×
27.01.2016
216.014.bdc2

Результат интеллектуальной деятельности: МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА

Вид РИД

Изобретение

№ охранного документа
0002573684
Дата охранного документа
27.01.2016
Аннотация: Изобретение относится к трансформируемым космическим структурам. Многослойная трансформируемая герметичная оболочка (МТГО) включает ЭВТИ с защитой от атомарного кислорода, противометеороидную защиту в виде защитных противометеороидных экранов с межэкранными разделителями, армирующий слой, герметизирующий слой, слой, защищающий от повреждений изнутри. Противометеороидная защита состоит из многослойных противометеороидных экранов из арамидной ткани. Межэкранные разделители выполнены с «вафельной» несквозной перфорацией. Техническим результатом изобретения является обеспечение достаточной защиты многослойной трансформируемой герметичной оболочки от микрометеороидов и техногенных частиц за счет использования перфорированных межэкранных разделителей, возможность максимального сжатия МТГО в транспортном положении и полного ее восстановления в рабочем положении, а также уменьшение массовых характеристик МТГО. 8 ил.
Основные результаты: Многослойная трансформируемая герметичная оболочка, включающая экранно-вакуумную теплоизоляцию с защитой от атомарного кислорода, противометеороидную защиту в виде защитных противометеороидных экранов с межэкранными разделителями из вспененного эластичного открытопористого материала, армирующий слой, герметизирующий слой, слой, защищающий от повреждений изнутри, отличающаяся тем, что противометеороидная защита состоит из многослойных противометеороидных экранов из арамидной ткани, причем в первом от наружного к внутреннему содержится не менее 40% общего количества слоев или суммарной поверхностной плотности экранов, во втором - не менее 20%, которые дистанцируются друг относительно друга на 100±75 мм, а межэкранные разделители выполнены с «вафельной» несквозной перфорацией, при этом габаритные размеры ячеек перфорации имеют соотношение a:b:c:m:H=35:35:17:3:20 с отклонением не более чем в 3 раза, где а - длина ячейки перфорации, b - ширина ячейки перфорации, с - глубина ячейки перфорации, m - толщина стенок между ячейками, Н - высота межэкранного разделителя.

Изобретение относится к трансформируемым космическим структурам.

Изобретение наиболее востребовано в качестве оболочки трансформируемых космических обитаемых модулей.

Создание и внедрение технологии трансформируемых космических обитаемых модулей направлено, в первую очередь, на решение следующих задач:

- необходимость существенного увеличения полезного герметичного объема модулей российского сегмента международной космической станции (PC МКС) и перспективных космических станций с целью повышения комфортности долговременного пребывания экипажей и создания необходимых условий для проведения сложных научных и технологических экспериментов;

- уменьшение массогабаритных характеристик конструкции обитаемых модулей в стартовом положении для обеспечения возможности их выведения существующими и перспективными ракетами-носителями, так как пространство зоны полезного груза под обтекателем ограничено. Кроме того, увеличение габаритов обитаемых модулей в транспортном положении затруднено из-за проблем с транспортированием современным железнодорожным и авиационным транспортом;

- необходимость более эффективного обеспечения приемлемых уровней защиты экипажей космической станции от воздействия ионизирующего излучения космического пространства;

- необходимость повышения механической стойкости обитаемых отсеков к воздействию метеороидов и частиц техногенного мусора по сравнению с традиционными отсеками с учетом увеличивающейся опасности столкновения с космическим мусором на околоземных орбитах, и как следствие, возможности их повреждения.

Основной проблемой является обеспечение защиты от метеороидов и техногенных частиц.

Наиболее эффективное решение этой проблемы заключается в использовании принципа разнесенных экранов, на каждом из которых частица теряет часть своей энергии и дробится на более мелкие фракции, расходящиеся за экраном. Эффективность защиты тем выше, чем больше расстояние дистанционирования экранов, что обеспечивает больший разлет осколков до встречи с последующей преградой, а следовательно, распределение энергии удара по большей площади. Однако, общий объем для размещения модуля в зоне полезного груза под обтекателем ограничен. Поэтому в транспортном положении многослойная трансформируемая герметичная оболочка (МТГО) должна быть максимально сжата, при этом в космосе должна быть обеспечена возможность ее полного восстановления в рабочее положение. Массу и габариты МТГО в рабочем положении также важно минимизировать.

В качестве прототипа принято техническое решение по трансформируемому космическому модулю TransHab, разрабатываемому НАСА, изложенное в статье «Inflatable Habitats» (авторы: Kriss J.Kennedy, Jasen Raboin, Gary Spexarth, Gerard Valle, NASA Johnson Space Center, Houston, Texas), опубликованной в издании «Paul Zarchan. Gossamer Spasecraft: Membrane and Inflatable Structures Technology for Space Applications // Reston, Virginia: American Institute of Aeronautics and Astronautics, Inc. ISBN 1-56347-403-4. 2001. С. 527-529, 534-535».

Вышеуказанная оболочка трансформируемого космического модуля состоит из нескольких групп слоев материалов, выполняющих различные функции.

Защита от микрометеороидов и техногенных частиц обеспечивается с использованием пяти разнесенных экранов из тканевых слоев материала Nextel (Некстел) толщиной 1,5 мм, которые разделены дистанцирующими прокладками из пенопласта.

Основными недостатками такой конструкции являются большие толщины противометеороидной защиты и МТГО, и, как следствие, невозможность их сжатия до минимальных размеров при укладке в зону полезного груза под обтекателем космического аппарата в транспортном положении и развертывания в рабочее.

В процессе эксплуатации на околоземной орбите в составе PC MKC многослойная трансформируемая оболочка будет функционировать в условиях воздействия осколочно - метеороидных частиц.

Проблема защищенности трансформируемых надувных конструкций является особенно актуальной из-за слабой возможности полимерных, тканных и резиновых материалов сопротивляться высокоскоростному пробою техногенными частицами и микрометеороидами.

Задачей изобретения является обеспечение достаточной механической защиты МТГО от микрометеороидов и техногенных частиц за счет использования перфорированных межэкранных разделителей, а также обеспечение возможности максимального сжатия МТГО в транспортном положении и полного ее восстановления в рабочем положении, и уменьшение массовых характеристик МТГО. По установленным требованиям по защите обитаемых отсеков международной космической станции Спецификации PC MKC SSP41163, защитная функция МТГО считается достаточной, если противометеороидная защита обеспечивает целостность МТГО при столкновении с алюминиевой частицей диаметром 10 мм, летящей со скоростью 7 км/с, принятой в качестве эквивалента реальных микрометеороидов и техногенных частиц.

Задача решается тем, что в многослойной трансформируемой герметичной оболочке, включающей экранно-вакуумную теплоизоляцию с защитой от атомарного кислорода, противометеороидную защиту в виде защитных противометеороидных экранов с межэкранными разделителями из вспененного эластичного открытопористого материала, армирующий слой, герметизирующий слой, слой, защищающий от повреждений изнутри, противометеороидная защита состоит из многослойных противометеороидных экранов из арамидной ткани, причем в первом от наружного к внутреннему содержится не менее 40% общего количества слоев или суммарной поверхностной плотности экранов, во втором - не менее 20%, которые дистанцируются друг относительно друга на 100±75 мм, а межэкранные разделители выполнены с «вафельной» несквозной перфорацией, при этом габаритные размеры ячеек перфорации имеют соотношение a:b:c:m:H=35:35:17:3:20 с отклонением не более чем в 3 раза, где а - длина ячейки перфорации, b - ширина ячейки перфорации, с - глубина ячейки перфорации, m - толщина стенок между ячейками, Н - высота межэкранного разделителя.

На чертежах изображено:

на фиг.1 - поперечный разрез трансформируемого модуля с многослойной трансформируемой герметичной оболочкой в транспортном положении;

на фиг.2 - многослойная трансформируемая герметичная оболочка в разрезе в рабочем положении;

на фиг.3 - 3D-модель перфорированного межэкранного разделителя противометеороидной защиты;

на фиг.4 - перфорированный межэкранный разделитель противометеороидной защиты;

на фиг.5 - поперечный разрез перфорированного межэкранного разделителя противометеороидной защиты;

на фиг.6 - начальное состояние перфорированного межэкранного разделителя без приложения усилия;

на фиг.7 - схема поджатия перфорированного межэкранного разделителя с минимальным усилием;

на фиг.8 - схема поджатия перфорированного межэкранного разделителя до минимальной толщины,

при этом:

1 - многослойная трансформируемая герметичная оболочка;

2 - внутренняя поверхность обтекателя;

3 - экранно-вакуумная теплоизоляция (ЭВТИ) с защитой от атомарного кислорода;

4 - противометеороидная защита;

5 - противометеороидные экраны;

6 - межэкранные разделители;

7 - армирующий слой;

8 - герметизирующий слой;

9 - слой, защищающий от повреждений изнутри (интерьер).

Многослойная трансформируемая герметичная оболочка (1) состоит из ЭВТИ с защитой от атомарного кислорода (3), выполняющей функции теплоизоляции, защиты от ультрафиолетового излучения, атомарного кислорода; противометеороидной защиты (4), состоящей из противометеороидных экранов (5), разнесенных межэкранными разделителями (6); армирующего слоя для усиления и поддержания формы конструкции (7); герметизирующего слоя (8) и слоя, защищающего от повреждений изнутри (9), являющимся внутренним интерьером МТГО (1).

Основную толщину МТГО(1) в рабочем положении формируют межэкранные разделители (6) встроенной в состав МТГО(1) противометеороидной защиты (4). В транспортном положении укладка МТГО (1) в отведенную зону полезного груза, ограниченную внутренней поверхностью обтекателя (2), осуществляется за счет поджатия (упругой деформации) межэкранных разделителей (6). Поджатие межэкранных разделителей обеспечивается в первую очередь за счет их перфорирования, а также за счет открыто-пористой структуры материала. Схема перфорации представлена на фигурах 3-5, где а - длина ячейки перфорации, b - ширина ячейки перфорации, с - глубина перфорации, m - толщина стенок между ячейками, а высота межэкранного разделителя (6) - Н. На фигурах 6-8 показана принципиальная особенность поджатия межэкранного разделителя с «вафельной» перфорацией.

В качестве примера для обеспечения достаточного уровня противометеороидной защиты предлагается использовать четыре противометеороидных экрана (5), дистанцированных межэкранными разделителями (6) толщиной 100 мм из перфорированного пенополиуретана (ППУ).

Отклонение величины дистанцирования противометеороидных экранов (5) от 100 мм на величину более 75 мм в меньшую сторону приводит к снижению защитных свойств многослойной трансформируемой герметичной оболочки (1) не менее чем на 30% из-за нарушения рассевания осколков микрометеороида (техногенной частицы); более чем на 75 мм в большую сторону - к нерациональному увеличению габаритов и массы МТГО (1).

Отклонение соотношения суммарной поверхностной плотности (количества слоев) противометеороидных экранов (5) от приведенного в формуле соотношения снижает защитные свойства МТГО (1) не менее чем на 20% из-за ухудшения процессов дробления микрометеороида или техногенной частицы и торможения ее осколков.

В качестве материала межэкранного разделителя (6), обладающего низкой плотностью и повышенными требованиями по пожарной безопасности, в составе МТГО (1) рассматриваются эластичные пенополиуретаны ППУ-ТС-35 ТУ 6-55-49-91, ППУ 75-НО ТУ 6-05-1897-80 и эластичный пенополиимид ВПП-1ТУ 1-595-9-1185-2011.

Проведены испытания образцов перфорированного межэкранного разделителя (6) из пенополиуретана ППУ общей высотой 100 мм на определение, в том числе, зависимости напряжение-деформация при длительном сжатии и относительной остаточной деформации при длительном сжатии, которые подтвердили применимость материала. При сжатии образца с толщиной стенок ППУ - 15 мм до 90% остаточная деформация в пределах 5%, что соответствует требованиям.

Отклонение размера m относительно а:b:Н от приведенного в формуле соотношения более чем в три раза в большую сторону, а размера с - в меньшую, приводит к увеличению необходимых для поджатия усилий более чем в 2 раза, что усложняет укладку МТГО (1); изменение более чем в три раза в обратную сторону - к высокой вероятности невосстановления первоначальной формы межэкранных разделителей (6) после прекращения воздействия поджимающего усилия, что не обеспечивает гарантированное дистанцирование противометеороидных экранов (5) на заданную величину. Также, при перфорировании межэкранного разделителя (6), как показано на фигурах 3-5, масса уменьшается втрое по сравнению с использованием сплошных слоев аналогичной толщины.

Проведены испытания фрагментов МТГО (1) на стойкость к частицам и результаты подтвердили обеспечение противометеороидной защиты МТГО (1) от алюминиевых частиц диаметром 11 мм на скорости 7 км/с.

Многослойная трансформируемая герметичная оболочка, включающая экранно-вакуумную теплоизоляцию с защитой от атомарного кислорода, противометеороидную защиту в виде защитных противометеороидных экранов с межэкранными разделителями из вспененного эластичного открытопористого материала, армирующий слой, герметизирующий слой, слой, защищающий от повреждений изнутри, отличающаяся тем, что противометеороидная защита состоит из многослойных противометеороидных экранов из арамидной ткани, причем в первом от наружного к внутреннему содержится не менее 40% общего количества слоев или суммарной поверхностной плотности экранов, во втором - не менее 20%, которые дистанцируются друг относительно друга на 100±75 мм, а межэкранные разделители выполнены с «вафельной» несквозной перфорацией, при этом габаритные размеры ячеек перфорации имеют соотношение a:b:c:m:H=35:35:17:3:20 с отклонением не более чем в 3 раза, где а - длина ячейки перфорации, b - ширина ячейки перфорации, с - глубина ячейки перфорации, m - толщина стенок между ячейками, Н - высота межэкранного разделителя.
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
МНОГОСЛОЙНАЯ ТРАНСФОРМИРУЕМАЯ ГЕРМЕТИЧНАЯ ОБОЛОЧКА
Источник поступления информации: Роспатент

Показаны записи 251-260 из 371.
25.08.2017
№217.015.b71b

Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями

Изобретение относится к управлению угловым движением космического аппарата (КА) с силовыми гироскопами (СГ) и солнечными батареями (СБ), установленными на взаимно противоположных сторонах КА. В момент отказа измерителя угловой скорости КА фиксируют суммарный вектор кинетич. момента КА и...
Тип: Изобретение
Номер охранного документа: 0002614467
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b737

Электропривод

Изобретение относится к машиностроению и может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Электропривод содержит корпус, неподвижно закрепленные на корпусе подшипниковый щит и плату с электродвигателем с шестерней на его валу, цилиндрический...
Тип: Изобретение
Номер охранного документа: 0002614462
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b775

Камера сгорания жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям. В камере сгорания жидкостного ракетного двигателя, содержащей наружную стальную оболочку и внутреннюю оболочку из медного сплава с размещенными в ней каналами охлаждающего тракта с турбулизирующими выступающими элементами на поверхностях...
Тип: Изобретение
Номер охранного документа: 0002614902
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.ba56

Устройство укладки гибкого протяженного по длине элемента в космических условиях и способ его эксплуатации

Изобретение относится к космической технике, в частности к оборудованию по обеспечению работ в космических условиях, а также может быть использовано в наземных условиях и при проведении подводно-технических работ. Предлагается устройство, содержащее несущую структуру в виде двух пластин (1),...
Тип: Изобретение
Номер охранного документа: 0002615466
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.c4fe

Центробежное рабочее колесо

Изобретение относится к насосостроению и может быть использовано в составе электронасосных агрегатов систем терморегулирования изделий ракетно-космической техники, а также в химической промышленности. Центробежное рабочее колесо содержит единый со ступицей (1) ведущий диск (2), покрывной диск...
Тип: Изобретение
Номер охранного документа: 0002618372
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c590

Электронасосный агрегат

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования изделий космической техники. Электронасосный агрегат содержит металлический корпус, установленный на корпусе электродвигатель, размещенные на его валу колеса. Снаружи электродвигателя установлен...
Тип: Изобретение
Номер охранного документа: 0002618377
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c5f6

Быстроразъемный агрегат

Изобретение относится к ракетно-космической технике, а именно к устройствам разделения заправочных магистралей. Быстроразъемный агрегат содержит первую и вторую плиты, соединенные замковым устройством. Быстроразъемный агрегат включает установленную в первую плиту подпружиненную подвижную...
Тип: Изобретение
Номер охранного документа: 0002618669
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c66c

Устройство для соединения коммуникаций

Изобретение предназначено для использования в области ракетно-космической техники, в частности для заправки (дренажа) системы терморегулирования изделия теплоносителем и обеспечения циркуляции теплоносителя, и может быть использовано в машиностроении. В устройстве для соединения коммуникаций,...
Тип: Изобретение
Номер охранного документа: 0002618641
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c77a

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электрогенерирующим системам космического аппарата (КА). Способ включает разворот панелей солнечных батарей (СБ) КА их рабочими поверхностями на Солнце. Максимальную выходную мощность СБ определяют путём измерения тока и напряжения от СБ в моменты, когда отраженное от...
Тип: Изобретение
Номер охранного документа: 0002618844
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d0fe

Посадочное устройство космического корабля

Изобретение относится к области машиностроения, где необходимо осуществить мягкую посадку объекта с помощью посадочного устройства по вертикальной схеме. Посадочное устройство содержит посадочные опоры с центральными стойками, содержащими главный цилиндр с сотовым энергопоглотителем и узел...
Тип: Изобретение
Номер охранного документа: 0002621416
Дата охранного документа: 05.06.2017
Показаны записи 251-260 из 290.
25.08.2017
№217.015.b57f

Устройство защиты и контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора

Заявленное устройство относится к области оптико-электронного приборостроения, предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора без...
Тип: Изобретение
Номер охранного документа: 0002614335
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b5f1

Способ управления космическим аппаратом для облёта луны

Изобретение относится к межорбитальным маневрам космических аппаратов (КА) в системе Земля-Луна. Способ включает отстыковку КА от околоземной орбитальной космической станции (ОКС) и выведение его на траекторию облета Луны с возвратом. При возвращении к Земле путём нескольких торможений в её...
Тип: Изобретение
Номер охранного документа: 0002614446
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b616

Способ управления транспортной космической системой

Изобретение относится к управлению работой транспортного космического корабля (ТКК), совершающего рейсы между орбитальной космической станцией (ОКС), находящейся вблизи планеты с атмосферой, и базовой станцией, расположенной, например на Луне. После выведения ракетой-носителем на опорную орбиту...
Тип: Изобретение
Номер охранного документа: 0002614466
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b63d

Устройство крепления и расфиксации развертываемых панелей

20 Изобретение относится к средствам фиксации и быстрого дистанционного разделения элементов конструкций космических аппаратов (КА), их частей и других изделий. Устройство содержит узлы крепления панелей и сочленения в виде стаканов с коническими впадинами и выступами, взаимодействующими между...
Тип: Изобретение
Номер охранного документа: 0002614465
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b6f0

Способ управления космическим аппаратом для облёта луны

Изобретение относится к межорбитальным перелётам в системе Земля-Луна. Способ включает отстыковку КА от околоземной орбитальной космической станции (ОКС) и перевод на траекторию перелёта к Луне. Затем КА выводят на селеноцентрическую орбиту. По пребывании там заданное время КА переводят на...
Тип: Изобретение
Номер охранного документа: 0002614464
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b700

Космический модуль

Изобретение относится преимущественно к космическим аппаратам (КА) с малыми космическими модулями (КМ) для оптико-электронного наблюдения Земли. КМ включает в себя призматический силовой корпус блочного типа. На торцевой панели установлена одноразовая (для гашения остаточной угловой скорости КА...
Тип: Изобретение
Номер охранного документа: 0002614461
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b71b

Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями

Изобретение относится к управлению угловым движением космического аппарата (КА) с силовыми гироскопами (СГ) и солнечными батареями (СБ), установленными на взаимно противоположных сторонах КА. В момент отказа измерителя угловой скорости КА фиксируют суммарный вектор кинетич. момента КА и...
Тип: Изобретение
Номер охранного документа: 0002614467
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b737

Электропривод

Изобретение относится к машиностроению и может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Электропривод содержит корпус, неподвижно закрепленные на корпусе подшипниковый щит и плату с электродвигателем с шестерней на его валу, цилиндрический...
Тип: Изобретение
Номер охранного документа: 0002614462
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b775

Камера сгорания жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям. В камере сгорания жидкостного ракетного двигателя, содержащей наружную стальную оболочку и внутреннюю оболочку из медного сплава с размещенными в ней каналами охлаждающего тракта с турбулизирующими выступающими элементами на поверхностях...
Тип: Изобретение
Номер охранного документа: 0002614902
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.ba56

Устройство укладки гибкого протяженного по длине элемента в космических условиях и способ его эксплуатации

Изобретение относится к космической технике, в частности к оборудованию по обеспечению работ в космических условиях, а также может быть использовано в наземных условиях и при проведении подводно-технических работ. Предлагается устройство, содержащее несущую структуру в виде двух пластин (1),...
Тип: Изобретение
Номер охранного документа: 0002615466
Дата охранного документа: 04.04.2017
+ добавить свой РИД