×
20.01.2016
216.013.a3ee

Результат интеллектуальной деятельности: ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области термоэлектрического приборостроения и может быть использовано при изготовлении термоэлектрических устройств, основанных на эффекте Пельтье или Зеебека, прежде всего термоэлектрических генераторов электрической энергии, а также холодильных термоэлектрических устройств. В термоэлементе термоэлектрической батареи искусственно создается анизотропия тепловой проводимости, обеспечивающая увеличение токовой высоты и термического сопротивления ветвей термоэлемента в ограниченном объеме по высоте, благодаря чему удается увеличить перепад температуры на спаях при сохраняющейся плотности теплового потока, за счет этого увеличивается КПД преобразования тепловой энергии в термоэлектрическом устройстве. Для достижения этого результата предложена термоэлектрическая батарея, содержащая термоэлементы, ветви которых изготовлены из полупроводников p- и n-типа, разделенных электроизоляцией, и коммутационные пластины, при этом ветви термоэлементов выполнены под углом по отношению к теплопоглощающей и тепловыделяющей поверхностям термоэлемента, а токовую высоту ветви L выбирают в диапазоне где h - габаритная высота ветви термоэлемента, мм, L - токовая высота ветви термоэлемента, мм, δ - межэлементный зазор между ветвями p и n типов (электроизоляция), мм, κ - среднеинтегральная удельная теплопроводность материала термоэлемента, λ - среды - удельная теплопроводность среды, заполняющей зазор δ между ветвями, При этом сечение ветви термоэлемента, параллельное токовым линиям, представляет собой параллелограмм с углом наклона α основания к теплопоглощающей стороне термоэлемента, или шеврон, параллельные или эквидистантные стороны которого примыкают к теплопоглощающей и тепловыделяющей сторонам термоэлемента, или кольцевой сектор, тороидальные поверхности которого образуют боковые поверхности ветвей термоэлемента, а поверхности, примыкающие к теплопоглощающей и тепловыделяющей сторонам термоэлемента, эквидистантны этим поверхностям. Угол наклона ветви термоэлемента к теплопоглощающей стороне α должен быть равен или больше величины, определяемой из соотношения

Изобретение относится к области термоэлектрического приборостроения и может быть использовано при изготовлении термоэлектрических устройств, основанных на эффекте Пельтье или Зеебека, прежде всего термоэлектрических генераторов электрической энергии, а также холодильных термоэлектрических устройств.

Проблема термоэлектричества сформулирована не только как проблема добротности термоэлектрического материала, но и рационального применения известных явлений для создания усовершенствованных, более эффективных термоэлементов [Анатычук Л.И. Термоэлектричество. Τ II. Термоэлектрические преобразователи энергии. Термоэлементы. Элементная база термоэлектричества. Киев, Черновцы. Институт термоэлектричества. 2002] с целью повышения КПД и эффективности термоэлектрических устройств.

Известно, что с ростом высоты термоэлемента электрическое сопротивление термобатареи увеличивается, поэтому мощность падает, но одновременно с этим растет перепад температуры на спаях термоэлемента, уменьшается плотность теплового потока по горячей стороне. Эти два фактора определяют рост КПД от высоты термоэлемента [Охотин А.С, Ефремов А.А., Охотин B.C., Пушкарский А.С. Термоэлектрические генераторы. Под ред. А.Р. Регеля. М. Атомиздат. 1976].

Вместе с тем требования к габаритным размерам термоэлектрических устройств не всегда позволяют решать вопрос повышения КПД путем увеличения высоты термоэлемета. В практике по разработке пленочных термоэлектрических преобразователей довольно часто используются форморазмерные факторы, в частности для повышения чувствительности лазерных преобразователей путем получения наклонноконденсированных пленок (Ухлинов Г.А., Косаковская З.Я., Вигдорович В.Н. Структура и термоэлектрические свойства косонапыленных пленок висмута // Известия АН СССР. Неорганические материалы. 1986. Т. 22. №6. С. 938-941; Вигдорович В.Н., Ухлинов Г.А., Каримов Ф.Ч., Краснов Д.М. Природа анизотропного термоэлектрического эффекта в наклонноконденсированных пленках // Известия АН СССР. Неорганические материалы. 1987. Т. 23).

Прототипом, наиболее близким по предлагаемому техническому решению, является патент №2396636 «Термоэлектрическая батарея» (ТЭБ) от 27.12.2007. Термоэлектрическая батарея состоит из последовательно соединенных в электрическую цепь посредством коммутационных пластин чередующихся ветвей, изготовленных соответственно из полупроводника p- и n-типа.

Одной из отличительных особенностей заявленного технического решения является расположение ветвей наклонно в одной из координатных плоскостей и под углом друг к другу, противоположным наклону ветвей, чем достигается эффективность теплоотдачи ТЭБ в теплопередающей системе термоэлектрического устройства. Недостатком такого технического решения является значительное увеличение габаритных размеров термоэлектрического устройства.

Техническим результатом заявляемого изобретения является повышение КПД термоэлектрической батареи за счет увеличения токовой высоты ветви термоэлемента при сохранении габаритных размеров путем создания искусственной анизотропии тепловой проводимости в ветвях термоэлемента.

Для этого предложена термоэлектрическая батарея, содержащая термоэлементы, ветви которых изготовлены из полупроводников p- и n-типа, разделенных электроизоляцией, и коммутационные пластины, при этом ветви термоэлементов выполнены под углом по отношению к теплопоглощающей и тепловыделяющей поверхностям термоэлемента, а токовую высоту ветви Lт выбирают в диапазоне

,

где

h - габаритная высота ветви термоэлемента, мм,

Lт - токовая высота ветви термоэлемента, мм,

δ - межэлементный зазор между ветвями p и n типов (электроизоляция), мм,

κмат - среднеинтегральная удельная теплопроводность материала термоэлемента,

λсреды - удельная теплопроводность среды, заполняющей зазор δ между ветвями,

Кроме того:

- сечение ветви термоэлемента, параллельное токовым линиям, представляет собой параллелограмм с углом наклона α основания к теплопоглощающей стороне термоэлемента,

- сечение ветви термоэлемента, параллельное токовым линиям, представляет собой шеврон, параллельные или эквидистантные стороны которого примыкают к теплопоглощающей и тепловыделяющей сторонам термоэлемента,

- сечение ветви термоэлемента, параллельное токовым линиям, представляет собой кольцевой сектор, тороидальные поверхности которого образуют боковые поверхности ветвей термоэлемента, а поверхности, примыкающие к теплопоглощающей и тепловыделяющей сторонам термоэлемента, эквидистантны этим поверхностям,

- угол наклона ветви термоэлемента к теплопоглощающей стороне α должен быть равен или больше величины, определяемой из соотношения

Конфигурация сечения термоэлементов в термоэлектрической батарее, в которой может быть реализована искусственно созданная анизотропия тепловой проводимости, может быть выполнена в трех вариантах. На фигурах 1-3 показаны варианты выполнения, где позициями обозначены:

1 - ветвь термоэлемента p-типа,

2 - электроизоляция,

3 - ветвь термоэлемента N-типа,

4 - коммутационные пластины,

5 - тепловыделяющая (холодная) поверхность,

6 - теплопоглощающая (горячая) поверхность,

Предложено три варианта термоэлементов термоэлектрической батареи:

1. Термоэлемент из наклонных ветвей - сечение ветви термоэлемента 1, 3, параллельное токовым линиям, представляет собой параллелограмм с углом наклона α основания к теплопоглощающей стороне термоэлемента 6, представлен на фиг. 1.

2. Термоэлемент из ветвей шевронного исполнения - сечение ветви термоэлемента 1, 3, параллельное токовым линиям, представляет собой шеврон, параллельные или эквидистантные стороны которого примыкают к теплопоглощающей 6 и тепловыделяющей 5 поверхностям, представлен на фиг. 2.

3. Термоэлемент из ветвей с торовыми боковыми поверхностями - сечение ветви термоэлемента 1, 3, параллельное токовым линиям, представляет собой кольцевой сектор, тороидальные поверхности которого образуют боковые поверхности ветвей термоэлемента, а поверхности, примыкающие к теплопоглощающей 6 и тепловыделяющей 5 поверхностям, эквидистантны этим поверхностям,

Для всех вариантов термоэлектрических батарей:

- угол наклона ветви термоэлемента α к теплопоглощающей стороне 6 должен быть равен или больше величины, определяемой из соотношения

В заявляемом техническом решении ветви термоэлемента 1, 3 выполняются такой конфигурации по сечению, параллельному токовым линиям, чтобы их токовая высота была больше, чем габаритные размеры термобатареи по высоте, определенные из условия получения максимальной мощности в зависимости от соотношения термического сопротивления ветви к сумме термических сопротивлений со стороны теплопоглощающей 6 и тепловыделяющей 5 поверхностей [Охотин А.С., Ефремов А.А., Охотин B.C., Пушкарский А.С. Термоэлектрические генераторы. Под ред. А.Р. Регеля. М. Атомиздат. 1976]. То есть термическое сопротивление термоэлектрического материала в направлении токовой высоты

должно быть меньше, чем в направлении, перпендикулярном поверхности теплоподвода и теплоотвода .

Ориентировочно токовая высота ветви должна выбираться из соотношения:

.

Термоэлектрические батареи с искусственной созданной анизотропией тепловой проводимости в ветвях термоэлемента 1, 3 могут быть изготовлены как для термогенераторов панельной конструкции, когда термоэлектрические батареи размещаются между двумя параллельными поверхностями источника теплоты и холодильника, так и для термогенератора радиально-трубчатой конструкции, в котором термоэлектрические батареи размещаются между двумя коаксиальными трубами, зазор между которыми (электроизоляция 2) ограничивает токовую высоту ветви Lт, или для термогенератора шаровой конструкции.

Термоэлектрические батареи с термоэлементами из наклонных ветвей, сечение которых в плоскости, параллельной токовым линиям, представляет собой параллелограмм с высотой h, определяющей габаритные размеры по высоте, а длина боковых сторон параллелограмма определяет токовую высоту ветви. Соотношения габаритной высоты термоэлемента h и длины боковой стороны Lт связаны между собой

,

где

,

где α есть угол наклона боковых сторон параллелограмма к теплопоглощающей 6 и тепловыделяющей 5 поверхностям [Охотин А.С., Ефремов А.А., Охотин B.C., Пушкарский А.С. Термоэлектрические генераторы. Под ред. А.Р. Регеля. М. Атомиздат. 1976]. Значения параметров, входящие в формулу определения угла наклона α, определяются из задаваемых конструктивных размеров термоэлектрического модуля, так же как известны теплофизические свойства используемого термоэлектрического материала, и среды, заполняющей полость размещения термобатарей (электроизоляции 2). Предельный угол наклона определяется из величины sin(α).

Аналогичные соотношения геометрических параметров в профиле сечения ветви 1, 3 сохраняются в радиально-трубчатом или шаровом (торовом) исполнении термогенераторов.

Пример расчета термоэлектрической батареи с термоэлементами из наклонных ветвей:

Если принять h=6,0 мм, δ=0,3 мм, теплопроводность термоэлектрического материала ветвей и теплопроводность электроизоляции , то значение sin(α)=0,648. Т.е. угол наклона ветви должен быть больше или равен 40º и зависит от среднеинтегрального значения теплопроводности термоэлектрического материала. При этих значениях токовая высота ветви составит 9,25 мм. Тогда термическое сопротивление тепловому потоку по направлению токовой высоты составит Термическое сопротивление в направлении, перпендикулярном тепловыделяющей поверхности, равно Из этого следует, что, если принять угол наклона больше 40º, то термическое сопротивление ветвей будет меньше чем и тепловой поток будет перетекать по термоэлектрическому материалу ветвей, что приведет к возрастанию перепада температуры на термоэлементе (в соответствии с электротепловой аналогией при параллельном включении в цепь электрических сопротивлений разной величины. http;//oktpres.narod.ru/olderfiles/1/Tema_6_Osn…).

При работе термоэлектрической батареи в режиме постоянства плотности теплового потока и постоянной температуры холодного спая у наклонных ветвей возрастание КПД будет приблизительно пропорционально ~1/sin2α по сравнению с прямой ветвью в заданных габаритах по высоте.

Реализовать конструкцию термоэлемента возможно, используя существующие технологии изготовления объемных ветвей термоэлементов. Так, ветви термоэлементов из низкотемпературных сплавов на основе теллурида висмута Могут быть изготовлены методом горячего прессования по традиционной технологии, принятой для переработки этого материла. Формообразующие боковые поверхности ветвей получают при прессовании между пуансонами необходимого профиля. Ветви термоэлементов из среднетемпературных материалов на основе теллурида свинца и германия можно получать из горячеспрессованных шайб электроэрозионной резкой.

Эффект предлагаемого способа использования искусственной анизотропии в термоэлементе был проверен при сравнительных испытаниях двух термобатарей с одинаковыми габаритными размерами, но разными токовыми высотами (прямой и наклонной).

Результаты испытаний изготовленных в двух исполнениях радиально-кольцевых термоэлектрических батарей, термоэлементы которых изготовлены из материалов на основе теллурида висмута, в режиме постоянства плотности теплового потока и постоянной температуры холодного спая приведены в таблице.

Термоэлектрическая батарея с прямыми ветвями (α=90º) представляет собой классическое исполнение с токовой высотой Lт, равной габаритной высоте термоэлемента h.

Термоэлектрическая батарея с термоэлементами из наклонных ветвей батареи с α=56º представляет собой термоэлектрическую батарею с искусственной созданной анизотропией тепловой проводимости в ветвях термоэлемента.

ΔΤ - перепад на термоэлементе.

R - внутреннее сопротивление термоэлектрической батареи, Ом

Uxx - ЭДС термоэлектрической батареи, В.

Up - напряжение в рабочей точке термоэлектрической батареи, В.

Ip - ток в рабочей точке, А.

W - электрическая мощность термоэлектрической батареи в рабочей точке, Вт.

КПД - коэффициент полезного действия термоэлектрической батареи в рабочей точке.

Искусственно созданная анизотропия тепловой проводимости обеспечивает увеличение токовой высоты и термическое сопротивление ветвей термоэлемента в ограниченном объеме по высоте, благодаря чему удается увеличить перепад температуры на спаях при сохраняющейся плотности теплового потока. Следствием увеличения перепада температуры на спаях термоэлемента является возрастание КПД преобразования тепловой энергии в термоэлектрических устройствах.

Таким образом, в режиме постоянства плотности теплового потока при одинаковой габаритной высоте ветви термоэлектрическая батарея с термоэлементами из наклонных ветвей батареи (термоэлектрическая батарея с искусственной созданной анизотропией тепловой проводимости в ветвях термоэлемента) позволяет получить большую электрическую мощность и КПД, чем термоэлектрическая батарея с прямыми ветвями.


ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 260.
20.02.2015
№216.013.29e0

Способ переработки красного шлама

Изобретение относится к технологии переработки вторичного минерального сырья, в частности красного шлама и может быть использовано при производстве восстановленных железорудных окатышей и цемента. Способ переработки красного шлама включает окомкование красного шлама, сушку и последующий...
Тип: Изобретение
Номер охранного документа: 0002542177
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a3f

Способ получения метано-водородной смеси и водорода

Изобретение относится к способу получения метано-водородной смеси, содержащей в основном Н и СН, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша, и может быть использовано в химической промышленности для переработки углеводородных газов, а...
Тип: Изобретение
Номер охранного документа: 0002542272
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2c01

Способ получения радиоизотопа лютеций-177

Изобретение относится к способу получения изотопов для ядерной медицины. Способ включает облучение мишени нейтронами и выделение Lu из облученной мишени. В качестве мишени берут изотоп Yb, мишень облучают в потоке нейтронов ядерного реактора, в процессе облучения в результате ядерной реакции...
Тип: Изобретение
Номер охранного документа: 0002542733
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2c08

Ядерный реактор для сжигания трансурановых химических элементов

Изобретение относится к ядерной технике, а именно к конструкции ядерных реакторов и систем с внешними источниками нуклонов, предназначенных для сжигания трансурановых химических элементов. Ядерный реактор для сжигания трансурановых химических элементов содержит подкритическую активную зону,...
Тип: Изобретение
Номер охранного документа: 0002542740
Дата охранного документа: 27.02.2015
20.04.2015
№216.013.4348

Противоопухолевое лекарственное средство пролонгированного действия на основе противоопухолевого препарата, ингибитора синтеза эстрогенов - анастрозола

Изобретение относится к противоопухолевому лекарственному средству пролонгированного действия на основе ингибитора синтеза эстрогенов - анастрозола. Лекарственное средство содержит анастрозол, сополимер молочной и гликолевой, поливиниловый спирт и D-маннитол. Лекарственное средство представляет...
Тип: Изобретение
Номер охранного документа: 0002548722
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4483

Способ подготовки поверхности изделий из нержавеющей стали перед гальваническим меднением

Изобретение относится к области гальванотехники и может быть использовано для подготовки поверхности изделий из нержавеющей стали перед гальваническим осаждением меди. Способ включает промывку изделий в воде, обезжиривание и катодную обработку в водных разбавленных растворах серной кислоты с...
Тип: Изобретение
Номер охранного документа: 0002549037
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4514

Ядерная установка и способ ее эксплуатации

Изобретение относится к ядерной энергетике в частности к энергетическим реакторам типа PWR. Энергетическая реакторная установка имеет два заменяемых горизонтально располагаемых ядерных реактора с перемещаемым отражателем. Один реактор при эксплуатации является рабочим, другой либо удаляется,...
Тип: Изобретение
Номер охранного документа: 0002549182
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4b39

Способ извлечения металлов из руд

Изобретение относится к горнодобывающей промышленности, в частности к технологии выщелачивания металла, и может быть использовано при подземном выщелачивании металлов из руд. Способ извлечения металлов из руд включает последовательную закачку в пласт через систему закачных скважин раствора,...
Тип: Изобретение
Номер охранного документа: 0002550764
Дата охранного документа: 10.05.2015
27.06.2015
№216.013.5a48

Способ получения радиоизотопа молибден-99

Изобретение относится к реакторной технологии получения радиоизотопов для ядерной медицины. Способ получения радиоизотопа Mo включает облучение потоком нейтронов мишени с последующим выделением целевого радиоизотопа, образующегося в результате Mo(n,γ)Mo реакции. В качестве мишени используют...
Тип: Изобретение
Номер охранного документа: 0002554653
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5ff7

Способ переработки облученного ядерного топлива

Изобретение относится к области радиохимической технологии, в частности к способам переработки облученного ядерного топлива с целью выделения и локализации газообразных изотопов криптона на головных операциях переработки облученного ядерного топлива, и может быть использовано в атомной...
Тип: Изобретение
Номер охранного документа: 0002556108
Дата охранного документа: 10.07.2015
Показаны записи 71-80 из 152.
20.02.2015
№216.013.28e1

Способ и устройство определения направленности взгляда

Изобретение относится к области контрольно-измерительной техники. Техническим результатом является снижение шумов, вносимых внешними источниками, на этапе регистрации изображений. Способ состоит в задании взаимного расположения детектирующих изображения интересующего объекта устройств, которые...
Тип: Изобретение
Номер охранного документа: 0002541922
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.29e0

Способ переработки красного шлама

Изобретение относится к технологии переработки вторичного минерального сырья, в частности красного шлама и может быть использовано при производстве восстановленных железорудных окатышей и цемента. Способ переработки красного шлама включает окомкование красного шлама, сушку и последующий...
Тип: Изобретение
Номер охранного документа: 0002542177
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a3f

Способ получения метано-водородной смеси и водорода

Изобретение относится к способу получения метано-водородной смеси, содержащей в основном Н и СН, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша, и может быть использовано в химической промышленности для переработки углеводородных газов, а...
Тип: Изобретение
Номер охранного документа: 0002542272
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2c01

Способ получения радиоизотопа лютеций-177

Изобретение относится к способу получения изотопов для ядерной медицины. Способ включает облучение мишени нейтронами и выделение Lu из облученной мишени. В качестве мишени берут изотоп Yb, мишень облучают в потоке нейтронов ядерного реактора, в процессе облучения в результате ядерной реакции...
Тип: Изобретение
Номер охранного документа: 0002542733
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2c08

Ядерный реактор для сжигания трансурановых химических элементов

Изобретение относится к ядерной технике, а именно к конструкции ядерных реакторов и систем с внешними источниками нуклонов, предназначенных для сжигания трансурановых химических элементов. Ядерный реактор для сжигания трансурановых химических элементов содержит подкритическую активную зону,...
Тип: Изобретение
Номер охранного документа: 0002542740
Дата охранного документа: 27.02.2015
20.04.2015
№216.013.4348

Противоопухолевое лекарственное средство пролонгированного действия на основе противоопухолевого препарата, ингибитора синтеза эстрогенов - анастрозола

Изобретение относится к противоопухолевому лекарственному средству пролонгированного действия на основе ингибитора синтеза эстрогенов - анастрозола. Лекарственное средство содержит анастрозол, сополимер молочной и гликолевой, поливиниловый спирт и D-маннитол. Лекарственное средство представляет...
Тип: Изобретение
Номер охранного документа: 0002548722
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4483

Способ подготовки поверхности изделий из нержавеющей стали перед гальваническим меднением

Изобретение относится к области гальванотехники и может быть использовано для подготовки поверхности изделий из нержавеющей стали перед гальваническим осаждением меди. Способ включает промывку изделий в воде, обезжиривание и катодную обработку в водных разбавленных растворах серной кислоты с...
Тип: Изобретение
Номер охранного документа: 0002549037
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4514

Ядерная установка и способ ее эксплуатации

Изобретение относится к ядерной энергетике в частности к энергетическим реакторам типа PWR. Энергетическая реакторная установка имеет два заменяемых горизонтально располагаемых ядерных реактора с перемещаемым отражателем. Один реактор при эксплуатации является рабочим, другой либо удаляется,...
Тип: Изобретение
Номер охранного документа: 0002549182
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4b39

Способ извлечения металлов из руд

Изобретение относится к горнодобывающей промышленности, в частности к технологии выщелачивания металла, и может быть использовано при подземном выщелачивании металлов из руд. Способ извлечения металлов из руд включает последовательную закачку в пласт через систему закачных скважин раствора,...
Тип: Изобретение
Номер охранного документа: 0002550764
Дата охранного документа: 10.05.2015
27.06.2015
№216.013.5a48

Способ получения радиоизотопа молибден-99

Изобретение относится к реакторной технологии получения радиоизотопов для ядерной медицины. Способ получения радиоизотопа Mo включает облучение потоком нейтронов мишени с последующим выделением целевого радиоизотопа, образующегося в результате Mo(n,γ)Mo реакции. В качестве мишени используют...
Тип: Изобретение
Номер охранного документа: 0002554653
Дата охранного документа: 27.06.2015
+ добавить свой РИД