×
20.01.2016
216.013.a401

Результат интеллектуальной деятельности: БЕСКОНТАКТНОЕ РАДИОВОЛНОВОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ

Вид РИД

Изобретение

№ охранного документа
0002573627
Дата охранного документа
20.01.2016
Аннотация: Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов содержит первый СВЧ-генератор, делитель мощности, первый и второй умножители частоты, антенны для излучения электромагнитных волн в сторону поверхности диэлектрической пластины по нормали к ней и приема отраженных волн, смеситель, вычислительный блок, соединенный с выходом смесителя. Устройство дополнительно содержит второй СВЧ-генератор, переключатель, первый циркулятор, первый вывод которого соединен с первым выводом делителя мощности, второй вывод соединен с первой антенной, третий вывод соединен через второй умножитель частоты с первым входом смесителя, второй циркулятор, первый вывод которого соединен со вторым выводом делителя мощности через первый умножитель частоты, второй вывод соединен со второй антенной, третий вывод соединен со вторым входом смесителя, при этом первый и второй СВЧ-генераторы соединены с первым и вторым входами переключателя, управляющий вход переключателя соединен с вычислительным блоком, а его выход соединен с входом делителя мощности. Технический результат заключается в повышении точности измерения. 1 ил.
Основные результаты: Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов, содержащее первый СВЧ-генератор, делитель мощности, первый и второй умножители частоты, антенны для излучения электромагнитных волн в сторону поверхности диэлектрической пластины по нормали к ней и приема отраженных волн, смеситель, вычислительный блок, соединенный с выходом смесителя, отличающееся тем, что содержит второй СВЧ-генератор, переключатель, первый циркулятор, первый вывод которого соединен с первым выводом делителя мощности, второй вывод соединен с первой антенной, третий вывод соединен через второй умножитель частоты с первым входом смесителя, второй циркулятор, первый вывод которого соединен со вторым выводом делителя мощности через первый умножитель частоты, второй вывод соединен со второй антенной, третий вывод соединен со вторым входом смесителя, при этом первый и второй СВЧ-генераторы соединены с первым и вторым входами переключателя, управляющий вход переключателя соединен с вычислительным блоком, а его выход соединен с входом делителя мощности.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов, таких как листовое стекло, полимерные и композитные материалы, защитные покрытия, в том числе и непосредственно во время технологического процесса изготовления.

Известны устройства для дистанционного бесконтактного измерения толщины диэлектрических материалов, использующие фазовый метод измерения (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. - М.: Энергоатомиздат, 1989, 34 с.).

Этот метод точнее амплитудного, поскольку не зависит от возможной нестабильности мощности СВЧ-генератора. Однако его реализация может приводить к большим погрешностям из-за необходимости постоянной подстройкой нуля фазометра, которая возникает из-за того, что в производственных условиях расстояние до объекта измерения заранее точно неизвестно и, кроме этого, может меняться. Также на точность влияет вибрация прибора и технологической установки и перемещения контролируемого объекта.

Известно техническое решение - радиоволновый измеритель толщины диэлектрических материалов, использующий многочастотный фазовый метод, по технической сущности наиболее близкое к предлагаемому устройству и принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. - М.: Энергоатомиздат, 1989. 49-51 с.).

Данное устройство содержит генератор сверхвысокочастотных (СВЧ) электромагнитных волн с частотой F1, соединенный через основной вывод первого направленного ответвителя с передающей антенной для излучения электромагнитных волн в сторону поверхности диэлектрической пластины по нормали к ней и вторым выводом через умножитель частоты на k со второй передающей антенной, также направленной в сторону поверхности диэлектрической пластины по нормали к ней. Прием отраженных волн осуществляется первой приемной антенной, соединенной через основной вывод второго направленного ответвителя и второй умножитель частоты на k с первым входом фазового детектора и второй приемной антенной, соединенной через основной вывод третьего направленного ответвителя со вторым входом фазового детектора. Вспомогательные выводы второго и третьего направленных ответвителей соединены с первым и вторым детектором. Сравнение фаз осуществляется по отношению к опорному сигналу, частота которого получается путем соответствующего умножения частоты измерительного канала. Так как электрические длины распространения волны в измерительном и опорном канале равны друг другу, разность фаз между ними будет зависеть только от толщины диэлектрической пластины, вне зависимости от расстояния между ней и антеннами датчика. Благодаря этому снижается влияние на результат измерения перемещения контролируемого объекта относительно датчика, а также вибрации технологической установки.

Однако данная измерительная система имеет существенный недостаток. Поскольку используется фазовый метод, то диапазон однозначного измерения толщины ограничен половиной длины волны электромагнитного колебания в материале, поделенной еще и на коэффициент умножения частоты k: , где с - скорость света вакууме, ε - относительная диэлектрическая проницаемость измеряемой пластины. Например, при F1=8 ГГц, k=4 м при диапазоне ε=1,1÷8. Это существенно снижает точность измерения при значительных изменениях в толщине пластины.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом устройстве достигается тем, что оно содержит первый СВЧ-генератор, делитель мощности, первый и второй умножители частоты, антенны для излучения электромагнитных волн в сторону поверхности диэлектрической пластины по нормали к ней и приема отраженных волн, смеситель, вычислительный блок, соединенный с выходом смесителя. Устройство также дополнительно содержит второй СВЧ-генератор, переключатель, первый циркулятор, первый вывод которого соединен с первым выводом делителя мощности, второй вывод соединен с первой антенной, третий вывод соединен через второй умножитель частоты с первым входом смесителя, второй циркулятор, первый вывод которого соединен со вторым выводом делителя мощности через первый умножитель частоты, второй вывод соединен со второй антенной, третий вывод соединен со вторым входом смесителя, при этом первый и второй СВЧ-генераторы соединены с первым и вторым входами переключателя, управляющий вход переключателя соединен с вычислительным блоком, а его выход соединен с входом делителя мощности.

Предлагаемое устройство поясняется чертежом, где приведена его структурная схема.

Устройство содержит СВЧ-генераторы - 1 и 2, переключатель - 3, делитель мощности - 4, первый циркулятор - 5, первую антенну - 6, первый умножитель частоты - 7, второй циркулятор - 8, вторую антенну - 9, второй умножитель частоты - 10, смеситель - 11, вычислительный блок - 12. Излучение антенн направлено по нормали к диэлектрической пластине 13.

Устройство работает следующим образом.

На первом этапе СВЧ-генератор 1 передает электромагнитные колебания с частотой F1 через переключатель 3, делитель мощности 4 и циркулятор 5 на антенну 6 и излучается по нормали к диэлектрической пластине 13. Принимаемая этой же антенной волна состоит из суммы двух волн, отраженных от передней и от задней поверхности диэлектрической пластины 13.

где τR=2R/c - время распространения электромагнитной волны до передней поверхности пластины и обратно; R - расстояние от антенны до пластины; с - скорость света в вакууме; А1 - амплитуда принимаемой волны от передней стороны пластины; - время распространения электромагнитной волны в пластине толщиной d и диэлектрической проницаемостью ε; А2 - амплитуда принимаемой волны от задней стороны пластины. После прохождения этой волны через циркулятор 5 и умножитель частоты 10, на вход смесителя 11 поступает сигнал:

где k - коэффициент умножения блока 7.

На второй вход смесителя 11 поступает сигнал, который от второго выхода делителя мощности 4 через умножитель частоты 7, циркулятор 8 и антенну 9 излучается по нормали к пластине 13, отражается от нее и возвращается обратно через эти же антенну и циркулятор:

Известно, что с ростом частоты СВЧ-генератора резко возрастает затухание в диэлектрических материалах. Это справедливо для частот, применяемых в радиолокации, от 1,5÷2 ГГц и выше. При кратном повышении частоты затухание для многих практических материалов возрастает в десятки и сотни раз. Можно выбрать такую частоту F1 и коэффициент k, что в уравнении (3), в отличие от уравнения (2), можно пренебречь вторым слагаемым. В результате для смесителя 11 опорным будет сигнал В (см. формулу (2)), имеющий временную задержку τR.

На выходе смесителя 10 после перемножения сигналов А с В выделится и поступит на вход вычислительного блока 12 фазовый сигнал φ1, зависящий лишь от времени распространения электромагнитной волны в диэлектрической пластине и не зависящий от расстояния R:

U=U0cos(φ1)=U0cos(2πkF1τd).

Поскольку то через фазу этого сигнала можно выразить толщину пластины:

С учетом того, что измеряемая фаза повторяется через период 2π, диапазон однозначного измерения толщины составит или

где λ1=с/kF1 - длина волны электромагнитного колебания, N- целое число полуволн укладывающееся на расстоянии толщины диэлектрической пластины. Эта измеряемая величина не будет зависеть от расстояния между антеннами и пластиной, поскольку время распространения τR учитывается в опорном канале смесителя.

После вычисления и запоминания фазы φ1 в вычислительном блоке 12, на следующем этапе измерений с этого блока подается сигнал на переключатель 3, в результате чего электромагнитные колебания от генератора 2 с частотой F2 через переключатель 3, делитель мощности 4 и циркулятор 5 поступают на антенну 6 и излучаются по нормали к диэлектрической пластине 13. Далее, согласно описанному выше процессу, получим в вычислительном блоке 12 фазу φ2. В результате можно записать соотношение:

где λ2=с/kF2 - длина волны электромагнитного колебания, N - то же самое целое число полуволн укладывающееся на расстоянии толщины диэлектрической пластины, при соблюдении некоторого условия, описанного ниже.

Из уравнений (4) и (5) следует, что а толщина диэлектрической пластины равна:

Диапазон однозначного определения толщины будет зависеть от разности частот kF1 и kF2. Если максимальная толщина измеряемых диэлектрических пластин равна dm, что и является критерием однозначности, то в этом случае имеем:

Тогда отсюда:

Так, например, при F1=8 ГГц, F2=7,9 ГГц, k=4 будем иметь k(F1-F2)=0,4 ГГц, а диапазон однозначного определения толщины dm будет равен

Вычисление толщины по формуле (6) с учетом ограничения (7) производится в вычислительном блоке 12, затем цикл измерения повторяется.

Таким образом, устройство по сравнению с прототипом приобрело новое свойство - высокую точность определения толщин плоских диэлектрических материалов при значительно увеличенном пределе однозначности.

Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов, содержащее первый СВЧ-генератор, делитель мощности, первый и второй умножители частоты, антенны для излучения электромагнитных волн в сторону поверхности диэлектрической пластины по нормали к ней и приема отраженных волн, смеситель, вычислительный блок, соединенный с выходом смесителя, отличающееся тем, что содержит второй СВЧ-генератор, переключатель, первый циркулятор, первый вывод которого соединен с первым выводом делителя мощности, второй вывод соединен с первой антенной, третий вывод соединен через второй умножитель частоты с первым входом смесителя, второй циркулятор, первый вывод которого соединен со вторым выводом делителя мощности через первый умножитель частоты, второй вывод соединен со второй антенной, третий вывод соединен со вторым входом смесителя, при этом первый и второй СВЧ-генераторы соединены с первым и вторым входами переключателя, управляющий вход переключателя соединен с вычислительным блоком, а его выход соединен с входом делителя мощности.
БЕСКОНТАКТНОЕ РАДИОВОЛНОВОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ
БЕСКОНТАКТНОЕ РАДИОВОЛНОВОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 276.
20.05.2014
№216.012.c72e

Способ преобразования электрического сигнала в пневматический

Изобретение относится к области автоматики и может быть использовано для преобразования электрического сигнала в пневматический в электроструйных системах автоматического управления с повышенными требованиями к быстродействию. Способ осуществляют следующим образом: электрическим сигналом...
Тип: Изобретение
Номер охранного документа: 0002516749
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.d01e

Устройство для оценки предпочтительного уровня унификации технических систем

Изобретение относится к вычислительной технике и может быть использовано для оценки предпочтительного уровня унификации технических систем (ТС) с целью минимизации затрат на проектирование и изготовление ТС при достаточном уровне их эффективности. Технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002519049
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d8c9

Устройство для измерения давления

Изобретение относится к измерительной технике и может быть использовано в системах управления технологическими процессами. Техническим результатом изобретения является упрощение процесса измерения информативного параметра. Устройство для измерения давления содержит генератор электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002521275
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8d0

Способ измерения расхода газожидкостной смеси

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения расхода газожидкостной смеси включает измерение объемного расхода по частоте вращения ротора при нулевом перепаде...
Тип: Изобретение
Номер охранного документа: 0002521282
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8d3

Способ измерения массового расхода среды

Изобретение относится к измерительной технике и может использоваться для измерения расхода различных сред, в частности при коммерческих расчетах. Способ измерения массового расхода среды включает измерение объемного расхода по частоте вращения измерителя при нулевом перепаде давления и передачу...
Тип: Изобретение
Номер охранного документа: 0002521285
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da87

Способ измерения покомпонентного расхода газожидкостной смеси

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения покомпонентного расхода газожидкостной смеси включает измерение объемного расхода и передачу данных вычислителю. При...
Тип: Изобретение
Номер охранного документа: 0002521721
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da88

Устройство для измерения физических параметров объекта

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических параметров объектов, таких как геометрические размеры изделий, расстояние до какого-либо объекта, уровень веществ в емкостях, физические свойства жидкостей и газов,...
Тип: Изобретение
Номер охранного документа: 0002521722
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da8e

Магниторезистивная головка-градиометр

Изобретение может быть использовано в датчиках магнитного поля и тока, головках считывания с магнитных дисков и лент, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий и вирусов), идентификации информации, записанной на магнитные ленты, считывания информации, записанной...
Тип: Изобретение
Номер охранного документа: 0002521728
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da8f

Бесконтактный радиоволновой способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. Способ заключается в том, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону...
Тип: Изобретение
Номер охранного документа: 0002521729
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc1c

Флажковый ветрогенератор

Изобретение относится к области ветроэнергетики. Флажковый ветрогенератор содержит ветроприемник, выполненный в виде струн, расположенных в ветровом потоке между стойками, преобразователь колебаний струн в полезную энергию. Струны, натянутые между стойками, содержат навешанные на них полотнища...
Тип: Изобретение
Номер охранного документа: 0002522126
Дата охранного документа: 10.07.2014
Показаны записи 21-30 из 181.
20.05.2014
№216.012.c72e

Способ преобразования электрического сигнала в пневматический

Изобретение относится к области автоматики и может быть использовано для преобразования электрического сигнала в пневматический в электроструйных системах автоматического управления с повышенными требованиями к быстродействию. Способ осуществляют следующим образом: электрическим сигналом...
Тип: Изобретение
Номер охранного документа: 0002516749
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.d01e

Устройство для оценки предпочтительного уровня унификации технических систем

Изобретение относится к вычислительной технике и может быть использовано для оценки предпочтительного уровня унификации технических систем (ТС) с целью минимизации затрат на проектирование и изготовление ТС при достаточном уровне их эффективности. Технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002519049
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d8c9

Устройство для измерения давления

Изобретение относится к измерительной технике и может быть использовано в системах управления технологическими процессами. Техническим результатом изобретения является упрощение процесса измерения информативного параметра. Устройство для измерения давления содержит генератор электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002521275
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8d0

Способ измерения расхода газожидкостной смеси

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения расхода газожидкостной смеси включает измерение объемного расхода по частоте вращения ротора при нулевом перепаде...
Тип: Изобретение
Номер охранного документа: 0002521282
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8d3

Способ измерения массового расхода среды

Изобретение относится к измерительной технике и может использоваться для измерения расхода различных сред, в частности при коммерческих расчетах. Способ измерения массового расхода среды включает измерение объемного расхода по частоте вращения измерителя при нулевом перепаде давления и передачу...
Тип: Изобретение
Номер охранного документа: 0002521285
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da87

Способ измерения покомпонентного расхода газожидкостной смеси

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения покомпонентного расхода газожидкостной смеси включает измерение объемного расхода и передачу данных вычислителю. При...
Тип: Изобретение
Номер охранного документа: 0002521721
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da88

Устройство для измерения физических параметров объекта

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических параметров объектов, таких как геометрические размеры изделий, расстояние до какого-либо объекта, уровень веществ в емкостях, физические свойства жидкостей и газов,...
Тип: Изобретение
Номер охранного документа: 0002521722
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da8e

Магниторезистивная головка-градиометр

Изобретение может быть использовано в датчиках магнитного поля и тока, головках считывания с магнитных дисков и лент, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий и вирусов), идентификации информации, записанной на магнитные ленты, считывания информации, записанной...
Тип: Изобретение
Номер охранного документа: 0002521728
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da8f

Бесконтактный радиоволновой способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. Способ заключается в том, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону...
Тип: Изобретение
Номер охранного документа: 0002521729
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc1c

Флажковый ветрогенератор

Изобретение относится к области ветроэнергетики. Флажковый ветрогенератор содержит ветроприемник, выполненный в виде струн, расположенных в ветровом потоке между стойками, преобразователь колебаний струн в полезную энергию. Струны, натянутые между стойками, содержат навешанные на них полотнища...
Тип: Изобретение
Номер охранного документа: 0002522126
Дата охранного документа: 10.07.2014
+ добавить свой РИД