×
20.12.2015
216.013.9c46

Результат интеллектуальной деятельности: СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ ОСАЖДЕННОЙ ВЛАГИ В ЖИДКИХ УГЛЕВОДОРОДАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам определения влажности. Оно может найти применение в нефтехимической промышленности, в частности для экспресс-контроля качества авиационных керосинов в условиях аэродрома. Техническим результатом предлагаемого изобретения является повышение чувствительности определения объемной концентрации осажденной влаги в жидких углеводородах. Данный технический результат достигается тем, что в известном способе определения объемной концентрации осажденной влаги в жидких углеводородах, заключающемся в помещении исследуемого жидкого углеводорода в полость цилиндрического объемного резонатора с продольной осью, перпендикулярной горизонту жидкости, удалении через время t≥10 с жидкого углеводорода из полости резонатора с оставлением влаги, возбуждении электромагнитного колебания типа H, измерении изменения добротности, вызванного наличием осажденной влаги, дополнительно исследуемый жидкий углеводород через открытую верхнюю торцевую стенку помещают в полость резонатора над диэлектрической пластиной-основанием, расположенной симметрично относительно середины длины, с диаметром, равным диаметру резонатора, и толщиной, много меньшей его высоты, при этом ось пластины-основания совмещают с осью цилиндрического объемного резонатора, после удаления исследуемого жидкого углеводорода с оставлением влаги, капли влаги прижимают диэлектрической пластиной, закрывают верхнюю торцевую стенку, диаметр прижимной диэлектрической пластины выбирают равным диаметру резонатора, а толщину - на порядок меньше толщины диэлектрической пластины-основания. 7 ил.
Основные результаты: Способ определения объемной концентрации осажденной влаги в жидких углеводородах, заключающийся в помещении исследуемого жидкого углеводорода в полость цилиндрического объемного резонатора с продольной осью, перпендикулярной горизонту жидкости, удалении через время t≥10 с жидкого углеводорода из полости резонатора с оставлением влаги, возбуждении электромагнитного колебания типа Н, измерении изменения добротности, вызванное наличием осажденной влаги, отличающийся тем, что исследуемый жидкий углеводород через открытую верхнюю торцевую стенку помещают в полость резонатора над диэлектрической пластиной-основанием, расположенной симметрично относительно середины длины, с диаметром, равным диаметру резонатора, и толщиной, много меньшей его высоты, при этом ось пластины-основания совмещают с осью цилиндрического объемного резонатора, после удаления исследуемого жидкого углеводорода с оставлением влаги капли влаги прижимают диэлектрической пластиной, закрывают верхнюю торцевую стенку, диаметр прижимной диэлектрической пластины выбирают равным диаметру резонатора, а толщину - на порядок меньше толщины диэлектрической пластины-основания.

Изобретение относится к способам определения влажности. Оно может найти применение в нефтехимической промышленности, в частности для экспресс-контроля качества авиационных керосинов.

Известен кондуктометрический способ определения влажности (см. Жуков Ю.П., Кулаков М.В. Высокочастотная безэлектродная кондуктометрия. - М.: Энергия, 1968. С. 104), который в диапазоне объемных влажностей 0-2% обладает низкой чувствительностью, так как величины сопротивлений материалов становятся больше входных сопротивлений измерительных устройств.

Известен резонаторный способ определения влажности (см. Берлинер М.А. Измерение влажности. - М.: Энергия, 1973). Исследуемая жидкость помещается в кювету, находящуюся в полости цилиндрического объемного резонатора (ЦОР). Кювета выполняется в виде цилиндра или диска и устанавливается вдоль или перпендикулярно продольной оси объемного резонатора. Возбуждается колебание электромагнитного поля (ЭМП) типа H011. Выходной величиной первичного измерительного преобразователя (ПИП) служит изменение добротности резонатора ΔQ=Q0-Q (Q - нагруженная, Q0 - ненагруженная добротности резонатора), вызванное введением исследуемого материала с неизвестной влажностью. Недостатком указанного способа является невысокая точность определения содержания влаги в виде осадка за счет дополнительного влияния растворимой влаги, содержащейся в исследуемом углеводороде, и которая зависит от температуры, давления и от типа углеводорода.

За прототип принят способ определения СВЧ-способ определения осажденной влаги в жидких углеводородах (Патент РФ №2451929, МКл6 G01N 22/04. СВЧ-способ определения осажденной влаги в жидких углеводородах/ Суслин М.А., Шаталов А.Л. (РФ) - №2010147251/09; заявл. 18.11.10., опубл. 27.05.12 г. Бюл №15). В данном способе исследуемый жидкий углеводород помещают в полость цилиндрического объемного резонатора (ЦОР) с продольной осью, перпендикулярной горизонту, возбуждают электромагнитное поле типа H011, измеряют изменение добротности цилиндрического объемного резонатора с колебанием H011, которое вызвано введением исследуемого материала, возбуждают далее электромагнитное поле типа E010, измеряют изменение добротности цилиндрического объемного резонатора с колебанием E010, которое вызвано введением исследуемого материала, при этом цилиндрический объемный резонатор в начале полностью заполняют исследуемой жидкостью, после некоторого времени отстоя - порядка десяти секунд - сливают жидкость так, чтобы отстой влаги оставался на нижней торцевой стенке резонатора. По изменению добротности цилиндрического объемного резонатора с колебанием E010 судят об объемной концентрации осажденной влаги в диапазоне до 0,4%, а по изменению добротности цилиндрического объемного резонатора с колебанием H011 - в диапазоне 0,4-2%.

Недостатком прототипа является недостаточная чувствительность определения осажденной влаги в виде капель.

Техническим результатом предлагаемого изобретения является повышение чувствительности определения объемной концентрации осажденной влаги в жидких углеводородах.

Данный технический результат достигается тем, что в известном способе определения объемной концентрации осажденной влаги в жидких углеводородах, заключающемся в помещении исследуемого жидкого углеводорода в полость цилиндрического объемного резонатора с продольной осью, перпендикулярной горизонту жидкости, удалении через время t≥10 с жидкого углеводорода из полости резонатора с оставлением влаги, возбуждении электромагнитного колебания типа H011, измерении изменения добротности, вызванное наличием осажденной влаги, дополнительно исследуемый жидкий углеводород через открытую верхнюю торцевую стенку помещают в полость резонатора над диэлектрической пластиной-основанием, расположенной симметрично относительно середины длины, с диаметром, равным диаметру резонатора, и толщиной, много меньшей его высоты, при этом ось пластины-основания совмещают с осью цилиндрического объемного резонатора, после удаления исследуемого жидкого углеводорода с оставлением влаги капли влаги прижимают диэлектрической пластиной, закрывают верхнюю торцевую стенку, диаметр прижимной диэлектрической пластины выбирают равным диаметру резонатора, а толщину - на порядок меньше толщины диэлектрической пластины-основания.

На фиг. 1 представлена измерительная схема резонатора с каплями на твердой поверхности, на фиг. 2 - интерфейс программы COMSOL Multiphysics с результатом моделирования (изометрия), на фиг. 3 - силовые линии электрического поля колебания Н011, возмущенного каплей воды, на фиг. 4 - структурная схема резонатора с тонким слоем влаги на твердой поверхности, на фиг. 5 - внешний вид экспериментальной установки для измерения нагруженной добротности, на фиг. 6 - результаты экспериментальных исследований для резонатора с каплями на твердой поверхности, на фиг. 7 - результаты экспериментальных исследований для резонатора с тонким слоем влаги на твердой поверхности.

Повышение чувствительности определения объемной концентрации осажденной влаги в жидких углеводородах достигается двумя путями.

1. Помещают осадок жидкого углеводорода с каплями влаги в пучность (в максимум) электрического поля колебания H011.

2. Прижимают капли воды диэлектриком, так чтобы они трансформировались в тонкий слой влаги.

На фиг. 1 представлена измерительная схема резонатора с каплями на твердой поверхности, помещенной в пучность (в максимум) электрического поля Eφ колебания H011. Осадок помещают на диэлектрическую пластину-основание, расположенную симметрично относительно середины длины ЦОР, диаметр равен диаметру резонатора, а ось пластины-основания совпадает с его осью. При этом, как и в прототипе, продольную ось ЦОР выбирают перпендикулярной горизонту.

Электрическое поле Eφ пространственного колебания H011 невозмущенного резонатора (см. Корбанский И.Н. Теория электромагнитного поля. - М.: ВВИА им. профессора Н.Е. Жуковского, 1964. - 356 с.) представляет собой замкнутые концентрические окружности, поле максимально по середине длины и радиуса, электрическое поле равно нулю на оси и у торцевых стенок. Модуль электрической составляющей

где l - высота резонатора.

Толщина диэлектрической пластины основания Δh должна быть на порядок меньше высоты резонатора l. Из (1) при амплитуда напряженности электрического поля на верхней торцевой стенке пластины составляет 99,7% от максимума, а при .

Поверхность пластины-основания параллельна силовым линиям электрического поля, поэтому электрическое поле согласно граничным условиям не должно деформироваться при переходе границы воздух-диэлектрик. Проведенный численный анализ электрического поля пространственного колебания H011 электромагнитного поля методом конечных элементов в системе COMSOL Multiphysics для резонатора возмущенного диэлектрической пластиной-основанием с толщиной, много меньшей высоты резонатора, подтверждает это: электрическое поле, как у пустого ЦОР, максимально по середине длины и радиуса и равно нулю на оси и у торцевых стенок, электрические силовые линии по-прежнему представляют собой замкнутые концентрические окружности, поле внутри диэлектрика по величине совпадает с полем пустого резонатора.

Трансформация капель воды в тонкий слой путем прижатия диэлектриком позволяет повысить чувствительность. Физической основой является влияние геометрии на поле в объеме этой капли.

Как известно (Кугушев A.M., Голубев Н.С. Основы радиоэлектроники. - М.: Энергия. 1969. С. 372-376), в объеме диэлектрического шарика электрическое поле деформируется из-за граничных условий (Фиг. 3). Напряженность электрического поля внутри шарика E2 связана с невозмущенной напряженностью электрического поля вне шарика Eφ следующим выражением

где εж - относительная диэлектрическая проницаемость жидкого углеводорода (для авиационного керосина εк≈2.1); - относительная диэлектрическая проницаемость воды . Таким образом, поле внутри шара значительно меньше первичного поля Еφ. Там же показано, что поле внутри эллипсоида вращения имеет вид

где nэ - коэффициент деполяризации, учитывающий форму эллипсоида. Для шара ; для эллипсоида вращения с отношением осей 100 nэ=0,0004.

Трансформация капель воды в тонкий слой эквивалентна увеличению отношения осей эллипсоида. С ростом этого отношения коэффициент деполяризации nэ уменьшается, поле внутри эллипсоида растет и приближается к значению поля вне Eφ эллипсоида.

С другой стороны, трансформация капель воды в тонкий слой приводит к тому, что межфазные границы исчезают и тонкий слой влаги становится частью поверхности диэлектрика. А как показывает электродинамический анализ (Фиг. 2), поле на поверхности диэлектрика практически не отличается от максимального значения в пустом резонаторе.

На фиг. 6 и 7 представлены результаты экспериментальных исследований нагруженной добротности для резонатора с каплями и с тонким слоем влаги на твердой поверхности соответственно. Дозировка влаги осуществлялась микрошприцем с точностью дозировки 0,01 мл. Доверительная вероятность измерений равна 0,9, число измерений (каждый раз влага заново дозировалась) - 10.

В экспериментальной установке определения нагруженной добротности применялся скалярный измеритель цепей Р2М-18. Измеритель обеспечивает визуализацию коэффициента передачи по мощности в диапазоне до 18 ГГц: точность измерения мощности составляет 0,001 дБ, а частоты - 0,001 МГц, обзор частоты в эксперименте устанавливался равным 1 МГц. В Р2М-18 обеспечивается автоматическое слежение за максимумом коэффициента передачи. Результаты измерений документируются. Внешний вид скалярного измерителя цепей Р2М-18 и измерительного ЦОР показаны на фиг. 5. Геометрия резонатора: диаметр - 152 мм, высота - 112 мм; возбуждающая и приемные петли выступают от плоскости боковой стенки примерно на 1,5-2,0 мм, при этом плоскости петель перпендикулярны оси резонатора Z, а одна из торцевых стенок выполнена подвижной без гальванического контакта с боковой стенкой. Отношение квадрата диаметра к квадрату длины резонатора в экспериментальном резонаторе равно 2,25. Такой выбор «короткого» резонатора устраняет перепутывание рабочего колебания H011 с другими пространственными модами. Диэлектрическая пластина выполнена из ФТ-5 толщиной 5 мм. Пластина устанавливалась посередине длины резонатора с помощью трех специальных держателей. Абсолютное значение резонансной частоты с диэлектрической пластиной f0=2758,834 МГц.

Нагруженная добротность определялась по формуле

,

где Δf - полоса пропускания, определяемая по уровню половинной мощности (минус 3 дБ от уровня, соответствующего максимуму резонансной кривой). Прижатие капель осуществлялось диэлектрической пластиной из кварцевого стекла толщиной 100 мкм. Толщину диэлектрической пластины необходимо выбирать на порядок меньше толщины диэлектрической пластины-основания, так чтобы СВЧ-потери в этой диэлектрической пластине не влияли общие потери в резонаторе и, следовательно, на результат определения влагосодержания. Материал диэлектрической прижимной пластины и пластины-основания должен обладать малыми СВЧ-потерями (кварцевое стекло, полиэтилен, фторопласт).

Из результатов, полученных в ходе эксперимента, можно сделать вывод, что размещение осадка жидкого углеводорода с каплями влаги в пучность (в максимум) электрического поля колебания H011 повышает чувствительность к наличию осажденной влаги по сравнению с прототипом. Это объясняется тем, что в прототипе максимальная чувствительность наблюдается при возбуждении пространственного колебания E010, распределение энергии электрического поля которого равномерно по длине (не имеет экстремума по длине). При этом добротность колебания H011 пустого резонатора в 5÷10 раз выше колебания E010.

Трансформация капель воды в тонкий слой путем прижатия диэлектрической пластиной приводит к тому, что межфазные границы исчезают и тонкий слой влаги становится частью поверхности диэлектрика. Электрическое поле на поверхности диэлектрика практически не отличается от максимального значения в пустом резонаторе. Это дополнительно на порядок повышает чувствительность.

Способ определения объемной концентрации осажденной влаги в жидких углеводородах, заключающийся в помещении исследуемого жидкого углеводорода в полость цилиндрического объемного резонатора с продольной осью, перпендикулярной горизонту жидкости, удалении через время t≥10 с жидкого углеводорода из полости резонатора с оставлением влаги, возбуждении электромагнитного колебания типа Н, измерении изменения добротности, вызванное наличием осажденной влаги, отличающийся тем, что исследуемый жидкий углеводород через открытую верхнюю торцевую стенку помещают в полость резонатора над диэлектрической пластиной-основанием, расположенной симметрично относительно середины длины, с диаметром, равным диаметру резонатора, и толщиной, много меньшей его высоты, при этом ось пластины-основания совмещают с осью цилиндрического объемного резонатора, после удаления исследуемого жидкого углеводорода с оставлением влаги капли влаги прижимают диэлектрической пластиной, закрывают верхнюю торцевую стенку, диаметр прижимной диэлектрической пластины выбирают равным диаметру резонатора, а толщину - на порядок меньше толщины диэлектрической пластины-основания.
СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ ОСАЖДЕННОЙ ВЛАГИ В ЖИДКИХ УГЛЕВОДОРОДАХ
СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ ОСАЖДЕННОЙ ВЛАГИ В ЖИДКИХ УГЛЕВОДОРОДАХ
СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ ОСАЖДЕННОЙ ВЛАГИ В ЖИДКИХ УГЛЕВОДОРОДАХ
СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ ОСАЖДЕННОЙ ВЛАГИ В ЖИДКИХ УГЛЕВОДОРОДАХ
СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ ОСАЖДЕННОЙ ВЛАГИ В ЖИДКИХ УГЛЕВОДОРОДАХ
СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ ОСАЖДЕННОЙ ВЛАГИ В ЖИДКИХ УГЛЕВОДОРОДАХ
СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ ОСАЖДЕННОЙ ВЛАГИ В ЖИДКИХ УГЛЕВОДОРОДАХ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 202.
10.06.2015
№216.013.50ae

Способ усиления и демодуляции частотно-модулированных сигналов и устройство его реализации

Изобретение относится к областям радиосвязи, радиолокации, радионавигации и может быть использовано для создания устройств усиления и частотной демодуляции. Достигаемый технический результат - увеличение линейного участка частотной демодуляционной характеристики и увеличение динамического...
Тип: Изобретение
Номер охранного документа: 0002552175
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.50b2

Формирователь последовательности прямоугольных импульсов с изменяемой длительностью и интервалом

Изобретение относится к импульсной технике и может быть использовано в устройствах радиоавтоматики и системах автоматического управления летательными аппаратами. Техническим результатом является формирование последовательности двух прямоугольных импульсов с возможностью изменения в широких...
Тип: Изобретение
Номер охранного документа: 0002552179
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.518f

Электродинамическая головка воспроизведения звука

Изобретение относится к акустическим средствам воспроизведения звука. Электродинамическая головка воспроизведения звука содержит источник звуковых электрических сигналов, генератор звуковых колебаний, взаимодействующий с упругой средой, последовательно соединенные модулятор, согласующее...
Тип: Изобретение
Номер охранного документа: 0002552400
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.53cd

Комбинированная ложная цель для имитации зенитно-артиллерийских средств

Изобретение относится к средствам обеспечения скрытности вооружения и военной техники от средств разведки видимого, радиолокационного и инфракрасного диапазонов. Комбинированная ложная цель выполнена в виде полномасштабного надувного макета зенитно-артиллерийского средства, покрытого...
Тип: Изобретение
Номер охранного документа: 0002552974
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.53d1

Устройство адаптивной маскировки объектов

Изобретение предназначено для маскировки стационарных или движущихся объектов с помощью адаптивных маскировочных устройств, работающих в оптическом диапазоне длин волн. Устройство адаптивной маскировки объектов содержит последовательно соединенные цифровую камеру с выносным объективом, ЭВМ,...
Тип: Изобретение
Номер охранного документа: 0002552978
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.555c

Способ извлечения новокаина из водного раствора

Изобретение относится к аналитической химии и фармацевтике и может быть использовано при анализе остаточного содержания новокаина в водных средах. Способ извлечения новокаина из водных растворов включает приготовление водно-солевого раствора новокаина путем его растворения в насыщенном растворе...
Тип: Изобретение
Номер охранного документа: 0002553373
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.557e

Адаптивный способ защиты объекта от управляемой по лазерному лучу ракеты

Изобретение относится к военной технике. При адаптивном способе защиты объекта от управляемой по лазерному лучу ракеты обнаруживают лазерный сигнал ракеты. Определяют координаты источника этого излучения. Производят ориентацию помехового лазера по этим координатам. Обнаруживают лазерные сигналы...
Тип: Изобретение
Номер охранного документа: 0002553407
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6013

Устройство автоматического выравнивания грузоподъемных механизмов

Изобретение относится к устройствам для выравнивания грузоподъемных механизмов. Устройство автоматического выравнивания грузоподъемных механизмов содержит передвижное шасси, опорную платформу, датчик выравнивания опорной платформы в горизонтальное положение, гидроприводы, датчик контакта штоков...
Тип: Изобретение
Номер охранного документа: 0002556136
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6951

Комплекс имитации сложных военных объектов

Изобретение относится к средствам обеспечения скрытности вооружения, военной техники и военных объектов (ВВТ и ВО) от средств оптико-электронной, радиолокационной, а также радио- и радиотехнической разведки. Комплекс имитации сложных военных объектов состоит из M средств имитации простых...
Тип: Изобретение
Номер охранного документа: 0002558514
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69f3

Устройство компенсации активных помех с коммутацией компенсационного канала

Изобретение относится к радиолокации, может быть использовано в аппаратуре обнаружения целей на фоне активных помех. Техническим результатом изобретения является уменьшение вероятности ложной тревоги за счет устранения кромок помех. Технический результат достигается тем, что в известное...
Тип: Изобретение
Номер охранного документа: 0002558676
Дата охранного документа: 10.08.2015
Показаны записи 21-30 из 196.
10.06.2015
№216.013.555c

Способ извлечения новокаина из водного раствора

Изобретение относится к аналитической химии и фармацевтике и может быть использовано при анализе остаточного содержания новокаина в водных средах. Способ извлечения новокаина из водных растворов включает приготовление водно-солевого раствора новокаина путем его растворения в насыщенном растворе...
Тип: Изобретение
Номер охранного документа: 0002553373
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.557e

Адаптивный способ защиты объекта от управляемой по лазерному лучу ракеты

Изобретение относится к военной технике. При адаптивном способе защиты объекта от управляемой по лазерному лучу ракеты обнаруживают лазерный сигнал ракеты. Определяют координаты источника этого излучения. Производят ориентацию помехового лазера по этим координатам. Обнаруживают лазерные сигналы...
Тип: Изобретение
Номер охранного документа: 0002553407
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6013

Устройство автоматического выравнивания грузоподъемных механизмов

Изобретение относится к устройствам для выравнивания грузоподъемных механизмов. Устройство автоматического выравнивания грузоподъемных механизмов содержит передвижное шасси, опорную платформу, датчик выравнивания опорной платформы в горизонтальное положение, гидроприводы, датчик контакта штоков...
Тип: Изобретение
Номер охранного документа: 0002556136
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6951

Комплекс имитации сложных военных объектов

Изобретение относится к средствам обеспечения скрытности вооружения, военной техники и военных объектов (ВВТ и ВО) от средств оптико-электронной, радиолокационной, а также радио- и радиотехнической разведки. Комплекс имитации сложных военных объектов состоит из M средств имитации простых...
Тип: Изобретение
Номер охранного документа: 0002558514
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69f3

Устройство компенсации активных помех с коммутацией компенсационного канала

Изобретение относится к радиолокации, может быть использовано в аппаратуре обнаружения целей на фоне активных помех. Техническим результатом изобретения является уменьшение вероятности ложной тревоги за счет устранения кромок помех. Технический результат достигается тем, что в известное...
Тип: Изобретение
Номер охранного документа: 0002558676
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69fa

Способ определения координат и скорости источника радиоизлучения

Изобретение относится к радиотехнике и может быть использовано для определения местоположения и скорости априорно неизвестного источника радиоизлучения (ИРИ). Достигаемый технический результат - определение за один этап обработки одновременно координат и скорости ИРИ. Способ основан на...
Тип: Изобретение
Номер охранного документа: 0002558683
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6e7a

Свч-способ определения осажденной влаги в жидких углеводородах

Предлагаемое изобретение относится к способам определения влажности. Оно может найти применение в нефтехимической промышленности, и в частности для экспресс-контроля качества авиационных керосинов в условиях аэродрома. Техническим результатом предлагаемого изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002559840
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f67

Способ пассивной радиолокации

Изобретение относится к радиотехнике и может быть использовано в многопозиционных системах пассивной радиолокации для определения местоположения и скорости движения радиоизлучающих объектов. Достигаемый технический результат - обеспечение измерения скорости движения объекта при одновременном...
Тип: Изобретение
Номер охранного документа: 0002560089
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f70

Способ радиоконтроля

Изобретение относится к радиотехнике и может быть использовано при радиоконтроле для определения пространственно-энергетических характеристик наземных объектов по их радиоизлучениям в диапазоне коротких волн. Достигаемый технический результат - определение мощности излучения, увеличение...
Тип: Изобретение
Номер охранного документа: 0002560098
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.76cb

Устройство для измерения отношения напряжения мостовых датчиков

Изобретение относится к области измерительной техники и может быть использовано при обработке информации, получаемой при проведении многофакторных экспериментальных исследований. Техническим результатом заявляемого устройства является расширение функциональных возможностей для измерения...
Тип: Изобретение
Номер охранного документа: 0002562000
Дата охранного документа: 10.09.2015
+ добавить свой РИД