×
27.01.2016
216.014.bdc2

Результат интеллектуальной деятельности: МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА

Вид РИД

Изобретение

№ охранного документа
0002573684
Дата охранного документа
27.01.2016
Аннотация: Изобретение относится к трансформируемым космическим структурам. Многослойная трансформируемая герметичная оболочка (МТГО) включает ЭВТИ с защитой от атомарного кислорода, противометеороидную защиту в виде защитных противометеороидных экранов с межэкранными разделителями, армирующий слой, герметизирующий слой, слой, защищающий от повреждений изнутри. Противометеороидная защита состоит из многослойных противометеороидных экранов из арамидной ткани. Межэкранные разделители выполнены с «вафельной» несквозной перфорацией. Техническим результатом изобретения является обеспечение достаточной защиты многослойной трансформируемой герметичной оболочки от микрометеороидов и техногенных частиц за счет использования перфорированных межэкранных разделителей, возможность максимального сжатия МТГО в транспортном положении и полного ее восстановления в рабочем положении, а также уменьшение массовых характеристик МТГО. 8 ил.
Основные результаты: Многослойная трансформируемая герметичная оболочка, включающая экранно-вакуумную теплоизоляцию с защитой от атомарного кислорода, противометеороидную защиту в виде защитных противометеороидных экранов с межэкранными разделителями из вспененного эластичного открытопористого материала, армирующий слой, герметизирующий слой, слой, защищающий от повреждений изнутри, отличающаяся тем, что противометеороидная защита состоит из многослойных противометеороидных экранов из арамидной ткани, причем в первом от наружного к внутреннему содержится не менее 40% общего количества слоев или суммарной поверхностной плотности экранов, во втором - не менее 20%, которые дистанцируются друг относительно друга на 100±75 мм, а межэкранные разделители выполнены с «вафельной» несквозной перфорацией, при этом габаритные размеры ячеек перфорации имеют соотношение a:b:c:m:H=35:35:17:3:20 с отклонением не более чем в 3 раза, где а - длина ячейки перфорации, b - ширина ячейки перфорации, с - глубина ячейки перфорации, m - толщина стенок между ячейками, Н - высота межэкранного разделителя.

Изобретение относится к трансформируемым космическим структурам.

Изобретение наиболее востребовано в качестве оболочки трансформируемых космических обитаемых модулей.

Создание и внедрение технологии трансформируемых космических обитаемых модулей направлено, в первую очередь, на решение следующих задач:

- необходимость существенного увеличения полезного герметичного объема модулей российского сегмента международной космической станции (PC МКС) и перспективных космических станций с целью повышения комфортности долговременного пребывания экипажей и создания необходимых условий для проведения сложных научных и технологических экспериментов;

- уменьшение массогабаритных характеристик конструкции обитаемых модулей в стартовом положении для обеспечения возможности их выведения существующими и перспективными ракетами-носителями, так как пространство зоны полезного груза под обтекателем ограничено. Кроме того, увеличение габаритов обитаемых модулей в транспортном положении затруднено из-за проблем с транспортированием современным железнодорожным и авиационным транспортом;

- необходимость более эффективного обеспечения приемлемых уровней защиты экипажей космической станции от воздействия ионизирующего излучения космического пространства;

- необходимость повышения механической стойкости обитаемых отсеков к воздействию метеороидов и частиц техногенного мусора по сравнению с традиционными отсеками с учетом увеличивающейся опасности столкновения с космическим мусором на околоземных орбитах, и как следствие, возможности их повреждения.

Основной проблемой является обеспечение защиты от метеороидов и техногенных частиц.

Наиболее эффективное решение этой проблемы заключается в использовании принципа разнесенных экранов, на каждом из которых частица теряет часть своей энергии и дробится на более мелкие фракции, расходящиеся за экраном. Эффективность защиты тем выше, чем больше расстояние дистанционирования экранов, что обеспечивает больший разлет осколков до встречи с последующей преградой, а следовательно, распределение энергии удара по большей площади. Однако, общий объем для размещения модуля в зоне полезного груза под обтекателем ограничен. Поэтому в транспортном положении многослойная трансформируемая герметичная оболочка (МТГО) должна быть максимально сжата, при этом в космосе должна быть обеспечена возможность ее полного восстановления в рабочее положение. Массу и габариты МТГО в рабочем положении также важно минимизировать.

В качестве прототипа принято техническое решение по трансформируемому космическому модулю TransHab, разрабатываемому НАСА, изложенное в статье «Inflatable Habitats» (авторы: Kriss J.Kennedy, Jasen Raboin, Gary Spexarth, Gerard Valle, NASA Johnson Space Center, Houston, Texas), опубликованной в издании «Paul Zarchan. Gossamer Spasecraft: Membrane and Inflatable Structures Technology for Space Applications // Reston, Virginia: American Institute of Aeronautics and Astronautics, Inc. ISBN 1-56347-403-4. 2001. С. 527-529, 534-535».

Вышеуказанная оболочка трансформируемого космического модуля состоит из нескольких групп слоев материалов, выполняющих различные функции.

Защита от микрометеороидов и техногенных частиц обеспечивается с использованием пяти разнесенных экранов из тканевых слоев материала Nextel (Некстел) толщиной 1,5 мм, которые разделены дистанцирующими прокладками из пенопласта.

Основными недостатками такой конструкции являются большие толщины противометеороидной защиты и МТГО, и, как следствие, невозможность их сжатия до минимальных размеров при укладке в зону полезного груза под обтекателем космического аппарата в транспортном положении и развертывания в рабочее.

В процессе эксплуатации на околоземной орбите в составе PC MKC многослойная трансформируемая оболочка будет функционировать в условиях воздействия осколочно - метеороидных частиц.

Проблема защищенности трансформируемых надувных конструкций является особенно актуальной из-за слабой возможности полимерных, тканных и резиновых материалов сопротивляться высокоскоростному пробою техногенными частицами и микрометеороидами.

Задачей изобретения является обеспечение достаточной механической защиты МТГО от микрометеороидов и техногенных частиц за счет использования перфорированных межэкранных разделителей, а также обеспечение возможности максимального сжатия МТГО в транспортном положении и полного ее восстановления в рабочем положении, и уменьшение массовых характеристик МТГО. По установленным требованиям по защите обитаемых отсеков международной космической станции Спецификации PC MKC SSP41163, защитная функция МТГО считается достаточной, если противометеороидная защита обеспечивает целостность МТГО при столкновении с алюминиевой частицей диаметром 10 мм, летящей со скоростью 7 км/с, принятой в качестве эквивалента реальных микрометеороидов и техногенных частиц.

Задача решается тем, что в многослойной трансформируемой герметичной оболочке, включающей экранно-вакуумную теплоизоляцию с защитой от атомарного кислорода, противометеороидную защиту в виде защитных противометеороидных экранов с межэкранными разделителями из вспененного эластичного открытопористого материала, армирующий слой, герметизирующий слой, слой, защищающий от повреждений изнутри, противометеороидная защита состоит из многослойных противометеороидных экранов из арамидной ткани, причем в первом от наружного к внутреннему содержится не менее 40% общего количества слоев или суммарной поверхностной плотности экранов, во втором - не менее 20%, которые дистанцируются друг относительно друга на 100±75 мм, а межэкранные разделители выполнены с «вафельной» несквозной перфорацией, при этом габаритные размеры ячеек перфорации имеют соотношение a:b:c:m:H=35:35:17:3:20 с отклонением не более чем в 3 раза, где а - длина ячейки перфорации, b - ширина ячейки перфорации, с - глубина ячейки перфорации, m - толщина стенок между ячейками, Н - высота межэкранного разделителя.

На чертежах изображено:

на фиг.1 - поперечный разрез трансформируемого модуля с многослойной трансформируемой герметичной оболочкой в транспортном положении;

на фиг.2 - многослойная трансформируемая герметичная оболочка в разрезе в рабочем положении;

на фиг.3 - 3D-модель перфорированного межэкранного разделителя противометеороидной защиты;

на фиг.4 - перфорированный межэкранный разделитель противометеороидной защиты;

на фиг.5 - поперечный разрез перфорированного межэкранного разделителя противометеороидной защиты;

на фиг.6 - начальное состояние перфорированного межэкранного разделителя без приложения усилия;

на фиг.7 - схема поджатия перфорированного межэкранного разделителя с минимальным усилием;

на фиг.8 - схема поджатия перфорированного межэкранного разделителя до минимальной толщины,

при этом:

1 - многослойная трансформируемая герметичная оболочка;

2 - внутренняя поверхность обтекателя;

3 - экранно-вакуумная теплоизоляция (ЭВТИ) с защитой от атомарного кислорода;

4 - противометеороидная защита;

5 - противометеороидные экраны;

6 - межэкранные разделители;

7 - армирующий слой;

8 - герметизирующий слой;

9 - слой, защищающий от повреждений изнутри (интерьер).

Многослойная трансформируемая герметичная оболочка (1) состоит из ЭВТИ с защитой от атомарного кислорода (3), выполняющей функции теплоизоляции, защиты от ультрафиолетового излучения, атомарного кислорода; противометеороидной защиты (4), состоящей из противометеороидных экранов (5), разнесенных межэкранными разделителями (6); армирующего слоя для усиления и поддержания формы конструкции (7); герметизирующего слоя (8) и слоя, защищающего от повреждений изнутри (9), являющимся внутренним интерьером МТГО (1).

Основную толщину МТГО(1) в рабочем положении формируют межэкранные разделители (6) встроенной в состав МТГО(1) противометеороидной защиты (4). В транспортном положении укладка МТГО (1) в отведенную зону полезного груза, ограниченную внутренней поверхностью обтекателя (2), осуществляется за счет поджатия (упругой деформации) межэкранных разделителей (6). Поджатие межэкранных разделителей обеспечивается в первую очередь за счет их перфорирования, а также за счет открыто-пористой структуры материала. Схема перфорации представлена на фигурах 3-5, где а - длина ячейки перфорации, b - ширина ячейки перфорации, с - глубина перфорации, m - толщина стенок между ячейками, а высота межэкранного разделителя (6) - Н. На фигурах 6-8 показана принципиальная особенность поджатия межэкранного разделителя с «вафельной» перфорацией.

В качестве примера для обеспечения достаточного уровня противометеороидной защиты предлагается использовать четыре противометеороидных экрана (5), дистанцированных межэкранными разделителями (6) толщиной 100 мм из перфорированного пенополиуретана (ППУ).

Отклонение величины дистанцирования противометеороидных экранов (5) от 100 мм на величину более 75 мм в меньшую сторону приводит к снижению защитных свойств многослойной трансформируемой герметичной оболочки (1) не менее чем на 30% из-за нарушения рассевания осколков микрометеороида (техногенной частицы); более чем на 75 мм в большую сторону - к нерациональному увеличению габаритов и массы МТГО (1).

Отклонение соотношения суммарной поверхностной плотности (количества слоев) противометеороидных экранов (5) от приведенного в формуле соотношения снижает защитные свойства МТГО (1) не менее чем на 20% из-за ухудшения процессов дробления микрометеороида или техногенной частицы и торможения ее осколков.

В качестве материала межэкранного разделителя (6), обладающего низкой плотностью и повышенными требованиями по пожарной безопасности, в составе МТГО (1) рассматриваются эластичные пенополиуретаны ППУ-ТС-35 ТУ 6-55-49-91, ППУ 75-НО ТУ 6-05-1897-80 и эластичный пенополиимид ВПП-1ТУ 1-595-9-1185-2011.

Проведены испытания образцов перфорированного межэкранного разделителя (6) из пенополиуретана ППУ общей высотой 100 мм на определение, в том числе, зависимости напряжение-деформация при длительном сжатии и относительной остаточной деформации при длительном сжатии, которые подтвердили применимость материала. При сжатии образца с толщиной стенок ППУ - 15 мм до 90% остаточная деформация в пределах 5%, что соответствует требованиям.

Отклонение размера m относительно а:b:Н от приведенного в формуле соотношения более чем в три раза в большую сторону, а размера с - в меньшую, приводит к увеличению необходимых для поджатия усилий более чем в 2 раза, что усложняет укладку МТГО (1); изменение более чем в три раза в обратную сторону - к высокой вероятности невосстановления первоначальной формы межэкранных разделителей (6) после прекращения воздействия поджимающего усилия, что не обеспечивает гарантированное дистанцирование противометеороидных экранов (5) на заданную величину. Также, при перфорировании межэкранного разделителя (6), как показано на фигурах 3-5, масса уменьшается втрое по сравнению с использованием сплошных слоев аналогичной толщины.

Проведены испытания фрагментов МТГО (1) на стойкость к частицам и результаты подтвердили обеспечение противометеороидной защиты МТГО (1) от алюминиевых частиц диаметром 11 мм на скорости 7 км/с.

Многослойная трансформируемая герметичная оболочка, включающая экранно-вакуумную теплоизоляцию с защитой от атомарного кислорода, противометеороидную защиту в виде защитных противометеороидных экранов с межэкранными разделителями из вспененного эластичного открытопористого материала, армирующий слой, герметизирующий слой, слой, защищающий от повреждений изнутри, отличающаяся тем, что противометеороидная защита состоит из многослойных противометеороидных экранов из арамидной ткани, причем в первом от наружного к внутреннему содержится не менее 40% общего количества слоев или суммарной поверхностной плотности экранов, во втором - не менее 20%, которые дистанцируются друг относительно друга на 100±75 мм, а межэкранные разделители выполнены с «вафельной» несквозной перфорацией, при этом габаритные размеры ячеек перфорации имеют соотношение a:b:c:m:H=35:35:17:3:20 с отклонением не более чем в 3 раза, где а - длина ячейки перфорации, b - ширина ячейки перфорации, с - глубина ячейки перфорации, m - толщина стенок между ячейками, Н - высота межэкранного разделителя.
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
Источник поступления информации: Роспатент

Показаны записи 71-80 из 371.
27.06.2014
№216.012.d979

Посадочное устройство космического корабля

Изобретение относится к космической технике, а именно к посадочным устройствам космического корабля (КК). Посадочное устройство КК содержит опорную тарель, откидную раму, два подкоса, кронштейн, датчик угла поворота рамы, цилиндрические шарниры с замковыми элементами, четыре посадочные опоры,...
Тип: Изобретение
Номер охранного документа: 0002521451
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da6c

Быстроразъемный агрегат (варианты)

Изобретение относится к области ракетной техники, в частности к устройствам, обеспечивающим подачу рабочих тел высокого давления к ракетным блокам на стартовых устройствах и разделение пневмомагистралей перед стартом или разделение межблочных пневмомагистралей при разделении блоков космических...
Тип: Изобретение
Номер охранного документа: 0002521694
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc24

Центробежное рабочее колесо

Изобретение может быть использовано при изготовлении и эксплуатации малорасходных насосов изделий ракетно-космической техники. Изобретение направлено на расширение области использования. Центробежное рабочее колесо содержит монолитные ступицу, ведущий диск, покрывной диск и n лопаток. По...
Тип: Изобретение
Номер охранного документа: 0002522134
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.df93

Коммутатор напряжения с защитой от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току без использования датчика тока, преимущественно в системах управления космических аппаратов. Технический результат заключается в снижении массы и габаритов...
Тип: Изобретение
Номер охранного документа: 0002523021
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df95

Способ получения электроэнергии из водорода с использованием топливных элементов и система энергопитания для его реализации

Изобретение относится к энергоустановкам c твердополимерными топливными элементами (ТЭ), в которых получают электроэнергию за счет электрохимической реакции газообразного водорода с двуокисью углерода, и электрохимической реакции окиси углерода с кислородом воздуха. Предложена также система...
Тип: Изобретение
Номер охранного документа: 0002523023
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df96

Коммутатор напряжения с защитой от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току без использования датчика тока, преимущественно в системах управления космических аппаратов. Технический результат заключается в снижении массы и габаритов...
Тип: Изобретение
Номер охранного документа: 0002523024
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e38f

Способ определения географических координат области наблюдения перемещаемой относительно космического аппарата аппаратуры наблюдения, система для его осуществления и устройство размещения излучателей на аппаратуре наблюдения

Изобретение относится к космической технике. Способ определения географических координат области наблюдения перемещаемой относительно КА аппаратуры наблюдения включает навигационные измерения движения КА, определение положения центра масс и ориентации КА, определение пространственного положения...
Тип: Изобретение
Номер охранного документа: 0002524045
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e49d

Двигатель с замкнутым дрейфом электронов

Изобретение относится к области электроракетных двигателей. Двигатель с замкнутым дрейфом электронов содержит разрядную камеру с анодом-газораспределителем. Анод соединен трубопроводом с системой подачи рабочего тела. Двигатель также содержит магнитную систему с магнитными полюсами. Система...
Тип: Изобретение
Номер охранного документа: 0002524315
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e5c0

Электрохимический водяной насос

Изобретение относится к насосной технике и может применяться при создании систем водоснабжения и силовых гидравлических установок, в том числе малогабаритных гидросистем высокого давления для космических аппаратов (КА). Электрохимический водяной насос включает твердополимерные электролизные...
Тип: Изобретение
Номер охранного документа: 0002524606
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e8a5

Бортовая электролизная установка космического аппарата

Изобретение относится к оборудованию космических аппаратов (КА) и, в частности, к их энергодвигательным системам. Электролизная установка КА включает в себя твердополимерный электролизер, подключенный к системе электропитания КА, и систему водоснабжения. Последняя содержит циркуляционный насос,...
Тип: Изобретение
Номер охранного документа: 0002525350
Дата охранного документа: 10.08.2014
Показаны записи 71-80 из 290.
20.05.2014
№216.012.c657

Регенеративная электрохимическая система энергоснабжения пилотируемого космического аппарата с замкнутым по воде рабочим циклом и способ ее эксплуатации

Изобретение относится к энергетике, к системе энергоснабжения космических аппаратов и напланетных станций. Электрохимическая система энергоснабжения космического аппарата с замкнутым по воде рабочим циклом включает электролизер воды и кислородо-водородный генератор, гидравлически связанные...
Тип: Изобретение
Номер охранного документа: 0002516534
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c81b

Рабочее колесо осевого вентилятора (варианты)

Заявленное рабочее колесо осевого вентилятора может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники. Рабочее колесо содержит ступицу с основаниями, снабженными пазами шириной S. В указанных пазах установлены хвостовики листовых лопаток толщиной s,...
Тип: Изобретение
Номер охранного документа: 0002516993
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c9f5

Шаровой клапан

Изобретение относится к области машиностроения, в частности к ракетно-космической технике, и предназначено в качестве запорного клапана с ручным приводом для обеспечения работоспособности в условиях биологически вредных сред, при криогенных температурах и при невесомости. Шаровой клапан состоит...
Тип: Изобретение
Номер охранного документа: 0002517467
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cd46

Разъемное соединение

Изобретение относится к устройствам разделения криогенных заправочных магистралей. Разъемное соединение состоит из стационарного и отделяемого штуцеров с двойным уплотнением между ними, поджатие которого осуществляется устройством для затяжки посредством тарельчатых пружин. Оба уплотнения между...
Тип: Изобретение
Номер охранного документа: 0002518321
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cdd8

Ионная двигательная установка космических аппаратов

Изобретение относится к двигательным системам космических аппаратов. Предлагаемая ионная двигательная установка (ДУ) включает в себя источник рабочего тела, выполненный в виде системы хранения и подачи изотопа алюминия 27 с источником паров (ИП) данного изотопа. ДУ также содержит связанные с...
Тип: Изобретение
Номер охранного документа: 0002518467
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d125

Способ имитации внешних тепловых потоков для наземной отработки теплового режима космического аппарата

Изобретение относится к тепловакуумным испытаниям космического аппарата (КА), а также может найти применение в тех областях техники, где предъявляются повышенные требования к излучательным и отражательным характеристикам изделий. Согласно изобретению до помещения КА в термовакуумную камеру...
Тип: Изобретение
Номер охранного документа: 0002519312
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d979

Посадочное устройство космического корабля

Изобретение относится к космической технике, а именно к посадочным устройствам космического корабля (КК). Посадочное устройство КК содержит опорную тарель, откидную раму, два подкоса, кронштейн, датчик угла поворота рамы, цилиндрические шарниры с замковыми элементами, четыре посадочные опоры,...
Тип: Изобретение
Номер охранного документа: 0002521451
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da6c

Быстроразъемный агрегат (варианты)

Изобретение относится к области ракетной техники, в частности к устройствам, обеспечивающим подачу рабочих тел высокого давления к ракетным блокам на стартовых устройствах и разделение пневмомагистралей перед стартом или разделение межблочных пневмомагистралей при разделении блоков космических...
Тип: Изобретение
Номер охранного документа: 0002521694
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc24

Центробежное рабочее колесо

Изобретение может быть использовано при изготовлении и эксплуатации малорасходных насосов изделий ракетно-космической техники. Изобретение направлено на расширение области использования. Центробежное рабочее колесо содержит монолитные ступицу, ведущий диск, покрывной диск и n лопаток. По...
Тип: Изобретение
Номер охранного документа: 0002522134
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.df93

Коммутатор напряжения с защитой от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току без использования датчика тока, преимущественно в системах управления космических аппаратов. Технический результат заключается в снижении массы и габаритов...
Тип: Изобретение
Номер охранного документа: 0002523021
Дата охранного документа: 20.07.2014
+ добавить свой РИД