×
20.12.2015
216.013.9ac0

Результат интеллектуальной деятельности: ФЕРРИТНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к составам ферритных коррозионно-стойких сталей, применяемых в машиностроении для изделий, к которым предъявляются требования обеспечения высокой твердости и коррозионной стойкости при достаточной пластичности. Сталь содержит углерод, хром, никель, титан, молибден, алюминий, церий, иттрий и железо при следующем соотношении компонентов, мас.%: углерод до 0,03, хром 12-18, никель 5-10, молибден 0,8-3,0, титан менее 0,20, алюминий 1,0-2,5, церий до 0,02, иттрий ≤,002, железо - остальное. Повышаются прочностные свойства стали. 1 ил., 1 пр.
Основные результаты: Ферритная коррозионно-стойкая сталь, содержащая углерод, хром, молибден, титан, алюминий и железо, отличающаяся тем, что она дополнительно содержит никель, церий и иттрий, при следующем соотношении компонентов, мас.%:

Изобретение относится к области металлургии, то есть к изысканию сплавов, применяемых в машиностроении для изделий, к которым предъявляются требования обеспечения высокой твердости и коррозионной стойкости при достаточной пластичности.

Ферритные стали, легированные хромом, применяются для изготовления изделий, работающих в окислительных средах, для бытовых приборов, в пищевой и легкой промышленности и для теплообменного оборудования в энергомашиностроении. Эти стали имеют высокую коррозионную стойкость в азотной кислоте, водных растворах аммиака, в аммиачной селитре, смеси азотной, фосфорной и фтористоводородной кислот, а также в других агрессивных средах [1].

Известны аналоги изобретения [2-9], позволяющие получить ферритные коррозионно-стойкие стали, обладающие повышенными пластичностью, пределом текучести и производительностью сварки труб [2], устойчивостью к термическому циклическому стрессу и оксидированию при повышенной температуре [3] и т.д. Однако все эти стали обладают недостаточно высокой прочностью.

В настоящее время из числа отечественных ферритных коррозионно-стойких сталей наиболее известны стали 12X17, 08Х18Т и 015Х18М2Б. При высокотемпературном нагреве в стали 12X17 возможно образование аустенита, что является нежелательным для сталей этого типа, так как при охлаждении происходит мартенситное превращение, что повышает твердость, снижает пластичность, вызывает склонность к межкристаллитной коррозии. Для предотвращения этого явления уменьшают содержание углерода или вводят титан, ниобий, молибден, которые способствуют получению однофазной структуры, а образование карбидов титана и ниобия снижает склонность к росту зерна и улучшает коррозионную стойкость, в частности, сварных швов (08Х18Т и 015Х18М2Б) [1].

В зарубежной практике разработаны стали с низким суммарным содержанием углерода и азота (0,025-0,035%), содержащие 18-28% Cr и 2-4% Mo, стабилизированные Ti или Nb. Эти стали называют суперферритами; они имеют высокую стойкость во многих агрессивных средах, стойки против коррозии под напряжением, питтинговой и щелевой коррозии [1].

Хромистые ферритные стали имеют крупный недостаток: они могут охрупчиваться в процессах технологических нагревов и длительных выдержек при повышенных температурах во время эксплуатации. В них возможна хрупкость при выдержках в интервале температур 400-500°C, хрупкость при 600-800°C (в связи с образованием σ-фазы) и хрупкость вследствие образования чрезмерно крупных зерен, например при сварке. Хрупкость хромистых ферритных сталей трудно, а часто и невозможно устранить последующей обработкой, что сужает возможности их практического использования и накладывает ограничения на технологические операции [1]. Известна [11] ферритная коррозионно-стойкая сталь, содержащая в мас.%: углерод до 0,03; хром 12,0-25,0; никель 5,0-18,0, алюминий 3,0-9,5; титан 0,25-0,5; молибден 0,8-6,0; лантан + иттрий до 0,05, железо - остальное, обладающая высокой твердостью, прочностью и свариваемостью, жаростойкостью в средах продуктов горения и коррозионной стойкостью в солевых и кислых средах, но недостаточной высокой пластичностью.

Прототипом изобретения является ферритная коррозионно-стойкая сталь [10], содержащая в мас.%: углерод 0,02-0,09, хром 5,0-13,0, кремний 1,0-2,5, алюминий 0,9-1,65, титан 0,2-0,8, молибден 0,07-0,35, ванадий 0,07-0,15, железо - остальное, обладающая повышенной пластичностью, свариваемостью, жаростойкостью в средах продуктов горения и коррозионной стойкостью в солевых и кислых средах, но недостаточной прочностью.

Задача, на решение которой направлено изобретение, заключается в создании ферритной коррозионно-стойкой стали, обладающей более высоким комплексом физико-механических свойств (прочность, коррозионная стойкость) в закаленном и состаренном состоянии, и в то же время которая была бы не подвержена хрупкости при нагреве и обладала достаточно высокой пластичностью. Техническим решением данного изобретения является разработка такого состава ферритной стали, у которой после закалки сохраняется до 15-20% вторичного аустенита, сдерживающего рост зерна при нагреве под закалку и нестабильного при деформации, который в результате последеформационного старения приводит к дополнительному упрочнению ферритной стали.

Поставленная задача достигается тем, что коррозионно-стойкая ферритная сталь, содержащая углерод, хром, молибден, титан, алюминий и железо дополнительно содержит никель, церий и иттрий, при следующем соотношении компонентов в мас.%: углерод до 0,03; хром 12-18; никель 5-10; молибден 0,8-3,0; титан менее 0,20; алюминий 1,0-2,5; церий до 0,02; иттрий ≤0,002, железо - остальное1 (Изменение соотношение в стали феррито- и аустенитообразующих элементов алюминия приводит к изменению структурного класса и резкому повышению прочностных свойств в состоянии: закалка с последующим старением, присутствие в ферритной стали небольшого количества более пластичного вторичного аустенита уменьшает склонность ферритной стали к росту зерна, что способствует более высокой ее пластичности и технологичности [16].). Влияние легирующих элементов на положение области γ→(δ)α превращения в системе Fe-Cr и местонахождение исследуемой стали показано в Приложении 1.

Углерод в сталь специально не вводится, он является вредной примесью, и содержание углерода в стали не должно превышать 0,03% для обеспечения высокой пластичности.

При содержании хрома менее 8% не обеспечиваются коррозионные свойства нержавеющей стали. При большом содержании хрома (более 20%) происходит удорожание стали и возникает опасность образования σ-фазы, которая приводит к понижению пластичности.

Содержание никеля в количестве 5-10% увеличивает пластичность, вязкость стали; никель также входит в состав упрочняющей фазы. Никель совместно с хромом повышает коррозионную стойкость в слабо окисляющих или не окисляющих растворах химических веществ. Использование никеля как основы позволяет получить сплавы с высокой коррозионной стойкостью в сильных агрессивных кислотах. Однако повышенное количество никеля, который является одним из основных аустенитообразующих элементов, приводит к образованию повышенного количества аустенита в ферритных сталях и, следовательно, не должно быть чрезмерным [12].

Молибден повышает прочность, релаксационную стойкость, способствует повышению коррозионной стойкости и теплостойкости, подавляет обратимую отпускную хрупкость [13-14]. Однако повышение молибдена в стали выше 3,0% приводит к появлению в структуре высокотемпературной интерметаллидной молибденсодержащей χ-фазы, снижающей пластичность стали [15].

Дополнительное упрочнение получается в результате дисперсионного твердения. Для этого в сталь вводят алюминий и титан, причем титан как наиболее сильный элемент по сродству к углероду образует незначительное количество карбидов TiC, который и связывает весь углерод в карбид. Самостоятельный интерметаллид Ti не образует, хотя не исключено, что он может входить в состав алюминида никеля, образуя более сложную интерметаллидную упрочняющую фазу. Так как содержание углерода ограничено (≤0,03%), то и количество Ti может быть понижено до 0,20%. В исследуемой стали упрочняющая фаза - интерметаллид (Fe, Ni)Al выделяется из ОЦК-фазы, как в мартенситно-стареющих сталях.

Церий и иттрий вводится в сталь с целью измельчения ферритного зерна, что особенно важно для сталей ферритного класса, которые склонны к росту зерна с повышением температуры нагрева под закалку.

Пользуясь структурной диаграммой для нержавеющих литых хромоникелевых сталей А. Шеффлера (рис.1), можно рассчитать, что исследуемая сталь находится вблизи феррито-аустенитной границы (ферритная область заштрихованная). Относительный вклад каждого элемента в установление структуры определяется никелевым и хромовым эквивалентом по следующим формулам [17]:

%Ni - эквивалента=%Ni+%Co+30(%C)+25(%N)+0,5(%Mn)+0,3(%Cu)

%Cr - эквивалента=%Cr+2(%Si)+1,5(%Mo)+5(%V)+5,5(%Al)+1,5(%Nb)

+1,75(%Ti)+0,75(%W)

Пример. Образцы из исследуемой стали 03Х13Н8М2ЮТ были выплавлены в индукционных печах типа Таммана весом 1-1,5 кг. Затем подвергались нагреву под закалку в интервале температур 900-1200°C в течение 15 мин с последующим охлаждением в воде. Твердость образцов по Виккерсу после закалки изменялась от 325 до 350 HV5/12,5. Повышение температуры нагрева под закалку от 900 до 1200°C не привело к существенному росту зерна феррита, хотя количество δ-феррита неуклонно росло. Рекомендуемая температура нагрева под закалку составляет 1000-1050°C. Рентгеноструктурное исследование показало, что структура закаленной от указанных температур исследуемой стали состоит практически из 82% феррита, незначительного количества упрочняющей упорядоченной интерметаллидной фазы (Fe, Ni)Al и ≈18% вторичного аустенита.

Закаленные от 1000°C в воду образцы подвергались старению в интервале температур 300-600°C. Проведенное исследование показало, что наибольшее упрочнение достигается после старения при 500°C в течение 1 ч. Твердость закаленных образцов после старения повышалась до 530 HV5/12,5, в то время как микротвердость δ-феррита составляла 450-500 HV, а микротвердость аустенита - 250HV. Как показали результаты рентгеноструктурного анализа, охрупчивания, свойственного ферритным сталям в интервале температур 400-500°C, не наблюдалось, так как алюминий приводит к подавлению выделения σ-фазы [18]. Упрочнение, получаемое при старении при температуре 500°C, происходит за счет дополнительного выделения из ОЦК-фазы (δ-феррита) той же интерметаллидной фазы (Fe, Ni)Al. Разупрочнение исследуемой стали наблюдалось при нагреве выше 600°C, что позволяет сделать вывод о теплостойкости предлагаемой стали до температур 500°C.

Для оценки поведения при деформации образцы исследуемой закаленной стали 03Х13Н8М2ЮТ были подвергнуты деформации сжатием до ε=1,2 без разрушения целостности образца. При этом сопротивление деформированию возросло более чем в 2 раза с 480 в закаленном состоянии до 1150 МПа.

Проведенные исследования показали, что, несмотря на высокие прочностные свойства, исследуемая сталь обладает удовлетворительной пластичностью и может выдерживать умеренные суммарные деформации. Как показали рентгеноструктурные и магнитные исследования, количество ОЦК фазы при деформации увеличилось практически до 100%, т.е. аустенит исследуемой стали является деформационно-нестабильным и при деформации испытывает γ→α превращение. Последеформационное старение приводит к дополнительному повышению прочностных свойств до 1550 МПа.

Сравнительные испытания на коррозионную стойкость показали, что исследуемая сталь превышает по коррозионной стойкости промышленные нержавеющие стали 12Х18Н10Т, 30X13.

Таким образом, предлагаемую сталь целесообразно использовать в состоянии закалки (от температур 1000-1050°C) и последующего старения, которое лучше проводить на готовых изделиях, после которого удалось получить высокий комплекс прочностных свойств при сохранении достаточного запаса пластичности, что дает возможность использования исследуемой стали в качестве материала для высокопрочных, коррозионно-стойких и теплостойких деталей для приборостроения и точного машиностроения в закаленном и состаренном состоянии. Проведение умеренных пластических деформаций является дополнительным фактором, приводящим к формированию высокопрочного состояния в исследуемой стали.

Список литературы

1. Гольдштейн М.И., Грачев C.B., Векслер Ю.Г. Специальные стали. Учебник для вузов. М.: Металлургия, 1999, 408 с.

2. Патент №2250272. Россия. Публикация 20.04.2005. кл. C22C 38/54. Ферритная нержавеющая сталь.

3. Патент №6773660. США. Публикация 02.10.2002. кл. C22C 38/22. Ферритная нержавеющая сталь для использования при высоких температурах и способ получения фольги из этой стали.

4. Патент №2033465. Россия. Публикация 20.04.1995. кл. C22C 38/54. Ферритная сталь.

5. Патент №3480061. Япония. Публикация 20.09.1994. кл. C22C 38/00. Высокохромистая ферритная жаропрочная сталь.

6. Патент №3468156. Япония. Публикация 13.04.1999. кл. C22C 38/00. Ферритная нержавеющая сталь для деталей выхлопной системы автомобиля.

7. Патент №3367216. Япония. Публикация 20.09.1994. кл. C22C 38/00. Высокохромистая ферритная жаропрочная сталь.

8. Патент №3427502. Япония. Публикация 22.08.1994. кл. C22C 38/00. Ферритная нержавеющая сталь для детали автомобильной выхлопной системы.

9. Патент №3567603. Япония. Публикация 22.04.1996. кл. C22C 38/00. Высокохромистая ферритная сталь, обеспечивающая высокие характеристики ползучести сварного соединения.

10. Патент №2082814. Россия. Публикация 27.06.1997. кл. C22C 38/28. Ферритная коррозионно-стойкая сталь.

11. Патент №2352680. Россия. Публикация 20.04.2009. кл. C22C 38/50. Ферритная коррозионно-стойкая сталь.

12. Бабаков Α.Α., Приданцев М.В. Коррозионно-стойкие стали и сплавы. М.: Металлургия, 1971, 200 с.

13. Грачев C.B., Бараз В.Р. Теплостойкие и коррозионно-стойкие пружинные стали. М.: Металлургия, 1989, 144 с.

14. Рахштадт А.Г. Пружинные стали и сплавы. М.: Металлургия, 1982, 400 с.

15. Фазовые превращения при высокотемпературной аустенитизации и распаде пересыщенного твердого раствора в Fe-Cr-Co-Mo мартенситностареющих сталях/А.В. Василенко, Н.В. Звигинцев, Б.М. Могутнов и др. - ФММ. 1980. т.49. С.603-610.

16. Патент №2252977. Россия. Публикация №15 от 27.05.2005. Кл. C22C 38/52. Высокопрочная коррозионно-стойкая аустенитная сталь.

17. Вороненко Б.И. Современные коррозионно-стойкие аустенитно-ферритные стали. МИТОМ. №10, 1997.

18. Сокол И.Я. Двухфазные стали. М.: Металлургия, 1964, 215 с.

Ферритная коррозионно-стойкая сталь, содержащая углерод, хром, молибден, титан, алюминий и железо, отличающаяся тем, что она дополнительно содержит никель, церий и иттрий, при следующем соотношении компонентов, мас.%:
ФЕРРИТНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 107.
20.04.2015
№216.013.419b

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смесители опорного 4 и сигнального 5 каналов,...
Тип: Изобретение
Номер охранного документа: 0002548293
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43da

Способ изготовления материала для получения магнитного клина

Изобретение относится к области электромашиностроения и может быть использовано для получения магнитодиэлектрического материала в виде листов или плит для изготовления магнитного клина электрических машин. Осуществляют смешивание ферромагнитного компонента, эпоксидной смолы и отвердителя,...
Тип: Изобретение
Номер охранного документа: 0002548868
Дата охранного документа: 20.04.2015
10.06.2015
№216.013.524b

Способ получения пленок твердых растворов замещения pbsnse методом ионного обмена

Пленки твердых растворов замещения PbSnSe - востребованный материал полупроводниковой оптоэлектроники и лазерной техники среднего и дальнего инфракрасного диапазона. Однако достигнутое на сегодня содержание олова в составе гидрохимически синтезируемых пленок PbSnSe не обеспечивает в полной мере...
Тип: Изобретение
Номер охранного документа: 0002552588
Дата охранного документа: 10.06.2015
27.08.2015
№216.013.742a

Способ и устройство определения поверхностного натяжения и/или плотности металлических расплавов

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических расплавов методом геометрии контура «большой лежащей капли», т.е. путем измерения плотности и поверхностного натяжения неподвижно лежащей на подложке эллипсовидной капли образца...
Тип: Изобретение
Номер охранного документа: 0002561313
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7528

Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава

Настоящее изобретение относится к областям металлургии, а именно к способам термической обработки высоколегированных псевдо-β титановых сплавов. Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава, содержащего, мас.%: 4,0…6,3 алюминия, 4,5…5,9 ванадия,...
Тип: Изобретение
Номер охранного документа: 0002561567
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75fa

Контактный теплоутилизатор с каплеуловителем

Изобретение относится к теплоэнергетике и может быть использовано в установках для нагрева воды уходящими дымовыми газами котельных или тепловых агрегатов. Контактный теплоутилизатор с каплеуловителем содержит контактную насадку с оросителем, по высоте которой монтирован каплеуловитель,...
Тип: Изобретение
Номер охранного документа: 0002561791
Дата охранного документа: 10.09.2015
10.11.2015
№216.013.8b3f

Способ получения невзрывного разрушающего средства агломерационным обжигом

Изобретение относится к технологиям получения невзрывных разрушающих средств (НРС) на основе известняка, которые применяются для разработки природного камня и щадящего разрушения строительных конструкций и объектов, выводимых из эксплуатации. Невзрывное разрушающее средство получают...
Тип: Изобретение
Номер охранного документа: 0002567254
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fe8

Способ получения имплантированного ионами цинка кварцевого стекла

Изобретение относится к способу получения имплантированного ионами цинка кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры цинка. Способ может быть использован при создании компонентов микро-(нано-) и оптоэлектронных устройств. Проводят имплантацию ионов цинка...
Тип: Изобретение
Номер охранного документа: 0002568456
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.93ea

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса содержит устройство суммирования напряжений, генератор модуляции,...
Тип: Изобретение
Номер охранного документа: 0002569485
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95a9

Способ измерения относительной теплопроводности при внешнем воздействии

Изобретение относится к области теплофизических измерений и может быть использовано для определения относительной теплопроводности материалов. Плоский исследуемый образец известной толщины помещают между двумя алмазными наковальнями с теплопроводностью, существенно превышающей теплопроводность...
Тип: Изобретение
Номер охранного документа: 0002569933
Дата охранного документа: 10.12.2015
Показаны записи 51-60 из 157.
10.02.2014
№216.012.9fcb

Инфракрасный световод с большим диаметром поля моды

Изобретение относится к инфракрасным световодам с большим диаметром поля моды. Световод включает сердцевину и оболочку, состоящую из стержней, расположенных в гексагональном порядке. Сердцевина диаметром 98-112 мкм выполнена из кристаллов на основе бромида серебра, содержащего твердый раствор...
Тип: Изобретение
Номер охранного документа: 0002506615
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a345

Способ изготовления модифицированного электрода для электрохимического анализа (варианты)

Использование: для контроля состава природных, сточных вод, биологических объектов, пищевых продуктов, диагностики заболеваний в химической, металлургической, пищевой промышленности, медицине, экологии. Сущность: способ изготовления модифицированного электрода включает синтез на поверхности...
Тип: Изобретение
Номер охранного документа: 0002507512
Дата охранного документа: 20.02.2014
20.04.2014
№216.012.bb33

Способ измерения поглощенной дозы ионизирующего излучения в термолюминесцентном детекторе на основе анионо-дефектного монокристалла оксида алюминия (варианты)

Изобретение относится к радиационной физике, а именно к способам измерения поглощенной дозы ионизирующего γ-излучения, или β-излучения, или импульсного потока электронов в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия. Способ измерения поглощенной дозы...
Тип: Изобретение
Номер охранного документа: 0002513651
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c1b0

Термогравиметрическая установка

Термогравиметрическая установка предназначена для определения кислородной нестехиометрии в твердых оксидных материалах по изменению их массы в зависимости от температуры и парциального давления кислорода газовой атмосферы. Термогравиметрическая установка содержит измерительную систему,...
Тип: Изобретение
Номер охранного документа: 0002515333
Дата охранного документа: 10.05.2014
27.05.2014
№216.012.cb24

Способ определения плотности металлических расплавов

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических расплавов путем измерения плотности и поверхностного натяжения неподвижно лежащей на подложке эллипсовидной капли образца расплава посредством фотоэлектронной объемометрии. Образец...
Тип: Изобретение
Номер охранного документа: 0002517770
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.cb27

Способ определения поглощенной дозы ионизирующего ультрафиолетового или бета-излучения в детекторе на основе монокристалла нитрида алюминия

Изобретение относится к радиационной физике, а именно к способам определения поглощенной дозы ионизирующего ультрафиолетового или бета-излучения в детекторе на основе монокристаллического нитрида алюминия с использованием метода оптически стимулированной люминесценции (ОСЛ) в непрерывном режиме...
Тип: Изобретение
Номер охранного документа: 0002517773
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.ccd4

Способ термической обработки рельсов

Изобретение относится к области черной металлургии, в частности к производству железнодорожных рельсов, преимущественно длинномерных рельсов. Перед охлаждением прокатанного рельса при температуре конца прокатки 850-870°С концы рельса зажимают в клещевых зажимах и растягивают в продольном...
Тип: Изобретение
Номер охранного документа: 0002518207
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cdaf

Способ бестокового получения урана (v) в расплавленных хлоридах щелочных металлов

Изобретение относится к области создания пирохимических технологий переработки облученного ядерного топлива, в частности оксидного. Способ бестокового получения урана (V) в расплавленных хлоридах щелочных металлов (NaCl-2CsCl, NaCl-KCl, LiCl-KCl), содержащих ионы урана (VI), сущность которого...
Тип: Изобретение
Номер охранного документа: 0002518426
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d5eb

Аппликатор магнитный

Изобретение относится к медицине, а именно к магнитотерапии, и может быть использовано для лечения различных заболеваний воздействием магнитных полей, создаваемых постоянным магнитом, размещаемым снаружи тела. Аппликатор магнитный содержит гибкую пластину из магнитомягкого эластомера на основе...
Тип: Изобретение
Номер охранного документа: 0002520541
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.df1f

Способ извлечения редкоземельных элементов из жидких сплавов с цинком

Изобретение относится к области создания пирохимических технологий переработки облученного ядерного топлива, а именно к способу извлечения редкоземельных элементов из жидкого сплава с цинком. Предлагаемый способ включает погружение сплава в солевой расплав с последующим переводом редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002522905
Дата охранного документа: 20.07.2014
+ добавить свой РИД