деформации. Сущность изобретения заключается в том, что униполярный датчик деформации содержит гибкую подложку, стекловолокно, на котором нанесена смесь углеродных нанотрубок и графитового порошка, при этом содержит слой толщиной 5-15 мкм из...
Тип: Изобретение
Номер охранного документа: 0002685570
Дата охранного документа: 22.04.2019
09.05.2019
№219.017.4e68

Препарат для лечения и профилактики дисбактериальных состояний кишечника у птиц

Изобретение относится к ветеринарии. Препарат для лечения и профилактики дисбактериальных состояний кишечника у птиц содержит инулин, приготовленный на молочной сыворотке, закваску живых микроорганизмов Lactobacillus acidophilus, Enterococcus faecium, приготовленную на обезжиренном молоке,...
Тип: Изобретение
Номер охранного документа: 0002410105
Дата охранного документа: 27.01.2011
10.07.2019
№219.017.aa20

Магниторезистивный датчик

Изобретение относится к области автоматики и может быть использовано в тахометрах, устройствах неразрушающего контроля, датчиках перемещения, датчиках для измерения постоянного и переменного магнитного поля, электрического тока. Техническим результатом изобретения является получение...
Тип: Изобретение
Номер охранного документа: 0002279737
Дата охранного документа: 10.07.2006
10.07.2019
№219.017.adb1

Способ изготовления самосовмещенных транзисторных структур

Изобретение относится к микроэлектронике. Сущность изобретения: способ изготовления самосовмещенных транзисторных структур включает формирование в полупроводниковой подложке первого типа проводимости сплошного скрытого слоя второго типа проводимости, формирование на полупроводниковой подложке...
Тип: Изобретение
Номер охранного документа: 0002377691
Дата охранного документа: 27.12.2009
10.07.2019
№219.017.af66

Способ получения нанослоев

Изобретение относится к технологии формирования наноэлектронных структур. Сущность изобретения: в способе получения нанослоев на сформированном на подложке первом жертвенном слое формируют второй жертвенный слой, наносят фоторезист, формируют в фоторезисте окно, травят второй и первый...
Тип: Изобретение
Номер охранного документа: 0002425794
Дата охранного документа: 10.08.2011
10.07.2019
№219.017.af95

Интегральный градиентный магнитотранзисторный датчик

Изобретение относится к полупроводниковой электронике. Сущность изобретения: интегральный градиентный магнитотранзисторный датчик содержит два чувствительных элемента, два усилителя, выполненные в виде двух токовых зеркал на МОП транзисторах и схему сравнения с двумя входами. Чувствительные...
Тип: Изобретение
Номер охранного документа: 0002453947
Дата охранного документа: 20.06.2012
10.07.2019
№219.017.aff5

Способ изготовления самомасштабированной самосовмещенной транзисторной структуры

Изобретение относится к микроэлектронике. Сущность изобретения: способ изготовления самомасштабируемой самосовмещенной транзисторной структуры включает формирование на подложке первого типа проводимости первого диэлектрического слоя, сплошного введения примеси второго типа проводимости с...
Тип: Изобретение
Номер охранного документа: 0002408951
Дата охранного документа: 10.01.2011
+ добавить свой РИД