×
10.01.2016
216.013.9f48

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МОЛЕКУЛЯРНОГО СИНГЛЕТНОГО КИСЛОРОДА

Вид РИД

Изобретение

№ охранного документа
0002572413
Дата охранного документа
10.01.2016
Аннотация: Изобретение относится к квантовой электронике и может быть использовано при разработке кислородно-йодных лазеров, генераторов возбужденных частиц для научных исследований. Молекулярный синглетный кислород (МСК) получают путем облучения излучением с длиной волны 200-310 нм прокачиваемой через реакционную камеру газовой смеси озона, кислорода и газа X, выбранного из He, CO, SF, тушащего возбужденный озон O*, в соотношении к синглетному кислороду более чем k/k, где k=5×10 см/с, k - константа скорости тушения в процессе X+O*→X+O в единицах см/с. Стабилизация озона позволяет уменьшить потери МСК и за счёт этого повысить его выход, а также использовать молекулу озона в последующих циклах наработки МСК. 2 ил., 3 пр.
Основные результаты: Способ получения молекулярного синглетного кислорода, включающий фотолиз кислородно-озоновой смеси излучением с длинами волн из диапазона от 200 нм до 310 нм, отличающийся тем, что в смесь добавляется газ X (Не, CO или SF), тушащий возбужденный озон O*, в соотношении к синглетному кислороду более чем k/k, где k=5×10 см/с, k - константа скорости тушения в процессе X+O*→X+O в единицах см/с.

Изобретение относится к квантовой электронике и может быть использовано при разработке кислородно-йодных лазеров, а также генераторов возбужденных частиц для научных исследований.

Электронно-возбужденный молекулярный синглетный кислород O2(1Δ) может быть получен ультрафиолетовым (УФ) фотолизом озона в процессе

Данный процесс имеет два канала продуктов. В первом канале, имеющем коэффициент ветвления 0,9, образуются молекулярный синглетный кислород (МСК) и электронно-возбужденый атом кислорода O(1D). Во втором канале (коэффициент ветвления 0,1) образуются молекула и атом кислорода в основных состояниях.

Известен способ получения молекулярного синглетного кислорода [1], в котором для получения молекулярного синглетного кислорода используется фотолиз озона с длиной волны 200<λ<310 нм. Авторы авторского свидетельства предложили добавлять в смесь озона с буферным газом молекулы N2O с целью увеличения выхода МСК за счет процесса

O(1D)+N2O→O2(1Δ)+N2.

Выход O2(1Δ) в этом процессе близок к единице [2]. Полученный МСК используется либо непосредственно в зоне наработки, либо транспортируется по газовому тракту к месту применения.

В работе [3] предложен проточный генератор МСК с относительно высокой производительностью. Принцип работы генератора основан на реакции (1) и рекомбинационном процессе

где М - третье тело. При поглощении фотона в области длин волн 200<λ<310 нм озон разваливается с образованием преимущественно O2(1Δ) и O(1D). Возбужденные атомы кислорода эффективно тушатся до основного состояния при столкновениях с компонентами смеси

O(1D)+М→O(3Р)+М.

В рекомбинационном процессе (2) происходит восстановление молекул озона. Преимущество данного способа получения МСК в том, что для его работы требуются относительно низкие концентрации озона в исходной смеси, поскольку в этой схеме молекула озона используется в цикле наработки МСК многократно. В работе приводятся результаты расчетов выхода молекулярного синглетного кислорода для потока газа с входными концентрациями озона 5×1016 см-3 и молекулярного кислорода 1018 см-3. Результаты расчетов показывают, что доля молекулярного синглетного кислорода на выходе такого генератора может составить 50%.

Данный способ получения МСК является наиболее близким к заявляемому изобретению и выбран в качестве прототипа. В прототипе не учитывалось, что в реакции рекомбинации атомов кислорода (2) образуется либо электронно-, либо колебательно-возбужденный озон О3* [4], который может эффективно реагировать с молекулярным синглетным кислородом в реакции

с константой скорости реакции k3=5×10-11 см3/с.

На фиг. 1, взятой из работы [5], представлены зависимости интенсивности излучения МСК (I) от времени (t) после импульсного УФ-фотолиза смеси O3-O2-CO2 при давлении кислорода 460 Торр, начальном для нескольких давлений углекислого газа.

Как видно на фиг.1, для смеси O3-O2 (нижняя кривая) относительная концентрация МСК падает со временем почти в три раза из-за его тушения в процессе (3). Экспериментально обнаружено, что скорость тушения МСК в системе кислородно-озоновой смеси замедляется при добавлении в эту смесь компонентов, хорошо тушащих возбужденный озон, таких как углекислый газ и гелий. Например, при добавлении в смесь 13 Торр углекислого газа выход МСК увеличивается более чем в 2 раза по сравнению со смесью, не содержащей этой добавки. И наоборот, добавление слабого тушителя O3*, например Ar, практически не сказывается на скорости тушения МСК [5], [6].

Кроме того, возбужденный озон реагирует с атомарным кислородом в процессе

Данный процесс имеет два канала продуктов реакции. В первом канале продуктов (4а) из системы удаляются сразу молекула O3* и атом O(3P), что в конечном итоге приводит к уменьшению степени восстановления озона. В канале (4б) происходит стабилизация молекулы озона. Константа скорости процесса (4) близка к газокинетической 1,4×10-11 см3/с, причем коэффициент ветвления канала (4а) составляет 0,3 [7].

Таким образом, процесс (3) уменьшает выход МСК в генераторе, предложенном в прототипе. Протекание процесса (4а) приводит к удалению из смеси молекул озона и соответственно к снижению производительности генератора, предложенного в прототипе.

Добавление в исходную смесь компонента X, тушащего возбуждение в озоне, будет приводить к стабилизации озона в процессе

Потери МСК будут незначительными, если скорость процесса (5) будет превышать скорость процесса (3). Это условие будет выполняться, если отношение содержания в смеси компонента [X] к содержанию МСК на выходе генератора будет превышать величину k3/k, где k - константа скорости процесса (5) в единицах см3/с. Отметим, что при выполнении данного условия убыль молекул озона в процессе (4а) будет незначительной, поскольку константа скорости данного процесса ниже, чем для процесса (3).

Целью изобретения является увеличение производительности фотолизного генератора молекулярного синглетного кислорода. Это достигается тем, что в способе получения молекулярного синглетного кислорода, включающим фотолиз кислородно-озоновой смеси с длиной волны излучения из диапазона длин волн от 310 нм до 200 нм, в смесь добавляется газ X (Не, CO2 или SF6), тушащий возбужденный озон О3*, в соотношении к синглетному кислороду более чем k3/k.

На фиг. 2 изображена принципиальная схема фотолизного генератора молекулярного синглетного кислорода. В поток газа О32, идущего от озонатора 1, в смесительном узле 2 подмешивается газ X. Далее смесь газов О32-Х поступает в реакционную камеру 3, где подвергается воздействию излучения из диапазона длин волн 200<λ<310 нм 4. Смесь газов О3-O2-Х-О2(1Δ) с реакционной камеры транспортируется к месту использования. В качестве газа X может быть использованы газы, состоящие из атомов или молекул, эффективно тушащих возбуждение в озоне, например Не, СО2 или SF6.

Пример 1. В узле смешения газов 2 готовится смесь со следующими концентрациями компонент: озона [O3]=3×1016 см-3, кислорода - [O2]=1018 см-3, аргона [Ar]=5×1019 см-3. Значение константы скорости процесса (5) для Ar равно k=10-14 см3/с при Т=300 К [5]. Максимальная концентрация синглетного кислорода, которая может быть достигнута на выходе генератора, находится из соотношения [Ar]/[О2(1Δ)]=k3/k. Отсюда следует, что [O2(1Δ)]=[Ar]k/k3. Деля обе части неравенства на общую концентрацию кислорода, находим долю синглетного кислорода ηΔ=[O2(1Δ)]/[O2], которую можно достичь на выходе генератора: ηΔ=([Ar]/[O2])(k/k3). Подставляя в полученное соотношение вышеприведенные величины, находим ηΔ≤10-2. Таким образом, доля синглетного кислорода на выходе генератора не будет превышать одного процента.

Пример 2. При тех же условиях, что и в примере 1, аргон заменяется на углекислый газ с концентрацией [СО2]=5×1019 см-3. Значение константы скорости процесса (5) для CO2 равно k=2×10-13 см3/с [5]. В этом случае находим, что ηΔ≈0,2. Таким образом, доля синглетного кислорода на выходе генератора может достигать 20%.

Пример 3. При тех же условиях, что и в примере 1, аргон заменяется на гексафторид серы с концентрацией [SF6]=1019 см-3. Значение константы скорости процесса (5) для SF6 равно k=2,7×10-12 см3/с [8]. Для данного примера доля синглетного кислорода составляет ηΔ≈0,54.

Литература

1. Золатарев В.А., Крюков П.Г., Подмарьков Ю.П., Фролов М.П., Юрышев Н.Н. «Способ получения молекулярного синглетного кислорода», Авторское свидетельство SU 1668288 A1, от 27.03.1989.

2. Azyazov V.N., Antonov I.О., Kabir М.Н., Heaven M.C. "Kinetics of O2(а 1Δg) and I(2P1/2) in the photochemistry of N2O/I2 mixtures", J. Phys. Chem. A., 2007, vol.111, p.6592-6599.

3. Дидюков А.И., Краснощеков Ю.И., Кулагин Ю.А., Морозов В.А., Решетняк С.А., Шелепин Л.А. «Фотолизный генератор возбужденного кислорода O2(a 1Δg)», Квантовая электроника, том 9, №4, с.731-738, 1982.

4. Shi J., Barker J.R. "Emission from ozone excited electronic states", J. Phys. Chem., vol.94, 8390-8393, 1990; C.W. vonRosenberg, D.W. Trainor. "Vibrational excitation of ozone formed by recombination", J. Chem. Phys., vol.61, 2442-2456, 1974.

5. Azyazov V.N., Mikheyev P.A., Heaven M.C. "On the O2(а 1Δ) quenching by vibrationally excited ozone", Proc. SPIE 7751, 77510E (2010).

6. Azyazov V.N., Mikheyev P.A., Postell D., Heaven M.C. "O2(a 1Δ) quenching in the O/O2/O3 system", Chem. Phys. Lett. 482 (1-3), 56-61 (2009).

7. West G.A., Jr. Weston R.E., Flynn G.W. "The influence of reactant vibratinal excitation on the O(3P)+O3* bimolecular reaction rate", Chem. Phys. Lett., vol.56, p.429 (1978).

Способ получения молекулярного синглетного кислорода, включающий фотолиз кислородно-озоновой смеси излучением с длинами волн из диапазона от 200 нм до 310 нм, отличающийся тем, что в смесь добавляется газ X (Не, CO или SF), тушащий возбужденный озон O*, в соотношении к синглетному кислороду более чем k/k, где k=5×10 см/с, k - константа скорости тушения в процессе X+O*→X+O в единицах см/с.
СПОСОБ ПОЛУЧЕНИЯ МОЛЕКУЛЯРНОГО СИНГЛЕТНОГО КИСЛОРОДА
СПОСОБ ПОЛУЧЕНИЯ МОЛЕКУЛЯРНОГО СИНГЛЕТНОГО КИСЛОРОДА
Источник поступления информации: Роспатент

Показаны записи 1-6 из 6.
20.06.2014
№216.012.d27e

Устройство возбуждения объемного разряда в плотных газах

Изобретение относится к квантовой электронике и может быть использовано для возбуждения активных сред газовых лазеров. Устройство возбуждения объемного разряда в плотных газах содержит источник высокого напряжения, соединенный с протяженными коронирующим и токосъемным электродами ножевой формы,...
Тип: Изобретение
Номер охранного документа: 0002519657
Дата охранного документа: 20.06.2014
20.04.2015
№216.013.42e4

Способ получения инверсионной населенности на атомах йода

Изобретение относится к квантовой электронике и может быть использовано для создания кислородно-йодных лазеров. Способ получения инверсной населенности на атомах йода заключается в оптической накачке газового потока. Оптическую накачку производят в два этапа, на первом этапе газовый поток...
Тип: Изобретение
Номер охранного документа: 0002548622
Дата охранного документа: 20.04.2015
10.08.2015
№216.013.69d7

Электроразрядный кислородно-йодный лазер с буферным газом

Изобретение относится к лазерной технике. В электроразрядном кислородно-йодном лазере в газовый поток непосредственно на выходе генератора молекул синглетного кислорода O(Δ) и перед сверхзвуковым соплом подмешивается газ X (CO, SF, SiF и т.д.), состоящий из молекул, тушащих возбужденный озон ,...
Тип: Изобретение
Номер охранного документа: 0002558648
Дата охранного документа: 10.08.2015
27.12.2015
№216.013.9e15

Способ локального удаления электропроводного оксидного слоя с диэлектрической подложки

Изобретение относится к электротехнической обработке материалов и предназначено для получения токопроводящих дорожек на нагреваемом стекле с оксидным электропроводящим слоем, называемым твердым покрытием и используемым, например, в стеклопакетах. Также изобретение можно применить для получения...
Тип: Изобретение
Номер охранного документа: 0002572099
Дата охранного документа: 27.12.2015
25.07.2019
№219.017.b900

Способ протонной терапии при лечении онкологических заболеваний

Изобретение относится к медицинской технике и может быть использовано при лечении онкологических заболеваний методами протонной терапии. Способ протонной терапии при лечении онкологических заболеваний заключается в том, что формируют направленный пучок протонов и двумерную проекцию опухоли в...
Тип: Изобретение
Номер охранного документа: 0002695273
Дата охранного документа: 22.07.2019
06.07.2020
№220.018.300c

Перестраиваемый диодный лазер с внешним резонатором

Изобретение относится к лазерной технике. Перестраиваемый диодный лазер с внешним резонатором содержит последовательно установленные на единой оптической оси лазерный диод, коллимирующий объектив, интерференционный фильтр, фокусирующий объектив, отражающее зеркало, установленное на единой...
Тип: Изобретение
Номер охранного документа: 0002725639
Дата охранного документа: 03.07.2020
Показаны записи 1-7 из 7.
20.06.2014
№216.012.d27e

Устройство возбуждения объемного разряда в плотных газах

Изобретение относится к квантовой электронике и может быть использовано для возбуждения активных сред газовых лазеров. Устройство возбуждения объемного разряда в плотных газах содержит источник высокого напряжения, соединенный с протяженными коронирующим и токосъемным электродами ножевой формы,...
Тип: Изобретение
Номер охранного документа: 0002519657
Дата охранного документа: 20.06.2014
20.04.2015
№216.013.42e4

Способ получения инверсионной населенности на атомах йода

Изобретение относится к квантовой электронике и может быть использовано для создания кислородно-йодных лазеров. Способ получения инверсной населенности на атомах йода заключается в оптической накачке газового потока. Оптическую накачку производят в два этапа, на первом этапе газовый поток...
Тип: Изобретение
Номер охранного документа: 0002548622
Дата охранного документа: 20.04.2015
10.08.2015
№216.013.69d7

Электроразрядный кислородно-йодный лазер с буферным газом

Изобретение относится к лазерной технике. В электроразрядном кислородно-йодном лазере в газовый поток непосредственно на выходе генератора молекул синглетного кислорода O(Δ) и перед сверхзвуковым соплом подмешивается газ X (CO, SF, SiF и т.д.), состоящий из молекул, тушащих возбужденный озон ,...
Тип: Изобретение
Номер охранного документа: 0002558648
Дата охранного документа: 10.08.2015
27.12.2015
№216.013.9e15

Способ локального удаления электропроводного оксидного слоя с диэлектрической подложки

Изобретение относится к электротехнической обработке материалов и предназначено для получения токопроводящих дорожек на нагреваемом стекле с оксидным электропроводящим слоем, называемым твердым покрытием и используемым, например, в стеклопакетах. Также изобретение можно применить для получения...
Тип: Изобретение
Номер охранного документа: 0002572099
Дата охранного документа: 27.12.2015
10.05.2018
№218.016.417a

Способ получения атомов йода

Изобретение относится к лазерной технике. Способ получения атомов йода для активной среды кислородно-йодного лазера включает последовательное прохождение через электроразрядный генератор и узел транспортировки газовой смеси, состоящей из инертного газа, йод содержащих молекул и атомов йода. В...
Тип: Изобретение
Номер охранного документа: 0002649025
Дата охранного документа: 29.03.2018
29.05.2019
№219.017.657f

Химический кислородно-йодный лазер с буферным газом

Изобретение относится к квантовой электронике и может быть использовано при разработке технологических химических кислородно-йодных лазеров и лазеров специального назначения. Техническим результатом изобретения является уменьшение массогабаритных и стоимостных характеристик химического...
Тип: Изобретение
Номер охранного документа: 0002390892
Дата охранного документа: 27.05.2010
29.05.2019
№219.017.663e

Способ определения констант скоростей газожидкостных химических реакций

Изобретение относится к химической технологии и может быть использовано при разработке и проектировании промышленных массообменных газожидкостных аппаратов, в том числе при изучении кинетики газожидкостных химических реакций. Способ включает приведение в контакт газа и жидкости при пропускании...
Тип: Изобретение
Номер охранного документа: 0002383017
Дата охранного документа: 27.02.2010
+ добавить свой РИД