×
27.12.2015
216.013.9e27

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СУПЕРСПЛАВОВ НА ОСНОВЕ НИКЕЛЯ, ЛЕГИРОВАННЫХ РЕДКОЗЕМЕЛЬНЫМИ МЕТАЛЛАМИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, легированных редкоземельными металлами. Способ получения сплава на основе никеля включает загрузку в плавильный тигель шихты в виде металлических отходов или смеси металлических отходов и легирующих металлов, введение в шихту рафинирующей добавки, расплавление шихты и разливку полученного расплава через фильтр. Загружают шихту в виде металлических отходов или смеси металлических отходов и неактивных легирующих металлов. В нижнюю часть плавильного тигля вводят первую рафинирующую добавку в виде, по меньшей мере, одного щелочноземельного металла. Расплавление шихты проводят в атмосфере аргона, создают вакуум и проводят высокотемпературную обработку расплава при температуре 1600-1750°С в течение не менее 5 минут, затем в расплав вводят вторую рафинирующую добавку в виде, по меньшей мере, одного редкоземельного металла. Сплав характеризуется низким содержанием серы, кислорода и азота, а также повышенной длительной прочностью. 9 з.п. ф-лы, 2 табл., 2 пр.

Изобретение относится к области металлургии, а именно к производству жаропрочных (в том числе литейных и деформируемых) сплавов на основе никеля, легированных редкоземельными металлами (далее - РЗМ). Изобретение может быть использовано для изготовления лопаток, дисков, створок и других деталей газотурбинных двигателей.

Одним из основных требований к таким сплавам является их ультравысокая чистота по вредным примесям: сере, кислороду, азоту, кремнию, фосфору, и примесям цветных металлов, что необходимо для получения высококачественных бездефектных деталей двигателя.

Сера является одной из наиболее вредных примесей в литейных жаропрочных сплавах, она образует с компонентами сплавов неметаллические включения в виде сульфидов, которые являются концентраторами напряжений, инициирующими зарождение трещин при эксплуатации деталей, и тем самым ухудшают механические свойства сплавов, такие как длительная прочность, пластичность и усталость. Кроме того, отмечается отрицательное влияние серы, находящейся в жаропрочных сплавах даже на уровне нескольких ppm (1 ppm=0,0001%), на стойкость защитных покрытий к высокотемпературному окислению и сульфидной коррозии.

Кислород также понижает свойства жаропрочных сплавов, при его повышенных концентрациях снижается время до разрушения при испытаниях на длительную прочность, поскольку образующиеся оксидные неметаллические включения являются источниками зарождения трещин при эксплуатации деталей.

При повышенном содержании азота образующиеся нитриды выделяются внутри монокристалла и являются, с одной стороны, концентраторами напряжений, инициирующими зарождение трещин, а с другой стороны, источником гетерогенного зарождения «паразитных» зерен в монокристаллах при направленной кристаллизации. Нитриды могут закрывать каналы дендритов и снижать жидкотекучесть последней порции жидкости, вызывая появление микропористости. Таким образом, эти включения существенно снижают выход годных лопаток, а также уровень и стабильность их эксплуатационных свойств.

Отрицательное влияние кремния на структуру и свойства никелевых жаропрочных сплавов объясняется тем, что он замещает в γ′-фазе такие легирующие элементы, как гафний, титан и ниобий, ухудшая ее фазовую стабильность и ускоряя процесс коагуляции при повышенных температурах. За счет этого снижается длительная прочность и пластичность сплавов.

Фосфор также отрицательно влияет на свойства жаропрочных сплавов, в том числе на длительную прочность и пластичность при повышенных температурах.

Также известно о вредном воздействии примесей цветных металлов: свинца, висмута, теллура, таллия, сурьмы, серебра, олова, меди - на свойства жаропрочных никелевых сплавов. Совокупное влияние этих примесей, а также влияние их по отдельности, проявляющееся в снижении длительной прочности и относительного удлинения, связывают с ликвацией этих примесей на границы зерен и увеличением парообразования на этих границах при ползучести материала.

Поскольку образующиеся отходы (головные и донные части слитков, отходы литейного производства - части литниковых и питательных систем, отходы производства деформируемых сплавов - обрезь со штамповочными дефектами, бракованные детали и т.д.) загрязнены вредными примесями и неметаллическими включениями, их применение при выплавке жаропрочных сплавов требует разработки способов производства, включающих удаление этих примесей из расплава.

Известен способ производства никелевых жаропрочных сплавов методом вакуумной индукционной плавки с использованием тигля из оксида кальция (СаО) и добавкой алюминия. В присутствии алюминия происходит взаимодействие материала тигля (СаО) и серы, находящийся в расплаве, с образованием шлака по реакции:

3СаО+2Аl+3S=3CaS+Аl2О3 (Jianping Niu, Kenu Yang, Tao Jin, Xiaofeng Sun, Hengrong Guan and Zhuangqi / Desulphurization during VIM Refming Ni-base Superalloy using СаО crucible / J. Mater. Sci. TechnoL, Vol.19, №1, p.69-72, 2003).

Недостатком известного способа является то, что в состав большинства жаропрочных сплавов на никелевой основе уже входит алюминий, поэтому дополнительное его введение порядка 0,5 мас.% не окажет влияния на содержание в сплаве вредных примесей. Кроме того, выплавка в тигле из СаО приводит к возможному неконтролируемому переходу кальция в расплав, что может неблагоприятно сказаться на механических свойствах получаемого сплава.

Известен способ получения сплавов на никелевой основе методом электрошлакового переплава (ЭШП), включающий предварительную подготовку отходов, сваривание расходуемого электрода и ЭШП этих электродов под слоем флюса (Жеребцов С.Н., Коростелев А.Б. Электрошлаковый переплав металлоотходов никелевых сплавов // Электрометаллургия, №4, с. 19-23, 2011).

Недостатком этого способа является необходимость сваривания из отходов расходуемых электродов, чему препятствует разногабаритность отходов. Кроме того, плавка на воздухе приводит к окислению дорогостоящих легирующих компонентов, обладающих повышенным сродством к кислороду, и приводит к безвозвратным потерям при плавке, а также образованию неметаллических включений в виде оксидов и нитридов.

Известен способ получения литейных жаропрочных сплавов на никелевой основе, включающий загрузку и расплавление отходов литейного производства никелевых сплавов, рафинирование отходов в вакууме и введение РЗМ. Рафинирование отходов осуществляют в вакууме 3 10-2-10-3 мм рт.ст. при температуре расплава 1500-1700°С в течение 2-8 мин, а РЗМ вводят в количестве 0,015-0,20% от массы отходов (RU 2190680 С1, 10.10.2002).

Недостатком способа является то, что рафинирование расплава происходит недостаточно глубоко - за счет введения рафинирующего вещества после расплавления, сокращается время его взаимодействия с расплавом, образовавшиеся неметаллические включения (соединения РЗМ с серой, кислородом и азотом) не успевают полностью адсорбироваться на стенках тигля.

Известен способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе, включающий расплавление в вакууме чистых шихтовых материалов, обезуглероживающее рафинирование с введением окислителя в атмосфере инертного газа и последующее введение в вакууме хрома, активных легирующих элементов, РЗМ и рафинирование кальцием (RU 2310004 С2, 10.11.2007).

Недостатком способа является то, что он неприменим к переработке свыше 40 мас.% отходов и к получению деформируемых никелевых жаропрочных сплавов.

Известен способ получения жаропрочных никелевых сплавов путем переработки металлических отходов, включающий загрузку металлических отходов, расплавление и рафинирование их в вакууме 3·10-2-10-3 мм рт.ст.при температуре 1500-1700°С с введением в расплав рафинирующей добавки, в котором в качестве металлических отходов используют 100% некондиционных отходов, а рафинирование ведут с использованием в качестве рафинирующей добавки кальция (RU 2398905 С1, 10.09.2010).

Недостатком данного способа является необходимость двойного переплава для получения сплава необходимого химического состава. Кроме того, рафинирование одним кальцием не может обеспечить глубокую комплексную очистку от примесей кислорода и азота.

Также известен способ удаления серы из никелевых жаропрочных сплавов посредством химико-термической обработки с применением MgO, Сr2O3, ВаО, СаО и других соединений (US 5346563 А, 13.09.1994).

Недостатком данного метода является длительность термообработки (в тексте патента упоминается о 25-часовой термообработке при 1100°С) и отсутствие высокой чистоты получаемого сплава по примесям азота и кислорода.

Наиболее близким аналогом предлагаемого способа является способ получения никелевых жаропрочных сплавов с ультранизким содержанием серы, который включает плавление в тигле шихты в виде чистых шихтовых материалов, либо в виде отходов или смеси отходов и чистых шихтовых материалов, введение в шихту до или после образования расплава рафинирующей добавки в виде десульфурирующего вещества, разливку расплава через фильтр в оболочковую форму для кристаллизации в виде отливок (US 5922148 А, 13.07.1999).

Недостатками данного способа являются:

- отсутствие применения в качестве рафинирующего вещества РЗМ, обладающих высоким сродством к вредным примесям кислорода, серы и азота, и, как следствие, отсутствие обеспечения высокой чистоты металла по этим примесям;

- то, что рафинирование происходит в одну стадию в вакууме, при этом часть рафинирующего вещества испаряется, не оказав никакого рафинирующего действия;

- то, что технология рассчитана для получения только литейных сплавов;

- вследствие недостаточно высокой чистоты сплава по вредным примесям, в том числе по кислороду и азоту, показатели его механических свойств, например длительной прочности, будут недостаточно высоки по сравнению с показателями механических свойств сплава, выплавленного по предложенному способу.

Задачей предложенного изобретения является разработка способа получения сплавов на основе никеля, обладающих стабильным химическим составом, высокой чистотой по вредным примесям и повышенными физико-механическими характеристиками.

Техническим результатом заявленного способа является получение из металлических отходов сплавов на основе никеля с ультранизким содержанием серы, кислорода и азота и повышенной длительной прочностью.

Технический результат достигается предложенным способом получения сплава на основе никеля, включающим загрузку в плавильный тигель шихты в виде металлических отходов или смеси металлических отходов и легирующих металлов, введение в шихту рафинирующей добавки, расплавление шихты и разливку полученного расплава через фильтр, при этом загружают шихту в виде металлических отходов или смеси металлических отходов и неактивных легирующих металлов, после чего в нижнюю часть плавильного тигля вводят используемый в качестве первой рафинирующей добавки, по меньшей мере, один щелочноземельный металл, расплавление шихты проводят в атмосфере аргона, после расплавления создают вакуум и проводят высокотемпературную обработку расплава при температуре 1600-1750°С в течение не менее 5 минут, затем в расплав вводят используемый в качестве второй рафинирующей добавки, по меньшей мере, один редкоземельный металл.

Щелочноземельный металл предпочтительно выбрать из группы: кальций, магний, барий.

Перед введением в нижнюю часть плавильного тигля первую рафинирующую добавку лучше предварительно завернуть в фольгу, состоящую, по крайней мере, из одного тугоплавкого металла, входящего в состав получаемого сплава.

При необходимости после высокотемпературной обработки расплава в него вводят активные легирующие металлы.

Разливку полученного расплава лучше осуществлять через пенокерамический фильтр с активной рабочей поверхностью.

Щелочноземельный металл желательно ввести в нижнюю часть плавильного тигля в виде бинарного сплава с металлом, входящим в состав получаемого сплава.

В таком случае первую рафинирующую добавку в нижнюю часть плавильного тигля лучше ввести в количестве 0,05-0,3 мас.% к массе шихты.

Редкоземельный металл желательно ввести в расплав в виде бинарного сплава с металлом, входящим в состав получаемого сплава.

В таком случае вторую рафинирующую добавку лучше ввести в расплав в количестве 0,02-0,3 мас.% от массы расплава.

Редкоземельный металл предпочтительно выбрать из группы: иттрий, лантан, диспрозий, празеодим, неодим, эрбий, церий, самарий, гадолиний, скандий.

Во избежание взаимодействия материала тигля с легирующими металлами до расплавления шихты в тигель необходимо загружать только неактивные легирующие металлы. Это препятствует образованию нежелательных включений и позволяет получать суперсплавы, легированные редкоземельными металлами, с более стабильным химическим составом.

При необходимости активные легирующие металлы вводятся в расплав после высокотемпературной обработки. При проведении высокотемпературной обработки расплава процессы испарения легирующих металлов происходят более интенсивно, чем во время других этапов плавки, особенно это проявляется для активных легирующих металлов, которые при повышенных температурах могут также вступать во взаимодействие с материалом тигля. Введение этих металлов после проведения высокотемпературной обработки исключает их интенсивное испарение и взаимодействие с материалом тигля при повышенных температурах.

Использование в качестве первой рафинирующей добавки, по меньшей мере, одного ЩЗМ обусловлено их высоким химическим сродством к вредным примесям, особенно к кислороду и сере. При этом предпочтительно использовать кальций, магний и барий, поскольку эти элементы являются наиболее распространенными по применению в металлургии среди ЩЗМ. Их использование обусловлено относительной дешевизной, и, кроме того, работа с этими веществами не оказывает вредного влияния на организм человека.

ЩЗМ лучше вводить в нижнюю часть плавильного тигля в виде бинарных сплавов с металлами, входящими в состав получаемого суперсплава, поскольку в чистом виде ЩЗМ активно окисляются на воздухе, что может привести к дополнительному загрязнению расплава оксидами. Применение ЩЗМ в чистом виде менее технологично, поскольку возникает необходимость дополнительных операций для их измельчения при подготовке к плавке, а лигатуры с ЩЗМ, как правило, легко подвергаются измельчению. Кроме того, температура плавления ЩЗМ значительно ниже температуры плавления выплавляемого сплава, поэтому при использовании ЩЗМ в чистом виде рафинирующая добавка расплавится раньше основной шихты, что приведет к ряду негативных факторов, таких как излишнее испарение рафинирующей добавки и ее взаимодействие с материалом тигля. Применение бинарных сплавов позволяет приблизить температуру плавления рафинирующей добавки к температуре плавления основной шихты и предотвратить возможное загрязнение сплава оксидами.

В таком случае первую рафинирующую добавку лучше вводить в нижнюю часть плавильного тигля в количестве 0,05-0,3 мас.% от массы шихты. Количество первой рафинирующей добавки зависит от степени загрязненности применяемых при выплавке отходов. Содержание ЩЗМ в готовых никелевых жаропрочных сплавах ограничено, поскольку их избыточное количество приводит к ухудшению механических свойств. Максимальное количество вводимой первой рафинирующей добавки ограничено допустимым содержанием ЩЗМ в готовом сплаве с учетом уменьшения их концентрации во время плавки за счет испарения и взаимодействия с вредными примесями.

Поскольку щелочноземельные металлы даже в виде бинарных лигатур с компонентами сплава могут иметь более низкую температуру плавления относительно основной шихты, первую рафинирующую добавку лучше предварительно завернуть в фольгу, состоящую, по крайней мере, из одного тугоплавкого металла, входящего в состав сплава. Данная фольга будет препятствовать процессу индукционного нагрева рафинирующей добавки, процессу ее плавления, а также стеканию расплава на дно тигля. Таким образом, в первую очередь происходит плавление основной шихты, и рафинирующая добавка растворяется в жидком расплаве, благодаря чему взаимодействие проходит более глубоко.

При рафинировании в вакууме часть рафинирующего вещества испаряется, не оказав никакого рафинирующего действия. Поскольку атмосфера аргона создает дополнительное давление, испарение рафинирующей добавки происходит менее интенсивно, за счет чего рафинирование происходит более глубоко.

Режим высокотемпературной обработки выбран из расчета на то, что при температурах ниже 1600°С диффузионные процессы в расплаве происходят недостаточно интенсивно, что не позволяет провести глубокое рафинирование расплава от вредных примесей. При более высокой температуре, нежели 1750°С, может возникнуть активное взаимодействие расплава с материалом тигля. Данную обработку необходимо проводить не менее 5 минут, поскольку этого времени достаточно для удаления основной части вредных примесей, в частности азота, из расплава.

В качестве второй рафинирующей добавки необходимо использовать РЗМ, поскольку они имеют высокое сродство к кислороду, азоту и сере. После введения в расплав они взаимодействуют с этими вредными примесями, образуя тугоплавкие неметаллические включения, которые впоследствии адсорбируются на стенках тигля или удаляются из расплава при фильтрации.

РЗМ, выбранные из группы: иттрий, лантан, диспрозий, празеодим, неодим, эрбий, церий, самарий, гадолиний, скандий, являются наиболее распространенными, а следовательно, наиболее доступными.

РЗМ лучше вводить в расплав в виде бинарных сплавов с металлами, входящими в состав получаемого сплава. Температура плавления некоторых РЗМ значительно ниже температуры плавления выплавляемого сплава, поэтому при использовании РЗМ в чистом виде рафинирующая добавка расплавится практически мгновенно, что приведет к ее интенсивному испарению и возникновению брызг. Кроме того, многие РЗМ, как и ЩЗМ, в чистом виде активно окисляются на воздухе, что может привести к дополнительному загрязнению расплава оксидами. Применение бинарных сплавов позволяет приблизить температуру плавления рафинирующей добавки к температуре плавления сплава, предотвратив таким образом появление брызг при ее введении и исключая возможное загрязнение сплава оксидами.

В таком случае вторую рафинирующую добавку лучше вводить в расплав в количестве 0,02-0,3 мас.% от массы расплава.

Количество второй рафинирующей добавки зависит от степени загрязненности применяемых при выплавке отходов. Содержание редкоземельных металлов так же, как и щелочноземельных, в готовых никелевых жаропрочных сплавах ограничено, поскольку их избыточное количество приводит к ухудшению механических свойств. Максимальное количество вводимой второй рафинирующей добавки ограничено допустимым содержанием редкоземельных металлов в готовом сплаве, с учетом уменьшения их концентрации во время плавки за счет испарения и взаимодействия с вредными примесями.

Разливку полученного расплава желательно осуществлять через пенокерамический фильтр с активной рабочей поверхностью. Поскольку вредные примеси, в том числе кислород, азот и сера, связываются рафинирующими веществами в неметаллические включения, крупные включения будут улавливаться фильтром за счет размера ячейки, а более мелкие будут оставаться на поверхности фильтра за счет сил адсорбции. Кроме того, при наличии на поверхности фильтра активных веществ, например СаО, во время процесса фильтрации будет происходить дополнительное очищение расплава от примеси серы за счет химического взаимодействия.

Установлено, что проведение рафинирования расплава в два этапа с использованием ЩЗМ в атмосфере аргона и РЗМ в вакууме позволяет осуществить глубокую очистку расплава от примесей серы, кислорода и азота и обеспечивает повышение длительной прочности получаемого суперсплава.

Примеры осуществления.

Пример 1.

По предлагаемому способу осуществляли выплавку деформируемого жаропрочного сплава на основе никеля ВЖ-175. Всего было выполнено 5 плавок. Плавки проводили в вакуумной индукционной печи. Масса шихты в тигле составляла 10 кг. В тигель загружали кондиционные отходы в виде обрези штамповок и головных частей слитков. Отходы загружали в тигель, уложив их слоями, причем между слоями нижней части проложили бинарные сплавы никель-магний и никель-кальций в виде мелких кусков неправильной формы, разделенные на несколько порций, завернутые в ниобиевую фольгу. После этого печь закрывали и проводили откачку до давления менее 5·10-3 мм рт. ст., напускали в плавильную камеру аргон до давления не менее 100 мм рт. ст. и начинали нагрев. После расплавления проводили откачку до не менее 5·10-3 мм рт. ст., проводили высокотемпературную обработку при температуре 1660°С в течение 10-15 минут, отбирали пробу металла для химического экспресс-анализа, по результатам которого расплав дошихтовывали до заданного состава. После растворения присаженных легирующих элементов в расплав присаживали лантан, скандий, эрбий и диспрозий в виде лигатур с никелем, проводили интенсивное перемешивание и приступали к сливу в стальную трубу через керамическую воронку с установленным пенокерамическим фильтром с активной рабочей поверхностью. Температура перед сливом на плавках составляла 1540-1560°С.

Технические параметры плавок, полученные результаты по содержанию серы, кислорода, азота и значения длительной прочности приведены в таблице 1.

Из таблицы 1 видно, что в сплаве, выплавленном по способу-прототипу, содержание примесей, особенно кислорода и азота, до 3-х раз выше, чем в сплаве, выплавленном по предложенному способу. Длительная прочность сплава, выплавленного предложенным способом, увеличилась в среднем в 1,59 раза.

Пример 2.

По предлагаемому способу осуществляли выплавку литейного жаропрочного сплава на основе никеля ЖС-32. Всего было сделано 5 плавок. Плавки проводили в вакуумной индукционной печи. Масса шихты в тигле составляла 10 кг. В тигель загружали отходы в виде головных и донных частей слитков. Отходы загружали в тигель, уложив их слоями, между которыми положили бинарные сплавы алюминий-барий и никель-кальций в виде мелких кусков неправильной формы, разделенные на несколько порций, завернутые в танталовую фольгу. После этого печь закрывали и проводили откачку до давления менее 5·10-3 мм рт. ст., напускали в плавильную камеру аргон до давления не менее 100 мм рт. ст. и начинали нагрев. После расплавления проводили откачку до не менее 5·10-3 мм рт. ст., проводили высокотемпературную обработку при температуре 1660°С в течение 10-15 минут, отбирали пробу металла для химического экспресс-анализа, по результатам которого расплав дошихтовывали до заданного состава. После растворения присаженных легирующих элементов в расплав присаживали иттрий, скандий и неодим в виде лигатур с никелем, проводили интенсивное перемешивание и приступали к сливу в стальную трубу через керамическую воронку с установленным пенокерамическим фильтром с активной рабочей поверхностью. Температура перед сливом на плавках составляла 1540-1560°С.

Технические параметры плавок, полученные результаты по содержанию серы, кислорода, азота и значения длительной прочности приведены в таблице 2.

Из таблицы 2 видно, что в сплаве, выплавленном по способу-прототипу, содержание примесей, особенно кислорода и азота, до 2,5 раз выше, чем в сплаве, выплавленном предложенным способом. Длительная прочность сплава, выплавленного предложенным способом, увеличилась в среднем в 1,51 раза.

Изобретение не ограничивается приведенными примерами.

Предлагаемый способ позволяет получить в жаропрочных сплавах на основе никеля содержание серы ≤0,0001%, кислорода ≤0,0003%, азота ≤0,0003%. Тем самым устраняется вероятность образования дефектов в деталях в виде неметаллических включений, что позволяет повысить жаропрочные свойства сплава.

Использование изобретения позволяет повысить ресурс и надежность работы авиационных высокожаропрочных газотурбинных двигателей.

Источник поступления информации: Роспатент

Показаны записи 271-280 из 370.
29.03.2019
№219.016.f12f

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение относится к области машиностроения и может быть использовано при получении отливок, например, деталей горячего тракта ГТД, включая турбинные лопатки, створки. Устройство содержит вертикальную вакуумную камеру, внутри которой размещены индукционная плавильная печь, печь подогрева...
Тип: Изобретение
Номер охранного документа: 0002398653
Дата охранного документа: 10.09.2010
29.03.2019
№219.016.f134

Устройство для получения лопатки из жаропрочного никелевого сплава с монокристаллической структурой

Изобретение относится к области металлургии и может быть использовано при литье монокристаллических лопаток, имеющих замковые бандажные полки с лабиринтными гребешками, преимущественно крупногабаритных лопаток ГТУ. Устройство содержит керамическую форму, в основании которой выполнены...
Тип: Изобретение
Номер охранного документа: 0002392091
Дата охранного документа: 20.06.2010
29.03.2019
№219.016.f153

Вибропоглощающий слоистый материал

Изобретение относится к вибропоглощающему слоистому материалу для использования в качестве покрытий различных тонкостенных конструкций, работающих в широком диапазоне температур, в авиационной и аэрокосмической отраслях промышленности. Материал содержит синтетический волокнистый нетканый...
Тип: Изобретение
Номер охранного документа: 0002393095
Дата охранного документа: 27.06.2010
29.03.2019
№219.016.f154

Способ получения композиционного материала

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе интерметаллида Nb. Может быть использовано при изготовлении деталей для длительной эксплуатации при высоких температурах в условиях значительных механических и термических нагрузок, в...
Тип: Изобретение
Номер охранного документа: 0002393060
Дата охранного документа: 27.06.2010
29.03.2019
№219.016.f185

Способ получения композиционного материала

Изобретение относится к получению тугоплавких, стойких к удару композиционных материалов с интерметаллидной матрицей, используемых в авиационной, космической, судостроительной и других областях промышленности. Собирают пакет из слоев фольги из одного или более металлов, выбранных из группы Ti,...
Тип: Изобретение
Номер охранного документа: 0002394665
Дата охранного документа: 20.07.2010
29.03.2019
№219.016.f193

Препрег герметичного органопластика и изделие, выполненное из него

Изобретение относится к области создания конструкционных полимерных композиционных материалов на основе волокнистых наполнителей из арамидных нитей и полимерных связующих, которые могут использоваться в качестве герметичных обшивок сотовых панелей, а также монолитных деталей в машино-,...
Тип: Изобретение
Номер охранного документа: 0002395535
Дата охранного документа: 27.07.2010
29.03.2019
№219.016.f1e8

Способ получения изделия из деформируемого жаропрочного никелевого сплава

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых никелевых сплавов, работающих при температурах выше 600°С, в частности дисков ГТД. Для снижения напряжения течения металла при деформации заготовок и повышения выхода годного предложен способ...
Тип: Изобретение
Номер охранного документа: 0002387733
Дата охранного документа: 27.04.2010
29.03.2019
№219.016.f33a

Полимерная композиция

Изобретение относится к негорючим полимерным композициям, применяемым для местного упрочнения конструкций, в том числе трехслойных сотовых панелей, в зонах установки крепежа, заделки торцов и заполнения пустот в деталях из полимерных композиционных материалов, используемых на наземном, морском...
Тип: Изобретение
Номер охранного документа: 0002330050
Дата охранного документа: 27.07.2008
29.03.2019
№219.016.f34a

Фенолоформальдегидное связующее, препрег на его основе и изделие, выполненное из него

Предлагаемое изобретение относится к фенолоформальдегидным связующим и композиционным материалам на их основе, предназначенным для изготовления пожаробезопасных изделий интерьера пассажирских самолетов, в судо-, автомобилестроении и железнодорожном транспорте. Предложены: фенолоформальдегидное...
Тип: Изобретение
Номер охранного документа: 0002333922
Дата охранного документа: 20.09.2008
29.03.2019
№219.016.f646

Состав для защитного покрытия

Изобретение относится к полимерным составам для получения защитных покрытий на основе эпоксидных связующих, для защиты конструкций из различных металлов и полимерных композиционных материалов. Состав включает: эпоксидную диановая смолу, полиамидный отвердитель, наполнители - мелкодисперсный...
Тип: Изобретение
Номер охранного документа: 0002402585
Дата охранного документа: 27.10.2010
Показаны записи 271-280 из 342.
05.04.2019
№219.016.fd3f

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700-1000°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002684000
Дата охранного документа: 03.04.2019
06.04.2019
№219.016.fe23

Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава

Изобретение относится к области металлургии жаропрочных деформируемых сплавов на основе никеля и изделий, выполненных из этих сплавов, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и других узлов и деталей, работающих при температурах до 800°С во...
Тип: Изобретение
Номер охранного документа: 0002365657
Дата охранного документа: 27.08.2009
19.04.2019
№219.017.2ba8

Грунтовочная композиция для кремнийорганических герметиков

Настоящее изобретение относится к области химии полимеров, а именно к средствам для обеспечения адгезии кремнийорганических герметиков к разнообразным подложкам, и может применяться в авиационной и космической технике, приборостроении и других отраслях промышленности. Техническая задача -...
Тип: Изобретение
Номер охранного документа: 0002272059
Дата охранного документа: 20.03.2006
19.04.2019
№219.017.2bbc

Препрег и изделие, выполненное из него

Изобретение относится к препрегу и изделию, выполненному из него, используемому в качестве материала несущих элементов конструкций авиационной и космической техники. Препрег содержит 24-50 мас.% полимерного связующего и 50-76 мас.% волокнистого наполнителя. В качестве волокнистого наполнителя...
Тип: Изобретение
Номер охранного документа: 0002278028
Дата охранного документа: 20.06.2006
19.04.2019
№219.017.2c3f

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению полуфабрикатов из жаропрочных высоколегированных деформируемых сплавов на основе никеля, предназначенных преимущественно для изготовления дисков газотурбинных двигателей или других изделий, работающих в условиях предельных...
Тип: Изобретение
Номер охранного документа: 0002285736
Дата охранного документа: 20.10.2006
19.04.2019
№219.017.2c52

Коррозионно-стойкая сталь и изделие, выполненное из нее

Изобретение относится к области металлургии, а именно к созданию коррозионно-стойкой стали, используемой в качестве листов или фольги в паяных сотовых панелях, деталях обшивки, в деталях внутреннего набора, работающих до 450°С. Предлагаемая коррозионно-стойкая сталь имеет следующий химический...
Тип: Изобретение
Номер охранного документа: 0002288966
Дата охранного документа: 10.12.2006
19.04.2019
№219.017.2dba

Способ получения литого трубного катода из сплавов на основе алюминия для ионно-плазменного нанесения покрытий

Изобретение относится к области металлургической промышленности. Способ включает плавление сплава из шихты и его заливку расплава в предварительно нагретую литейную форму в вакууме, осуществляемые в вакуумно-индукционной печи. Шихта содержит алюминий и один или несколько элементов, выбранных из...
Тип: Изобретение
Номер охранного документа: 0002340426
Дата охранного документа: 10.12.2008
19.04.2019
№219.017.2dc6

Способ получения литых трубных изделий из сплавов на основе никеля и/или кобальта

Изобретение относится к области металлургической промышленности. Способ включает плавление шихтовых материалов и заливку расплава в предварительно нагретую литейную форму, осуществляемые в двухкамерной вакуумно-индукционной печи. Заливку литейной формы расплавом осуществляют со скоростью 20-50...
Тип: Изобретение
Номер охранного документа: 0002344019
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dce

Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии. Размещают изделие и сплав на основе алюминия в зоне обработки. Создают вакуум в зоне обработки, подают...
Тип: Изобретение
Номер охранного документа: 0002348739
Дата охранного документа: 10.03.2009
19.04.2019
№219.017.2e73

Композиционный материал и изделие, выполненное из него

Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стекломатриц, армированных углеродными волокнистыми наполнителями, используемым для изготовления теплонагруженных деталей, например бандажных колец, применяющихся в авиационной, космической технике...
Тип: Изобретение
Номер охранного документа: 0002310628
Дата охранного документа: 20.11.2007
+ добавить свой РИД