×
27.12.2015
216.013.9df4

Результат интеллектуальной деятельности: СПОСОБ СОЗДАНИЯ МНОГОКОМПОНЕНТНОЙ ГАЗОВОЙ СРЕДЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области технологий моделирования многокомпонентных газовых сред, имеющих заранее заданный количественный и качественный состав, что может найти применение для объектов, хранение или эксплуатация которых производится в сложных по составу газовых средах. Способ создания многокомпонентной газовой среды, содержащей несколько легколетучих веществ, включает подачу в герметичный сосуд с размещенным в нем сорбентом, по крайней мере, одного легколетучего вещества. Затем осуществляют выдерживание сосуда до достижения равновесного состояния между адсорбированным легколетучим веществом и его газовой фазой. При этом в качестве сорбента используют силикагель. Далее в сосуд каждое легколетучее вещество подают раздельно в жидком состоянии в индивидуальной емкости, пространственно отделенной от сорбента и других веществ. Затем выдерживают сосуд до полного испарения всех веществ, количество которых определяют по формуле, в зависимости от величины свободного объема сосуда, требуемого значения концентрации легколетучего вещества в газовом пространстве сосуда и массы силикагеля: где q - количество i-гo легколетучего вещества в жидком состоянии, моль; W - свободный объем сосуда, м; ε - характеристика сорбции i-гo легколетучего вещества силикагелем, моль/(кг·Па); R - универсальная газовая постоянная, Па·м/(моль·К); Т - температура, К; М - масса силикагеля, кг; c - требуемое значение концентрации i-гo легколетучего вещества в газовом пространстве сосуда, моль/м. Технический результат: возможность создания многокомпонентной газовой среды с заданными значениями концентраций каждого из компонентов для обеспечения возможности установления факта влияния компонентов газовой среды на различные объекты при их хранении или эксплуатации. 1 ил., 1 пр.
Основные результаты: Способ создания многокомпонентной газовой среды, содержащей несколько легколетучих веществ, включающий подачу в герметичный сосуд с размещенным в нем сорбентом, по крайней мере, одного легколетучего вещества, выдерживание сосуда до достижения равновесного состояния между адсорбированным легколетучим веществом и его газовой фазой, отличающийся тем, что в качестве сорбента используют силикагель, в сосуд каждое легколетучее вещество подают раздельно в жидком состоянии в индивидуальной емкости, пространственно отделенной от сорбента и других веществ, выдерживают сосуд до полного испарения всех веществ, количество которых определяют по формуле, в зависимости от величины свободного объема сосуда, требуемого значения концентрации легколетучего вещества в газовом пространстве сосуда и массы силикагеля: где q - количество i-го легколетучего вещества в жидком состоянии, моль;W - свободный объем сосуда, м;ε - характеристика сорбции i-го легколетучего вещества силикагелем, моль/(кг·Па);R - универсальная газовая постоянная, Па·м/(моль·К);Т - температура, К;М - масса силикагеля, кг;c - требуемое значение концентрации i-го легколетучего вещества в газовом пространстве сосуда, моль/м.

Предполагаемое изобретение относится к области технологий моделирования многокомпонентных газовых сред, имеющих заранее заданный количественный и качественный состав, что может найти применение для объектов, хранение или эксплуатация которых производится в сложных по составу газовых средах.

Актуальность решаемой проблемы основана на необходимости учета наличия или появления опасных веществ для объектов, эксплуатируемых или хранящихся в многокомпонентных газовых средах.

Из предшествующего уровня техники известен способ получения парогазовой смеси с заранее заданной концентрацией легколетучего вещества (патент РФ №2153158, МПК G01N 7/10, публ. 20.07.2000 г.), включающий термостатирование сосуда с легколетучим веществом и сорбентом, продувку газовым потоком через слой сорбента при соблюдении условия квазиравновесного массообмена между адсорбированным легколетучим веществом и его газовой фазой, при этом количество адсорбированного легколетучего вещества определяется исходя из задаваемого значения его концентрации в парогазовой смеси СГ согласно соотношению СГЖ/К, где СЖ - концентрация жидкой фазы легколетучего вещества в слое сорбента, К - коэффициент распределения в системе сорбент-легколетучее вещество.

К недостаткам известного способа относится его сложность и отсутствие возможности создания многокомпонентной смеси заданного состава по каждому компоненту.

Задачей авторов изобретения является разработка способа получения многокомпонентной газовой среды, используемой при хранении объектов, либо для контроля состояния объектов при их хранении или эксплуатации.

Новый технический результат, обеспечиваемый предлагаемым способом, заключается в создании многокомпонентной газовой среды с заданными значениями концентраций каждого из компонентов для обеспечения возможности установления факта влияния компонентов газовой среды на различные объекты при их хранении или эксплуатации.

Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного способа создания парогазовой смеси, включающего подачу в герметичный сосуд с размещенным в нем сорбентом, по крайней мере, одного легколетучего вещества извне, выдерживание сосуда до достижения равновесного состояния между адсорбированным легколетучим веществом и его газовой фазой, согласно предлагаемому способу в качестве сорбента используют силикагель, в сосуд каждое легколетучее вещество подают раздельно в жидком состоянии в индивидуальной емкости, пространственно отделенной от сорбента, выдерживают сосуд до полного испарения всех веществ, наблюдаемого визуально, либо по изменению массы жидкой фракции каждого компонента, либо по изменению концентрации компонентов в газовом пространстве сосуда, при этом исходную массу жидкой фракции каждого компонента определяют по формуле, в зависимости от величины свободного объема сосуда, заданного значения концентрации легколетучего вещества в газовом пространстве сосуда и массы силикагеля:

где qi - количество i-гo легколетучего вещества в жидком состоянии, моль;

W - свободный объем сосуда, м3;

εi - характеристика сорбции i-гo легколетучего вещества силикагелем, моль/(кг·Па);

R - универсальная газовая постоянная, Па·м3/(моль·К);

Т - температура, К;

Мс/г - масса силикагеля, кг;

ci - требуемое значение концентрации i-гo легколетучего вещества в газовом пространстве сосуда, моль/м3.

Предлагаемый способ поясняется следующим образом.

На фиг. 1 представлена в общем виде схема реализации предлагаемого способа, где 1 - герметичный сосуд, 2 - крышка сосуда, 3 - уплотнительная прокладка, 4 - корпус сосуда, 5 - силикагель, 6 - емкость для жидкости, 7 - жидкость, 8 - объект воздействия газовой среды, 9 - быстросъемная крышка, 10 - разъем, 11 - соединитель, 12 - смотровое окно, 13 - штуцер, 14 - вентиль.

Первоначально определяют, какие компоненты формируемой многокомпонентной газовой среды необходимо подавать в зону испарения герметичного сосуда, после чего помещают в сосуд в индивидуальной емкости, по крайней мере, одно легколетучее вещество в жидком состоянии, затем выдерживают сосуд до достижения равновесного состояния между адсорбированным легколетучим веществом и его газовой фазой, что определяют по результатам измерений состава газовой среды.

Исходные количества легколетучих веществ в жидком состоянии для формирования многокомпонентной газовой среды определяют по формуле (1).

Каждое из легколетучих веществ в жидком состоянии наливают в индивидуальную емкость 6, после чего емкости с жидкостями помещают на дно корпуса сосуда 1. Затем на специальную подставку помещают силикагель и устанавливают крышку 2 сосуда. В таком состоянии сосуд с силикагелем и легколетучими жидкостями выдерживают в течение времени, необходимого для установления равновесного состояния между адсорбированным легколетучим веществом и его газовой фазой. О моменте наступления равновесного состояния судят по результатам измерений концентраций легколетучих веществ в газовом пространстве сосуда 1, или по результатам измерений массы емкостей с легколетучими жидкостями, или визуально через смотровое окно устанавливают факт полного испарения жидкостей.

Таким образом, использование предлагаемого способа позволяет достигнуть более высокого технического результата, чем это было обеспечено в прототипе, а именно возможность создания многокомпонентной газовой среды с заданными значениями концентраций каждого из компонентов для обеспечения возможности установления факта влияния (или отсутствия влияния) многокомпонентной газовой среды на различные объекты.

Возможность практической реализации предлагаемого способа была подтверждена экспериментальным путем.

Пример. В эксперименте, к качестве сосуда, был использован металлический контейнер цилиндрической формы, состоящий из корпуса и крышки, герметизируемых резиновой уплотнительной прокладкой. В крышке предусмотрены смотровое окно и отверстие для установки испытываемого объекта в сосуд. Данное отверстие закрывается быстросъемной крышкой, снабженной электрическим разъемом.

В эксперименте были применены легколетучие органические жидкости: ацетон, бензол, толуол. Масса силикагеля составила 1,150 кг. Требуемые значения концентраций легколетучих веществ в газовом пространстве контейнера были равны:

- ацетон - 3,44·10-2 моль/м3 (2-10-3 г/дм3);

- бензол - 1,02·10-2 моль/м3 (8-10-4 г/дм3);

- толуол - 3,26·10-2 моль/м3 (3-10-3 г/дм3).

Объектом воздействия газовой среды являлся датчик давления Мет-ран-100-ДД. Характеристики сорбции легколетучих веществ силикагелем были определены отдельно в калибровочных опытах. Их значения составили следующие величины: ацетон 5,57·10-3 моль/(кг·Па), бензол 6,48·10-4 моль/(кг·Па), толуол 1,46·10-3 моль/(кг·Па). Объем газового пространства контейнера в эксперименте составлял 25 дм3.

Согласно результатам расчета по формуле (1), массы легколетучих веществ, размещаемых в контейнер в жидком состоянии, равны: ацетон 31,26 г, бензол 1,47 г, толуол 12,35 г.

Каждую из легколетучих жидкостей в пластмассовом стаканчике поместили на дно корпуса контейнера. Затем на специальную подставку поместили силикагель и установили крышку контейнера. В таком состоянии контейнер с силикагелем и легколетучими жидкостями выдержали в течение времени, необходимом для установления равновесного состояния между адсорбированным легколетучим веществом и его газовой фазой.

Момент наступления равновесного состояния установили визуально через смотровое окно, зафиксировав факт полного испарения жидкостей. Время выдержки до наступления равновесного состояния составило примерно 4 часа. Далее, через технологическое отверстие в контейнер поместили подключенный к средствам контроля работоспособности испытываемый объект - датчик давления Метран-100-ДД, после чего отверстие закрыли с помощью быстросъемной крышки. Продолжительность испытаний датчика в многокомпонентной газовой среде составила 30 суток. Во время испытаний проводились: 1) контроль работоспособности датчика давления, 2) контроль концентраций легколетучих веществ в газовом пространстве контейнера.

Согласно полученным результатам, в течение всего времени эксперимента в газовом пространстве контейнера поддерживалась стабильная концентрация легколетучих веществ. Среднее значение их концентраций, по результатам трех измерений составило следующие величины: ацетон - 1,8·10-3 г/дм3, бензол - 8,2·10-4 г/дм3, толуол - 3,1·10-3 г/дм3. Отличие фактических концентраций легколетучих веществ от требуемых значений не превысило погрешности измерений.

Выполнение указанных выше операций позволило создать содержащую несколько легколетучих веществ многокомпонентную газовую смесь с заданными характеристиками.

Как показал пример конкретного выполнения, реализация предлагаемого способа обеспечивает возможность создания многокомпонентной газовой среды с заданными значениями концентраций каждого из компонентов для обеспечения возможности установления факта влияния (или отсутствия влияния) многокомпонентной газовой среды на различные объекты.

Способ создания многокомпонентной газовой среды, содержащей несколько легколетучих веществ, включающий подачу в герметичный сосуд с размещенным в нем сорбентом, по крайней мере, одного легколетучего вещества, выдерживание сосуда до достижения равновесного состояния между адсорбированным легколетучим веществом и его газовой фазой, отличающийся тем, что в качестве сорбента используют силикагель, в сосуд каждое легколетучее вещество подают раздельно в жидком состоянии в индивидуальной емкости, пространственно отделенной от сорбента и других веществ, выдерживают сосуд до полного испарения всех веществ, количество которых определяют по формуле, в зависимости от величины свободного объема сосуда, требуемого значения концентрации легколетучего вещества в газовом пространстве сосуда и массы силикагеля: где q - количество i-го легколетучего вещества в жидком состоянии, моль;W - свободный объем сосуда, м;ε - характеристика сорбции i-го легколетучего вещества силикагелем, моль/(кг·Па);R - универсальная газовая постоянная, Па·м/(моль·К);Т - температура, К;М - масса силикагеля, кг;c - требуемое значение концентрации i-го легколетучего вещества в газовом пространстве сосуда, моль/м.
СПОСОБ СОЗДАНИЯ МНОГОКОМПОНЕНТНОЙ ГАЗОВОЙ СРЕДЫ
СПОСОБ СОЗДАНИЯ МНОГОКОМПОНЕНТНОЙ ГАЗОВОЙ СРЕДЫ
СПОСОБ СОЗДАНИЯ МНОГОКОМПОНЕНТНОЙ ГАЗОВОЙ СРЕДЫ
Источник поступления информации: Роспатент

Показаны записи 261-270 из 595.
20.10.2015
№216.013.83e1

Сейсмическая система обнаружения

Изобретение относится к техническим средствам охраны и может быть использовано для охраны протяженных рубежей. Технический результат - повышение помехоустойчивости и надежности, полная визуальная маскируемость и масштабируемость. Предложенная система содержит средство обнаружения, включающее в...
Тип: Изобретение
Номер охранного документа: 0002565364
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.853d

Способ получения нанокристаллических порошков гафната диспрозия и керамических материалов на их основе

Изобретение может быть использовано при изготовлении нейтронопоглощающих материалов для стержней регулирования систем управления и защиты ядерных реакторов. Способ получения керамических материалов на основе нанокристаллических порошков гафната диспрозия включает изготовление смешанного...
Тип: Изобретение
Номер охранного документа: 0002565712
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.87aa

Дифференциальный измерительный преобразователь

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям с частотной формой выходных сигналов. Технический результат - уменьшение погрешности и повышение быстродействия дифференциального измерительного преобразователя. Для этого предложен...
Тип: Изобретение
Номер охранного документа: 0002566333
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.87ad

Способ исправления ошибок при передаче информации биимпульсным кодом манчестер-ii и устройство его осуществления

Изобретение относится к вычислительной технике и может быть использовано для обнаружения и исправления ошибок при передаче информации между частями распределенных вычислительных систем. Техническим результатом является повышение надежности передачи данных. Устройство содержит контроллер...
Тип: Изобретение
Номер охранного документа: 0002566336
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87ee

Датчик перемещений

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерений перемещений элементов конструкции. Сущность: датчик снабжен двумя диэлектрическим основаниями, подвижно соединенными между собой двумя упругими элементами, между которыми вдоль продольных осей...
Тип: Изобретение
Номер охранного документа: 0002566401
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87ef

Способ определения глубины проникания объекта в грунт

Изобретение относится к области измерительной техники и может быть использовано для определения глубины проникания объекта в грунт. Способ включает сбрасывание объекта с носителя и регистрацию параметров его проникания, по крайней мере, двумя сейсмическими датчиками, расположенными на...
Тип: Изобретение
Номер охранного документа: 0002566402
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8afb

Отражательная линия задержки

Изобретение относится к устройствам акустоэлектроники, в частности к отражательным линиям задержки, функционирующим на поверхностных акустических волнах. Техническим результатом предлагаемой конструкции ОЛЗ является увеличение амплитуды информационного сигнала и расширение ее функциональных...
Тип: Изобретение
Номер охранного документа: 0002567186
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8ed9

Способ механических испытаний и стенд для его реализации

Изобретение относится к испытательной технике и может быть использовано для испытаний объектов на воздействие перегрузок. Способ заключается в размещении в полости ствола контейнера со столом с установленным на нем ОИ. При воздействии на контейнер продуктов взрыва происходит его ускоренное...
Тип: Изобретение
Номер охранного документа: 0002568178
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fb9

Стенд для испытания объекта на удар

Изобретение относится к испытательной технике, а именно к стендам для испытаний изделий на удар. Стенд содержит силовую раму с вертикальными стойками, устройство подъема, соединенное через устройство удержания и сброса с приспособлением для закрепления объекта испытания (ОИ), наковальню,...
Тип: Изобретение
Номер охранного документа: 0002568409
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90c3

Спиральный взрывомагнитный генератор и способ кумуляции импульса тока

Изобретение относится к физике высоких плотностей энергии, в частности к преобразованию энергии взрывчатого вещества в электромагнитную энергию, и может быть использовано для кумуляции импульсов электрического тока мегаамперного уровня. Технический результат состоит в повышении мощности...
Тип: Изобретение
Номер охранного документа: 0002568675
Дата охранного документа: 20.11.2015
Показаны записи 261-270 из 450.
20.10.2015
№216.013.83e1

Сейсмическая система обнаружения

Изобретение относится к техническим средствам охраны и может быть использовано для охраны протяженных рубежей. Технический результат - повышение помехоустойчивости и надежности, полная визуальная маскируемость и масштабируемость. Предложенная система содержит средство обнаружения, включающее в...
Тип: Изобретение
Номер охранного документа: 0002565364
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.853d

Способ получения нанокристаллических порошков гафната диспрозия и керамических материалов на их основе

Изобретение может быть использовано при изготовлении нейтронопоглощающих материалов для стержней регулирования систем управления и защиты ядерных реакторов. Способ получения керамических материалов на основе нанокристаллических порошков гафната диспрозия включает изготовление смешанного...
Тип: Изобретение
Номер охранного документа: 0002565712
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.87aa

Дифференциальный измерительный преобразователь

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям с частотной формой выходных сигналов. Технический результат - уменьшение погрешности и повышение быстродействия дифференциального измерительного преобразователя. Для этого предложен...
Тип: Изобретение
Номер охранного документа: 0002566333
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.87ad

Способ исправления ошибок при передаче информации биимпульсным кодом манчестер-ii и устройство его осуществления

Изобретение относится к вычислительной технике и может быть использовано для обнаружения и исправления ошибок при передаче информации между частями распределенных вычислительных систем. Техническим результатом является повышение надежности передачи данных. Устройство содержит контроллер...
Тип: Изобретение
Номер охранного документа: 0002566336
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87ee

Датчик перемещений

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерений перемещений элементов конструкции. Сущность: датчик снабжен двумя диэлектрическим основаниями, подвижно соединенными между собой двумя упругими элементами, между которыми вдоль продольных осей...
Тип: Изобретение
Номер охранного документа: 0002566401
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87ef

Способ определения глубины проникания объекта в грунт

Изобретение относится к области измерительной техники и может быть использовано для определения глубины проникания объекта в грунт. Способ включает сбрасывание объекта с носителя и регистрацию параметров его проникания, по крайней мере, двумя сейсмическими датчиками, расположенными на...
Тип: Изобретение
Номер охранного документа: 0002566402
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8afb

Отражательная линия задержки

Изобретение относится к устройствам акустоэлектроники, в частности к отражательным линиям задержки, функционирующим на поверхностных акустических волнах. Техническим результатом предлагаемой конструкции ОЛЗ является увеличение амплитуды информационного сигнала и расширение ее функциональных...
Тип: Изобретение
Номер охранного документа: 0002567186
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8ed9

Способ механических испытаний и стенд для его реализации

Изобретение относится к испытательной технике и может быть использовано для испытаний объектов на воздействие перегрузок. Способ заключается в размещении в полости ствола контейнера со столом с установленным на нем ОИ. При воздействии на контейнер продуктов взрыва происходит его ускоренное...
Тип: Изобретение
Номер охранного документа: 0002568178
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fb9

Стенд для испытания объекта на удар

Изобретение относится к испытательной технике, а именно к стендам для испытаний изделий на удар. Стенд содержит силовую раму с вертикальными стойками, устройство подъема, соединенное через устройство удержания и сброса с приспособлением для закрепления объекта испытания (ОИ), наковальню,...
Тип: Изобретение
Номер охранного документа: 0002568409
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90c3

Спиральный взрывомагнитный генератор и способ кумуляции импульса тока

Изобретение относится к физике высоких плотностей энергии, в частности к преобразованию энергии взрывчатого вещества в электромагнитную энергию, и может быть использовано для кумуляции импульсов электрического тока мегаамперного уровня. Технический результат состоит в повышении мощности...
Тип: Изобретение
Номер охранного документа: 0002568675
Дата охранного документа: 20.11.2015
+ добавить свой РИД