×
10.01.2016
216.013.9f29

Результат интеллектуальной деятельности: МЕХАТРОННО-МОДУЛЬНЫЙ РОБОТ И СПОСОБ МНОГОАЛЬТЕРНАТИВНОЙ ОПТИМИЗАЦИИ МОДЕЛЕЙ АВТОМАТИЗАЦИИ СТРУКТУРНОГО СИНТЕЗА ДЛЯ ЕГО СОЗДАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к робототехнике. Технический результат заключается в создании мехатронно-модульного робота с многоальтернативной оптимизацией моделей их структурного синтеза для ориентации в окружающей среде. Мехатронно-модульный робот состоит из совокупностей сопряженных между собой тождественных модулей, при этом каждая совокупность состоит из сопряженных между собой модулей, имеющих интерфейсные площадки для стыковки, при этом один из двух модулей является управляющим по отношению к другому/им, причем указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов.

Одним из важнейших и перспективных направлений развития современной робототехники связано с разработкой нового класса устройств - многозвенных мехатронно-модульных роботов с адаптивной структурой. Структурный синтез при проектировании реконфигурируемых мехатронно-модульных роботов рассматривается как одновременное, автоматизированное решение двух задач выбора: порядка блочно-модульной сборки и варианта настройки априорно периодического закона изменения обобщенных координат (y, z), определяющего алгоритм управления движением.

Известен способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов, заключающийся в проведении синтеза структуры многоинвариантной модели мехатронно-модульных роботов, и последующей фиксации полученных оптимальных решений (И.М. Макаров, В.М. Лохин, С.В. Манько, М.П. Романов, М.В. Кадочников. ИТ, ″Технологии обработки знаний в задачах управления автономными мехатронно-модульными реконфигурируемыми роботами″ приложение к ″Информационные технологии″ №8, М., ″Новые технологии″, 2010, стр.3-7, рис.14-прототип).

Указанный способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов заключается в создании конкретных модулей и запоминании конкретных положений отдельных модулей для решения целевых задач.

Недостатками данного способа является его значительная сложность, низкая эффективность ориентации в окружающей среде реконфигурируемых мехатронных устройств, преимущественно мехатронно-модульных роботов.

Задачей предложенного технического решения является устранение указанных недостатков и создание мехатронно-модульного робота и способа многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов для его создания, применение которых позволит ускорить процесс синтеза, а также повысит эффективность ориентации в окружающей среде и надежность работы создаваемых мехатронных устройств, преимущественно мехатронно-модульных роботов.

Решение поставленной задачи достигается тем, что предложенный мехатронно-модульный робот, согласно изобретению, состоит, как минимум, из двух совокупностей сопряженных между собой тождественных модулей, предпочтительно трех и более, при этом каждая совокупность состоит, как минимум, из двух сопряженных между собой модулей, предпочтительнодвух и более, первичного и вновь с ним сопрягаемого/ых вторичного/ых, имеющих интерфейсные площадки для стыковки, при этом один из двух сопрягаемых между собой модулей, преимущественно первичный, является управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/им, причем указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота, при этом в каждой совокупности стыкуемые с управляющим модулем вторичные модули имеют возможность к самостоятельному осуществлению алгоритма сборки и синтеза структуры робота на более низком уровне, чем упомянутый управляющий модуль, причем количество модулей, объединяемых в упомянутый робот, определено из соотношения: n=1,N, где n - количество модулей, объединяемых в один робот, определено из соотношения n=1+x1+2x2+4x3+8x4, где: x1,x4=1,0 - количество интерфейсных площадок на модуле, N≤16 - предельное количество модулей, которые могут быть объединены в один робот, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполнены с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, при этом альтернативные переменные для алгоритмов управления синтезированной мехатронно-модульной конструкцией для описания параметров периодического закона движения выбраны из следующего соотношения:

Angle=А+В sin(ωt+φ),

где А - значение обобщенной координаты, относительно которой происходит периодическое движение; B - амплитуда периодического колебания обобщенной координаты, причем суммарная величина не превышает максимально допустимого отклонения обобщенной координаты модуля; φ - смещение фазы периодического движения.

В варианте исполнения для оптимизационного структурного синтеза выбраны значения альтернативных переменных , обеспечивающих максимальное значение функции:

при ограничениях n=1, N

где уmаху, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.

Для создания указанного мехатронно-модульного робота предложен способ, при использовании которого, согласно изобретению, при проведении синтеза структуры многоинвариантной модели мехатронно-модульных роботов, состоящих, как минимум, из двух совокупностей сопряженных между собой тождественных модулей, предпочтительно трех и более, при этом каждая совокупность состоит, как минимум, из двух сопряженных между собой модулей, предпочтительно двух и более, первичного и вновь с ним сопрягаемого/ых вторичного/ых, имеющих интерфейсные площадки для стыковки, при этом один из двух сопрягаемых между собой модулей, преимущественно, первичный, выполняют управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/им, причем указанную иерархия в структуре совокупностей мехатронно-модульного робота соблюдают при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота, при этом в каждой совокупности стыкуемые с управляющим модулем вторичные модули имеют возможность к самостоятельному осуществлению алгоритма сборки и синтеза структуры робота на более низком уровне, чем упомянутый управляющий модуль, и последующем фиксировании полученных оптимальных решений, рассматривают множество проектных элементов и вводят соответствующие альтернативные переменные путем представления дискретных чисел, соответствующих этим элементам, в двоичном исчислении, после чего обозначают количество модулей, объединяемых в один робот, преимущественно, без четко выраженной структуры, и обеспечивают сопряжение каждого нового модуля с ранее собранными вдоль выбранного направления и стыковку его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполняют с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, после чего вводят альтернативные переменные для описания параметров периодического закона движения следующим образом:

Angle=А+В sin(ωt+φ),

где А - значение обобщенной координаты, относительно которой происходит периодическое движение; В - амплитуда периодического колебания обобщенной координаты; причем суммарная величина не превышает максимально допустимого отклонения обобщенной координаты модуля; φ - смещение фазы периодического движения; при этом настройкой параметров этого закона определяют алгоритмы управления, синтезируемой мехатронно-модульной конструкции, причем для оптимизационного структурного синтеза выбирают значения альтернативных переменных , обеспечивающих максимальное значение функции:

при ограничениях n=1, N

,

где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения, причем для нахождения максимального значения функции ƒ, используют рандомизированной алгоритм многоальтернативной оптимизации, который дополняют еще одним уровнем в рамках управляемого роя частиц.

Сущность изобретения иллюстрируется чертежами, где на фиг.1 показаны отдельные мехатронно-модульные роботы со свободными интерфейсными площадками, на фиг.2 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам и образующий фигуру в виде многоугольника, на фиг.3 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам и образующий фигуру в виде квадрата, на фиг.4 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам и образующий фигуру в виде прямоугольника.

Мехатронно-модульный робот 1 состоит, как минимум, из двух совокупностей 2 и 3 сопряженных между собой модулей 4, 5 и 6.

Один из двух сопрягаемых между собой модулей, преимущественно, первичный 4, выполнен управляющим по отношению к другому, вторичному 5, с ним стыкуемому, причем указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота. В каждой совокупности стыкуемые с управляющим модулем 4 вторичные модули 5 имеют возможность к самостоятельному осуществлению алгоритма сборки и синтеза структуры робота на более низком уровне, чем упомянутый управляющий модуль 4. В свою очередь, модуль 5, являющийся вторичным и управляемым по отношению к модулю 4, является первичным и управляющим по отношению к модулю 6. Указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей 2 и 3 до формирования окончательной структуры мехатронно-модульного робота.

Сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой свободной интерфейсной площадки 7 с одной из свободных аналогичных площадок 7 на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду. Несвободная интерфейсная площадка 8 образована за счет стыковки между собой двух свободных интерфейсных площадок 7.

Предложенный мехатронно-модульный робот функционирует следующим образом.

Выбирается первичный управляющий модуль 4 со свободной интерфейсной площадкой 7 и стыкуется с любым произвольно выбранным модулем 5 с аналогичной свободной интерфейсной площадкой 7. При стыковке между собой двух свободных интерфейсных площадок 7 образуется несвободная интерфейсная площадка 8. Дальнейшее присоединение свободных модулей 6 к образованному модулю, состоящему из двух соединенных между собой модулей 4 и 5, происходит вдоль выбранного направления с образованием требуемой конечной структуры мехатронно-модульного робота.

Совокупность 2 или 3 образована модулями 4,5 и 6, состыкованными в заданном порядке между собой.

Предложенный способ по созданию мехатронно-модульного робота может быть реализован следующим образом.

Рассматривают множество проектных элементов и вводят соответствующие альтернативные переменные путем представления дискретных чисел, соответствующих этим элементам, в двоичном исчислении.

Обозначают количество модулей, объединяемых в один мехатронно-модульный робот 1, без четко выраженной структуры, . Тогда в двоичном исчислении получают при N≤16, где: N - количество сторон, n - количество возможный итераций.

При блочно-модульной сборке робота 1 полагают, что сопряжение каждого нового модуля с ранее собранными осуществляется вдоль выбранного направления и обеспечивается стыковкой его первой свободной интерфейсной площадки 7 с одной из свободных аналогичных интерфейсных площадок 7 на любых других модулях 4,5 и 6, как элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду.

Выделяют этот алгоритм преимущественно как Асб. Описание порядка сборки приводят к указанию направления и места крепления очередного элемента с использованием алгоритма Асб.

В направлении для стыковки n-го модуля ncm принимают четыре значения ncm=1 - север, ncm=2 - восток, ncm=3 - юг, ncm=4 - запад и представляют через альтернативные переменные:

Номер площадки, выбираемой для стыковки n-го модуля в двоичном исчислении, записывают в следующем виде:

где n=

Альтернативные переменные для описания параметров периодического закона вводят следующим образом:

Angle=А+В sin(ωt+φ),

где А - значение обобщенной координаты, относительно которой происходит периодическое движение;

В - амплитуда периодического колебания обобщенной координаты; суммарная величина не должна превышать максимально допустимого отклонения обобщенной координаты модуля;

φ - смещение фазы периодического движения.

Настройкой параметров этого закона определяют алгоритмы управления, синтезируемой мехатронно-модульной конструкции. Указанные параметры характеризуются дискретными значениями, имеющими соответствующие численные номера в пределах N≤16.

Затем для оптимизационного структурного синтеза выбирают значения альтернативных переменных , обеспечивающих максимальное значение функции.

при ограничениях n=1, N

где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.

Для нахождения максимального значения функции f используют рандомизированный алгоритм многоальтернативной оптимизации, который дополняют еще одним уровнем в рамках управляемого роя частиц.

Для синхронизации процедуры метода роя частиц и вариационной процедуры многоальтернативной оптимизации на каждом шаге управляют выбором частицы для обновления скорости изменения координат, которую осуществляют с использованием рандомизированной схемы. С этой целью вводят случайную дискретную величину m, которая принимает значение m=1, М с вероятностью pn. На первом шаге получают

.

Далее изменение значений при условии осуществляют следующим образом. Определяют значение случайной величины . Пусть . Тогда скорости изменения координат на (k+1)-м шаге вычисляются

,

а значение вероятностей pn:

При этом величина ε>0 определяет степень рекордности движения ν-й частицы в направлении к экстремуму оптимизируемой функции.

Использование предложенного технического решения позволит проводить синтез структуры многоинвариантной модели мехатронно-модульных роботов с последующим фиксированием полученных оптимальных решений с последующем повышением количества возможных итераций мехатронно-модульного робота при значительном сокращении времени синтеза.


МЕХАТРОННО-МОДУЛЬНЫЙ РОБОТ И СПОСОБ МНОГОАЛЬТЕРНАТИВНОЙ ОПТИМИЗАЦИИ МОДЕЛЕЙ АВТОМАТИЗАЦИИ СТРУКТУРНОГО СИНТЕЗА ДЛЯ ЕГО СОЗДАНИЯ
МЕХАТРОННО-МОДУЛЬНЫЙ РОБОТ И СПОСОБ МНОГОАЛЬТЕРНАТИВНОЙ ОПТИМИЗАЦИИ МОДЕЛЕЙ АВТОМАТИЗАЦИИ СТРУКТУРНОГО СИНТЕЗА ДЛЯ ЕГО СОЗДАНИЯ
МЕХАТРОННО-МОДУЛЬНЫЙ РОБОТ И СПОСОБ МНОГОАЛЬТЕРНАТИВНОЙ ОПТИМИЗАЦИИ МОДЕЛЕЙ АВТОМАТИЗАЦИИ СТРУКТУРНОГО СИНТЕЗА ДЛЯ ЕГО СОЗДАНИЯ
МЕХАТРОННО-МОДУЛЬНЫЙ РОБОТ И СПОСОБ МНОГОАЛЬТЕРНАТИВНОЙ ОПТИМИЗАЦИИ МОДЕЛЕЙ АВТОМАТИЗАЦИИ СТРУКТУРНОГО СИНТЕЗА ДЛЯ ЕГО СОЗДАНИЯ
МЕХАТРОННО-МОДУЛЬНЫЙ РОБОТ И СПОСОБ МНОГОАЛЬТЕРНАТИВНОЙ ОПТИМИЗАЦИИ МОДЕЛЕЙ АВТОМАТИЗАЦИИ СТРУКТУРНОГО СИНТЕЗА ДЛЯ ЕГО СОЗДАНИЯ
МЕХАТРОННО-МОДУЛЬНЫЙ РОБОТ И СПОСОБ МНОГОАЛЬТЕРНАТИВНОЙ ОПТИМИЗАЦИИ МОДЕЛЕЙ АВТОМАТИЗАЦИИ СТРУКТУРНОГО СИНТЕЗА ДЛЯ ЕГО СОЗДАНИЯ
МЕХАТРОННО-МОДУЛЬНЫЙ РОБОТ И СПОСОБ МНОГОАЛЬТЕРНАТИВНОЙ ОПТИМИЗАЦИИ МОДЕЛЕЙ АВТОМАТИЗАЦИИ СТРУКТУРНОГО СИНТЕЗА ДЛЯ ЕГО СОЗДАНИЯ
МЕХАТРОННО-МОДУЛЬНЫЙ РОБОТ И СПОСОБ МНОГОАЛЬТЕРНАТИВНОЙ ОПТИМИЗАЦИИ МОДЕЛЕЙ АВТОМАТИЗАЦИИ СТРУКТУРНОГО СИНТЕЗА ДЛЯ ЕГО СОЗДАНИЯ
МЕХАТРОННО-МОДУЛЬНЫЙ РОБОТ И СПОСОБ МНОГОАЛЬТЕРНАТИВНОЙ ОПТИМИЗАЦИИ МОДЕЛЕЙ АВТОМАТИЗАЦИИ СТРУКТУРНОГО СИНТЕЗА ДЛЯ ЕГО СОЗДАНИЯ
МЕХАТРОННО-МОДУЛЬНЫЙ РОБОТ И СПОСОБ МНОГОАЛЬТЕРНАТИВНОЙ ОПТИМИЗАЦИИ МОДЕЛЕЙ АВТОМАТИЗАЦИИ СТРУКТУРНОГО СИНТЕЗА ДЛЯ ЕГО СОЗДАНИЯ
МЕХАТРОННО-МОДУЛЬНЫЙ РОБОТ И СПОСОБ МНОГОАЛЬТЕРНАТИВНОЙ ОПТИМИЗАЦИИ МОДЕЛЕЙ АВТОМАТИЗАЦИИ СТРУКТУРНОГО СИНТЕЗА ДЛЯ ЕГО СОЗДАНИЯ
МЕХАТРОННО-МОДУЛЬНЫЙ РОБОТ И СПОСОБ МНОГОАЛЬТЕРНАТИВНОЙ ОПТИМИЗАЦИИ МОДЕЛЕЙ АВТОМАТИЗАЦИИ СТРУКТУРНОГО СИНТЕЗА ДЛЯ ЕГО СОЗДАНИЯ
Источник поступления информации: Роспатент

Показаны записи 691-695 из 695.
20.04.2020
№220.018.165a

Теплообменник

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Теплообменник содержит корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, теплообменные элементы, выполненные в виде нескольких коаксиально...
Тип: Изобретение
Номер охранного документа: 0002719262
Дата охранного документа: 17.04.2020
20.04.2020
№220.018.1663

Теплообменник

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Теплообменник, содержащий корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, теплообменные элементы, выполненные в виде обечаек, расположенных друг по...
Тип: Изобретение
Номер охранного документа: 0002719251
Дата охранного документа: 17.04.2020
20.04.2020
№220.018.166c

Теплообменник

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Теплообменник, содержащий корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, теплообменные элементы, выполненные в виде обечаек, образующих кольцевые...
Тип: Изобретение
Номер охранного документа: 0002719248
Дата охранного документа: 17.04.2020
04.05.2020
№220.018.1ad4

Теплообменник

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Предложенный теплообменник содержит корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, теплообменные элементы, выполненные в виде обечаек,...
Тип: Изобретение
Номер охранного документа: 0002720531
Дата охранного документа: 30.04.2020
15.05.2020
№220.018.1ce0

Теплообменник

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Предложенный теплообменник содержит корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, теплообменные элементы, выполненные в виде обечаек,...
Тип: Изобретение
Номер охранного документа: 0002720817
Дата охранного документа: 13.05.2020
Показаны записи 761-770 из 772.
18.07.2020
№220.018.33f0

Шкаф управления фонтанной арматурой

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке устройств для автоматического управления технологическими процессами эксплуатации скважин месторождения углеводородного сырья, преимущественно, газовых или газоконденсатных. Предложен шкаф...
Тип: Изобретение
Номер охранного документа: 0002726813
Дата охранного документа: 15.07.2020
18.07.2020
№220.018.3412

Шкаф управления фонтанными арматурами

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке устройств для автоматического управления технологическими процессами эксплуатации скважин месторождения углеводородного сырья, преимущественно газовых или газоконденсатных. Предложен шкаф...
Тип: Изобретение
Номер охранного документа: 0002726815
Дата охранного документа: 15.07.2020
24.07.2020
№220.018.35fa

Малогабаритная мобильная станция зарядки газами бортовых систем летательных аппаратов

Изобретение относится к области авиации, в частности к аэродромному оборудованию для обслуживания летательных аппаратов, средствам наземного обеспечения полетов общего применения (СНО ОП). Малогабаритная мобильная станция зарядки газами бортовых систем летательных аппаратов выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002727210
Дата охранного документа: 21.07.2020
24.07.2020
№220.018.362e

Мобильный комплекс аэродромно-технического обеспечения полетов летательных аппаратов

Изобретение относится к аэродромному оборудованию для обслуживания летательных аппаратов. Мобильный комплекс аэродромно-технического обеспечения полетов летательных аппаратов содержит малогабаритную мобильную станцию электроснабжения авиадвигателей (2) и бортовых систем летательных аппаратов...
Тип: Изобретение
Номер охранного документа: 0002727450
Дата охранного документа: 21.07.2020
24.07.2020
№220.018.36db

Малогабаритная мобильная станция подогрева двигателей и кабин летательных аппаратов

Изобретение относится к области авиации, в частности, к аэродромному оборудованию для обслуживания летательных аппаратов и их двигателей, средствам наземного обеспечения полетов общего применения (СНО ОП). Малогабаритная мобильная станция подогрева двигателей и кабин летательных аппаратов,...
Тип: Изобретение
Номер охранного документа: 0002727207
Дата охранного документа: 21.07.2020
24.07.2020
№220.018.376b

Малогабаритная мобильная станция кондиционирования кабин и оборудования летательных аппаратов

Изобретение относится к аэродромному оборудованию для обслуживания летательных аппаратов. Малогабаритная мобильная станция кондиционирования кабин и оборудования летательных аппаратов выполнена в виде малогабаритного блок-контейнера (1), имеющего вид трехмерной геометрической фигуры, содержащей...
Тип: Изобретение
Номер охранного документа: 0002727294
Дата охранного документа: 21.07.2020
24.07.2020
№220.018.37e2

Малогабаритная мобильная станция проверки гидравлических систем летательных аппаратов

Изобретение относится к устройствам проверки и дозаправки гидросистем летательных аппаратов. Малогабаритная мобильная станция проверки гидравлических систем летательных аппаратов выполнена в виде малогабаритного блок-контейнера (1) с корпусом в виде трехмерной геометрической фигуры, содержащей...
Тип: Изобретение
Номер охранного документа: 0002727769
Дата охранного документа: 23.07.2020
20.04.2023
№223.018.4ee1

Расходомер газа

Изобретение относится к измерительной технике, и может быть использовано для измерения расхода газа в нефтегазодобывающей и в других отраслях промышленности. Расходомер газа содержит вставку с сужающим устройством, выполненную в виде плоского фланца с наружным диаметром, равным или больше...
Тип: Изобретение
Номер охранного документа: 0002793071
Дата охранного документа: 28.03.2023
10.05.2023
№223.018.534f

Оборудование для очистки светосигнальных огней аэродрома

Изобретение относится к аэродромному оборудованию для очистки. Оборудование для очистки светосигнальных огней содержит раму (1), на которой установлен щеточный механизм (2), ограничитель (3), навеску (4) и привод (5). Щеточный механизм (2) имеет вид крестовины, закрепленной на вращающемся валу,...
Тип: Изобретение
Номер охранного документа: 0002795331
Дата охранного документа: 02.05.2023
05.06.2023
№223.018.76e8

Устройство для сепарации многокомпонентной среды

Изобретение относится к криогенной технике, а именно к устройствам для сепарации компонентов потока многокомпонентной среды, и может быть использовано для отделения жидкой фракции углеводородных газов от потока природного газа. Устройство для закручивания потока среды выполнено в виде...
Тип: Изобретение
Номер охранного документа: 0002738516
Дата охранного документа: 14.12.2020
+ добавить свой РИД