×
20.12.2015
216.013.9ac0

Результат интеллектуальной деятельности: ФЕРРИТНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к составам ферритных коррозионно-стойких сталей, применяемых в машиностроении для изделий, к которым предъявляются требования обеспечения высокой твердости и коррозионной стойкости при достаточной пластичности. Сталь содержит углерод, хром, никель, титан, молибден, алюминий, церий, иттрий и железо при следующем соотношении компонентов, мас.%: углерод до 0,03, хром 12-18, никель 5-10, молибден 0,8-3,0, титан менее 0,20, алюминий 1,0-2,5, церий до 0,02, иттрий ≤,002, железо - остальное. Повышаются прочностные свойства стали. 1 ил., 1 пр.
Основные результаты: Ферритная коррозионно-стойкая сталь, содержащая углерод, хром, молибден, титан, алюминий и железо, отличающаяся тем, что она дополнительно содержит никель, церий и иттрий, при следующем соотношении компонентов, мас.%:

Изобретение относится к области металлургии, то есть к изысканию сплавов, применяемых в машиностроении для изделий, к которым предъявляются требования обеспечения высокой твердости и коррозионной стойкости при достаточной пластичности.

Ферритные стали, легированные хромом, применяются для изготовления изделий, работающих в окислительных средах, для бытовых приборов, в пищевой и легкой промышленности и для теплообменного оборудования в энергомашиностроении. Эти стали имеют высокую коррозионную стойкость в азотной кислоте, водных растворах аммиака, в аммиачной селитре, смеси азотной, фосфорной и фтористоводородной кислот, а также в других агрессивных средах [1].

Известны аналоги изобретения [2-9], позволяющие получить ферритные коррозионно-стойкие стали, обладающие повышенными пластичностью, пределом текучести и производительностью сварки труб [2], устойчивостью к термическому циклическому стрессу и оксидированию при повышенной температуре [3] и т.д. Однако все эти стали обладают недостаточно высокой прочностью.

В настоящее время из числа отечественных ферритных коррозионно-стойких сталей наиболее известны стали 12X17, 08Х18Т и 015Х18М2Б. При высокотемпературном нагреве в стали 12X17 возможно образование аустенита, что является нежелательным для сталей этого типа, так как при охлаждении происходит мартенситное превращение, что повышает твердость, снижает пластичность, вызывает склонность к межкристаллитной коррозии. Для предотвращения этого явления уменьшают содержание углерода или вводят титан, ниобий, молибден, которые способствуют получению однофазной структуры, а образование карбидов титана и ниобия снижает склонность к росту зерна и улучшает коррозионную стойкость, в частности, сварных швов (08Х18Т и 015Х18М2Б) [1].

В зарубежной практике разработаны стали с низким суммарным содержанием углерода и азота (0,025-0,035%), содержащие 18-28% Cr и 2-4% Mo, стабилизированные Ti или Nb. Эти стали называют суперферритами; они имеют высокую стойкость во многих агрессивных средах, стойки против коррозии под напряжением, питтинговой и щелевой коррозии [1].

Хромистые ферритные стали имеют крупный недостаток: они могут охрупчиваться в процессах технологических нагревов и длительных выдержек при повышенных температурах во время эксплуатации. В них возможна хрупкость при выдержках в интервале температур 400-500°C, хрупкость при 600-800°C (в связи с образованием σ-фазы) и хрупкость вследствие образования чрезмерно крупных зерен, например при сварке. Хрупкость хромистых ферритных сталей трудно, а часто и невозможно устранить последующей обработкой, что сужает возможности их практического использования и накладывает ограничения на технологические операции [1]. Известна [11] ферритная коррозионно-стойкая сталь, содержащая в мас.%: углерод до 0,03; хром 12,0-25,0; никель 5,0-18,0, алюминий 3,0-9,5; титан 0,25-0,5; молибден 0,8-6,0; лантан + иттрий до 0,05, железо - остальное, обладающая высокой твердостью, прочностью и свариваемостью, жаростойкостью в средах продуктов горения и коррозионной стойкостью в солевых и кислых средах, но недостаточной высокой пластичностью.

Прототипом изобретения является ферритная коррозионно-стойкая сталь [10], содержащая в мас.%: углерод 0,02-0,09, хром 5,0-13,0, кремний 1,0-2,5, алюминий 0,9-1,65, титан 0,2-0,8, молибден 0,07-0,35, ванадий 0,07-0,15, железо - остальное, обладающая повышенной пластичностью, свариваемостью, жаростойкостью в средах продуктов горения и коррозионной стойкостью в солевых и кислых средах, но недостаточной прочностью.

Задача, на решение которой направлено изобретение, заключается в создании ферритной коррозионно-стойкой стали, обладающей более высоким комплексом физико-механических свойств (прочность, коррозионная стойкость) в закаленном и состаренном состоянии, и в то же время которая была бы не подвержена хрупкости при нагреве и обладала достаточно высокой пластичностью. Техническим решением данного изобретения является разработка такого состава ферритной стали, у которой после закалки сохраняется до 15-20% вторичного аустенита, сдерживающего рост зерна при нагреве под закалку и нестабильного при деформации, который в результате последеформационного старения приводит к дополнительному упрочнению ферритной стали.

Поставленная задача достигается тем, что коррозионно-стойкая ферритная сталь, содержащая углерод, хром, молибден, титан, алюминий и железо дополнительно содержит никель, церий и иттрий, при следующем соотношении компонентов в мас.%: углерод до 0,03; хром 12-18; никель 5-10; молибден 0,8-3,0; титан менее 0,20; алюминий 1,0-2,5; церий до 0,02; иттрий ≤0,002, железо - остальное1 (Изменение соотношение в стали феррито- и аустенитообразующих элементов алюминия приводит к изменению структурного класса и резкому повышению прочностных свойств в состоянии: закалка с последующим старением, присутствие в ферритной стали небольшого количества более пластичного вторичного аустенита уменьшает склонность ферритной стали к росту зерна, что способствует более высокой ее пластичности и технологичности [16].). Влияние легирующих элементов на положение области γ→(δ)α превращения в системе Fe-Cr и местонахождение исследуемой стали показано в Приложении 1.

Углерод в сталь специально не вводится, он является вредной примесью, и содержание углерода в стали не должно превышать 0,03% для обеспечения высокой пластичности.

При содержании хрома менее 8% не обеспечиваются коррозионные свойства нержавеющей стали. При большом содержании хрома (более 20%) происходит удорожание стали и возникает опасность образования σ-фазы, которая приводит к понижению пластичности.

Содержание никеля в количестве 5-10% увеличивает пластичность, вязкость стали; никель также входит в состав упрочняющей фазы. Никель совместно с хромом повышает коррозионную стойкость в слабо окисляющих или не окисляющих растворах химических веществ. Использование никеля как основы позволяет получить сплавы с высокой коррозионной стойкостью в сильных агрессивных кислотах. Однако повышенное количество никеля, который является одним из основных аустенитообразующих элементов, приводит к образованию повышенного количества аустенита в ферритных сталях и, следовательно, не должно быть чрезмерным [12].

Молибден повышает прочность, релаксационную стойкость, способствует повышению коррозионной стойкости и теплостойкости, подавляет обратимую отпускную хрупкость [13-14]. Однако повышение молибдена в стали выше 3,0% приводит к появлению в структуре высокотемпературной интерметаллидной молибденсодержащей χ-фазы, снижающей пластичность стали [15].

Дополнительное упрочнение получается в результате дисперсионного твердения. Для этого в сталь вводят алюминий и титан, причем титан как наиболее сильный элемент по сродству к углероду образует незначительное количество карбидов TiC, который и связывает весь углерод в карбид. Самостоятельный интерметаллид Ti не образует, хотя не исключено, что он может входить в состав алюминида никеля, образуя более сложную интерметаллидную упрочняющую фазу. Так как содержание углерода ограничено (≤0,03%), то и количество Ti может быть понижено до 0,20%. В исследуемой стали упрочняющая фаза - интерметаллид (Fe, Ni)Al выделяется из ОЦК-фазы, как в мартенситно-стареющих сталях.

Церий и иттрий вводится в сталь с целью измельчения ферритного зерна, что особенно важно для сталей ферритного класса, которые склонны к росту зерна с повышением температуры нагрева под закалку.

Пользуясь структурной диаграммой для нержавеющих литых хромоникелевых сталей А. Шеффлера (рис.1), можно рассчитать, что исследуемая сталь находится вблизи феррито-аустенитной границы (ферритная область заштрихованная). Относительный вклад каждого элемента в установление структуры определяется никелевым и хромовым эквивалентом по следующим формулам [17]:

%Ni - эквивалента=%Ni+%Co+30(%C)+25(%N)+0,5(%Mn)+0,3(%Cu)

%Cr - эквивалента=%Cr+2(%Si)+1,5(%Mo)+5(%V)+5,5(%Al)+1,5(%Nb)

+1,75(%Ti)+0,75(%W)

Пример. Образцы из исследуемой стали 03Х13Н8М2ЮТ были выплавлены в индукционных печах типа Таммана весом 1-1,5 кг. Затем подвергались нагреву под закалку в интервале температур 900-1200°C в течение 15 мин с последующим охлаждением в воде. Твердость образцов по Виккерсу после закалки изменялась от 325 до 350 HV5/12,5. Повышение температуры нагрева под закалку от 900 до 1200°C не привело к существенному росту зерна феррита, хотя количество δ-феррита неуклонно росло. Рекомендуемая температура нагрева под закалку составляет 1000-1050°C. Рентгеноструктурное исследование показало, что структура закаленной от указанных температур исследуемой стали состоит практически из 82% феррита, незначительного количества упрочняющей упорядоченной интерметаллидной фазы (Fe, Ni)Al и ≈18% вторичного аустенита.

Закаленные от 1000°C в воду образцы подвергались старению в интервале температур 300-600°C. Проведенное исследование показало, что наибольшее упрочнение достигается после старения при 500°C в течение 1 ч. Твердость закаленных образцов после старения повышалась до 530 HV5/12,5, в то время как микротвердость δ-феррита составляла 450-500 HV, а микротвердость аустенита - 250HV. Как показали результаты рентгеноструктурного анализа, охрупчивания, свойственного ферритным сталям в интервале температур 400-500°C, не наблюдалось, так как алюминий приводит к подавлению выделения σ-фазы [18]. Упрочнение, получаемое при старении при температуре 500°C, происходит за счет дополнительного выделения из ОЦК-фазы (δ-феррита) той же интерметаллидной фазы (Fe, Ni)Al. Разупрочнение исследуемой стали наблюдалось при нагреве выше 600°C, что позволяет сделать вывод о теплостойкости предлагаемой стали до температур 500°C.

Для оценки поведения при деформации образцы исследуемой закаленной стали 03Х13Н8М2ЮТ были подвергнуты деформации сжатием до ε=1,2 без разрушения целостности образца. При этом сопротивление деформированию возросло более чем в 2 раза с 480 в закаленном состоянии до 1150 МПа.

Проведенные исследования показали, что, несмотря на высокие прочностные свойства, исследуемая сталь обладает удовлетворительной пластичностью и может выдерживать умеренные суммарные деформации. Как показали рентгеноструктурные и магнитные исследования, количество ОЦК фазы при деформации увеличилось практически до 100%, т.е. аустенит исследуемой стали является деформационно-нестабильным и при деформации испытывает γ→α превращение. Последеформационное старение приводит к дополнительному повышению прочностных свойств до 1550 МПа.

Сравнительные испытания на коррозионную стойкость показали, что исследуемая сталь превышает по коррозионной стойкости промышленные нержавеющие стали 12Х18Н10Т, 30X13.

Таким образом, предлагаемую сталь целесообразно использовать в состоянии закалки (от температур 1000-1050°C) и последующего старения, которое лучше проводить на готовых изделиях, после которого удалось получить высокий комплекс прочностных свойств при сохранении достаточного запаса пластичности, что дает возможность использования исследуемой стали в качестве материала для высокопрочных, коррозионно-стойких и теплостойких деталей для приборостроения и точного машиностроения в закаленном и состаренном состоянии. Проведение умеренных пластических деформаций является дополнительным фактором, приводящим к формированию высокопрочного состояния в исследуемой стали.

Список литературы

1. Гольдштейн М.И., Грачев C.B., Векслер Ю.Г. Специальные стали. Учебник для вузов. М.: Металлургия, 1999, 408 с.

2. Патент №2250272. Россия. Публикация 20.04.2005. кл. C22C 38/54. Ферритная нержавеющая сталь.

3. Патент №6773660. США. Публикация 02.10.2002. кл. C22C 38/22. Ферритная нержавеющая сталь для использования при высоких температурах и способ получения фольги из этой стали.

4. Патент №2033465. Россия. Публикация 20.04.1995. кл. C22C 38/54. Ферритная сталь.

5. Патент №3480061. Япония. Публикация 20.09.1994. кл. C22C 38/00. Высокохромистая ферритная жаропрочная сталь.

6. Патент №3468156. Япония. Публикация 13.04.1999. кл. C22C 38/00. Ферритная нержавеющая сталь для деталей выхлопной системы автомобиля.

7. Патент №3367216. Япония. Публикация 20.09.1994. кл. C22C 38/00. Высокохромистая ферритная жаропрочная сталь.

8. Патент №3427502. Япония. Публикация 22.08.1994. кл. C22C 38/00. Ферритная нержавеющая сталь для детали автомобильной выхлопной системы.

9. Патент №3567603. Япония. Публикация 22.04.1996. кл. C22C 38/00. Высокохромистая ферритная сталь, обеспечивающая высокие характеристики ползучести сварного соединения.

10. Патент №2082814. Россия. Публикация 27.06.1997. кл. C22C 38/28. Ферритная коррозионно-стойкая сталь.

11. Патент №2352680. Россия. Публикация 20.04.2009. кл. C22C 38/50. Ферритная коррозионно-стойкая сталь.

12. Бабаков Α.Α., Приданцев М.В. Коррозионно-стойкие стали и сплавы. М.: Металлургия, 1971, 200 с.

13. Грачев C.B., Бараз В.Р. Теплостойкие и коррозионно-стойкие пружинные стали. М.: Металлургия, 1989, 144 с.

14. Рахштадт А.Г. Пружинные стали и сплавы. М.: Металлургия, 1982, 400 с.

15. Фазовые превращения при высокотемпературной аустенитизации и распаде пересыщенного твердого раствора в Fe-Cr-Co-Mo мартенситностареющих сталях/А.В. Василенко, Н.В. Звигинцев, Б.М. Могутнов и др. - ФММ. 1980. т.49. С.603-610.

16. Патент №2252977. Россия. Публикация №15 от 27.05.2005. Кл. C22C 38/52. Высокопрочная коррозионно-стойкая аустенитная сталь.

17. Вороненко Б.И. Современные коррозионно-стойкие аустенитно-ферритные стали. МИТОМ. №10, 1997.

18. Сокол И.Я. Двухфазные стали. М.: Металлургия, 1964, 215 с.

Ферритная коррозионно-стойкая сталь, содержащая углерод, хром, молибден, титан, алюминий и железо, отличающаяся тем, что она дополнительно содержит никель, церий и иттрий, при следующем соотношении компонентов, мас.%:
ФЕРРИТНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 107.
13.01.2017
№217.015.73d2

Способ подавления лавинного шума в спектрометрах с медленными сцинтилляторами и кремниевыми фотоумножителями

Изобретение относится к сцинтилляционным спектрометрам ионизирующих излучений. Сущность изобретения заключается в том, что сцинтилляционные сигналы и лавинные шумовые импульсы с выхода кремниевого фотоумножителя, прежде чем они попадут на интегратор сцинтилляционных импульсов, разветвляют в...
Тип: Изобретение
Номер охранного документа: 0002597668
Дата охранного документа: 20.09.2016
26.08.2017
№217.015.d4f5

Система аварийного отвода энерговыделений активной зоны реактора на быстрых нейтронах

Изобретение относится к системе аварийного отвода энерговыделений активной зоны реактора на быстрых нейтронах. Заявленная система содержит контур воздушного теплообменника, внутренний нижний теплообменник которого расположен непосредственно в активной зоне реактора, а наружный внешний...
Тип: Изобретение
Номер охранного документа: 0002622408
Дата охранного документа: 15.06.2017
26.08.2017
№217.015.d7e4

Плавниковый лопастной движитель для плавсредств надводного и подводного плавания (варианты)

Изобретение относится к судостроению, а именно к плавсредствам. Плавниковый лопастной движитель для плавсредств надводного и подводного плавания включает в себя вариант конструкции надводного судна, которое содержит по обе стороны от осевой линии судна протяженные кормовые плавники с окнами,...
Тип: Изобретение
Номер охранного документа: 0002622519
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.dfb0

Способ извлечения палладия с помощью полисилоксана

Изобретение относится к способам извлечения микроколичеств благородного металла, такого как палладий, из разбавленных растворов. Cпособ извлечения палладия из многокомпонентных растворов включает перемешивание дитиооксамидированного полисилоксана с раствором, в котором при помощи ацетатной...
Тип: Изобретение
Номер охранного документа: 0002625205
Дата охранного документа: 12.07.2017
26.08.2017
№217.015.e02d

Способ термомеханической обработки прутков из двухфазных титановых сплавов для получения низких значений термического коэффициента линейного расширения в направлении оси прутка

Изобретение относится к области металлургии, а именно к способам термомеханической обработки прутков из двухфазных титановых сплавов. Способ термомеханической обработки прутков из двухфазных титановых сплавов с молибденовым эквивалентом от 3,3 до 22% включает закалку прутка и его холодную...
Тип: Изобретение
Номер охранного документа: 0002625376
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.ea7f

Способ изучения бинарного бариево-литиевого сплава и устройство для его осуществления

Группа изобретений относится к технической физике применительно к изучению образцов двухкомпонентных металлических сплавов, а именно исследованиям термозависимостей физических свойств расплавов образцов химически активных сплавов. При осуществлении способа используют образцы шихты изучаемого...
Тип: Изобретение
Номер охранного документа: 0002628036
Дата охранного документа: 14.08.2017
19.01.2018
№218.016.00d7

Устройство для фотометрического определения удельного электросопротивления металлических расплавов

Изобретение относится к анализу материалов путем фотометрического определения удельного электросопротивления нагреваемого тела в зависимости от температуры, в частности к определению удельного электросопротивления металлов и сплавов в жидком состоянии. Устройство содержит компьютер, источник...
Тип: Изобретение
Номер охранного документа: 0002629699
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.1b54

Способ наноструктурирующего упрочнения поверхностного слоя прецизионных деталей выглаживанием и система для его осуществления

Изобретение относится к наноструктурирующему упрочнению поверхностного слоя прецизионных деталей выглаживанием. Используют выглаживающий инструмент, содержащий индентор, изготовленный из сверхтвердого инструментального материала, и модуль охлаждения индентора жидким теплоносителем....
Тип: Изобретение
Номер охранного документа: 0002635987
Дата охранного документа: 17.11.2017
04.04.2018
№218.016.36be

Сцинтилляционный гамма-спектрометр

Изобретение относится к области сцинтилляционных γ-спектрометров, точнее к спектрометрам энергий на основе сцинтилляторов NaI:Tl, CsI:Tl, CsI:Na, LaCl:Ce и других, характеризующихся многокомпонентными световыми вспышками с сильной зависимостью постоянных времени высвечивания от температуры...
Тип: Изобретение
Номер охранного документа: 0002646542
Дата охранного документа: 05.03.2018
16.06.2018
№218.016.63b4

Сырьевая смесь для зольного аглопоритового гравия

Изобретение относится к технологиям производства пористых заполнителей для промышленного, гражданского и дорожного строительства. Технической задачей изобретения является разработка состава сырьевой смеси, обеспечивающего повышение теплоизоляционных свойств зольного гравия посредством...
Тип: Изобретение
Номер охранного документа: 0002657567
Дата охранного документа: 14.06.2018
Показаны записи 91-100 из 157.
10.12.2014
№216.013.0ef3

Имплантированная ионами олова пленка оксида кремния на кремниевой подложке

Изобретение относится к материаловедению. Пленка оксида кремния на кремниевой подложке, имплантированная ионами олова, включает нанокластеры альфа-олова. Толщина пленки составляет 80÷350 нм, средняя концентрация олова находится в пределах от 2,16 до 7,1 атомных процентов, нанокластеры...
Тип: Изобретение
Номер охранного документа: 0002535244
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.100c

Способ определения удельного электросопротивления расплавов и устройство для его осуществления

Группа изобретений относится к технической физике, а именно - к анализу материалов путем бесконтактного определения методом вращающегося магнитного поля электросопротивления образца в зависимости от температуры, в частности - к определению относительной электропроводности металлов и сплавов в...
Тип: Изобретение
Номер охранного документа: 0002535525
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.177b

Устройство для монтажа плит и балок

Изобретение относится к области строительства, а именно к монтажу плит перекрытия (покрытия) и балок зданий вне зоны действия монтажного крана. Задача изобретения - обеспечение возможности монтажа плит и балок в зданиях различного назначения вне зоны действия монтажного крана, без использования...
Тип: Изобретение
Номер охранного документа: 0002537439
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1840

Устройство для получения гофрированных труб

Изобретение относится к области обработки металлов давлением, конкретно к трубопрофильному производству. Формующий узел содержит профилирующий элемент в виде мембраны и связанных с ней одного или нескольких профилирующих кольцевых выступов, причем мембрана установлена с возможностью изгибания...
Тип: Изобретение
Номер охранного документа: 0002537636
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1859

Аккумулятор тепловой энергии периодического действия

Изобретение относится к энергетике и может быть использовано в аккумуляторах тепловой энергии, произведенной за счет использования электрической энергии в периоды ее наименьшей стоимости по ночным тарифам. Сущность изобретения: аккумулятор тепловой энергии периодического действия, содержащий в...
Тип: Изобретение
Номер охранного документа: 0002537661
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1990

Способ передачи данных в полосе частот аналогового тв

Изобретение относится к технике связи и может использоваться для передачи данных в полосе частот аналогового ТВ. Технический результат состоит в обеспечении магнитной совместимости телевизионных операторов в одной полосе частот. Для этого способ основан на выборе в полосе ТВ частотных окон,...
Тип: Изобретение
Номер охранного документа: 0002537972
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a45

Электрохимический способ иммуноанализа для определения микроорганизмов

Изобретение относится к биотехнологии, в частности к определению содержания микроорганизмов в различных объектах и средах. Способ предусматривает конъюгацию бактерий с электрохимической меткой, в качестве которой используют Fe, MgFeO или FeO, осуществляемую в водной среде при заданных...
Тип: Изобретение
Номер охранного документа: 0002538153
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1df8

Биогазовая установка

Изобретение относится к области переработки и утилизации органических отходов путем сбраживания биомассы для получения биогаза и удобрения, в том числе в зонах с холодным климатом. Биогазовая установка содержит теплоизолированный метантенк, состоящий из экструдера-смесителя, электрических...
Тип: Изобретение
Номер охранного документа: 0002539100
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dfc

Способ изготовления безгистерезисного актюатора с линейной пьезоэлектрической характеристикой

Изобретение относится к области изготовления устройств точного позиционирования на основе пьезоэлектрических актюаторов, характеризующихся широким интервалом рабочих температур, в частности для изготовления прецизионных безгистерезисных сканеров сканирующих зондовых микроскопов и устройств...
Тип: Изобретение
Номер охранного документа: 0002539104
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2254

Сталь для изготовления кованых прокатных валков

Изобретение относится к области металлургии, а именно к инструментальным сталям, используемым для изготовления кованых прокатных валков для горячей прокатки металла, например, профилей и труб. Сталь содержит компоненты при следующем соотношении, мас.%: углерод (С) 1,2-1,4, кремний (Si) 0,2-0,5,...
Тип: Изобретение
Номер охранного документа: 0002540241
Дата охранного документа: 10.02.2015
+ добавить свой РИД