×
20.12.2015
216.013.9a71

Результат интеллектуальной деятельности: СИСТЕМА И СПОСОБ ИЗМЕРЕНИЯ ДЕБИТА ОТДЕЛЬНЫХ НЕФТЯНЫХ СКВАЖИН, ВХОДЯЩИХ В СОСТАВ КУСТА СКВАЖИН

Вид РИД

Изобретение

№ охранного документа
0002571162
Дата охранного документа
20.12.2015
Аннотация: Предлагаются система и способ динамической калибровки, предназначенные для измерения дебита скважинного флюида отдельных нефтяных скважин, входящих в состав куста скважин. Отличительной особенностью системы и способа динамической калибровки является то, что они включают в себя средство, предусмотренное для индивидуальной калибровки датчика давления в соответствии с параметрами каждой отдельной скважины. Технический результат - повышение точности результатов измерения дебита флюидов. 2 н. и 15 з.п. ф-лы, 2 ил., 1 табл.

Настоящее изобретение относится к измерению дебита флюидов нефтяных скважин. Скважинные флюиды обычно представляют собой многофазную смесь, содержащую воду, нефть и газ. В частности, изобретение относится к усовершенствованной системе и способу измерения дебита скважинных флюидов отдельных нефтяных скважин, входящих в состав группы скважин, с использованием одного многофазного расходомера.

УРОВЕНЬ ТЕХНИКИ

Оптимизация производительности пласта на предприятиях нефтяной промышленности определяется возможностью проведения периодической оценки параметров флюида, таких как объем (дебит) и состав (доля различных фаз). Данная оценка позволяет определить корректирующие действия, которые, возможно, требуется предпринять. В общем, измерение дебита флюидов нефтяных скважин представляет собой сложную задачу, поскольку флюиды обычно содержат три фазы и, кроме того, происходят изменения условий передачи флюида, таких как давление, температура, форма трубопровода и т.д.

Традиционный способ измерения дебита флюида нефтяной скважины заключается в разделении флюида на отдельные фазы и выполнении измерений по отдельным фазам. Данный способ требует установки на объекте громоздких сепараторов. При этом необходимо также проложить дополнительные трубопроводы для соединения сепараторов с системой. Предпочтительный пример данного способа предусматривает использование многофазных расходомеров (МФРМ), обеспечивающих измерение общего дебита и индивидуальных значений дебита фаз или фракций нефти, газа и воды в составе флюида без предварительного разделения фаз. Для реализации этого способа предлагалось большое число различных типов многофазных расходомеров. Описание таких устройств представлено, например, в публикации SPE 28515 (SPE Annual Technical Conference, New Orleans, September 25-28, 1994), автор Дж. Уильямс, под названием «Состояние исследований в области многофазных измерений дебита». Один из известных типов многофазных расходомеров описан в патенте США № 6405604, выданном Берарду и др. 18 июня 2002 г. Многофазный расходомер, описанный в указанном патенте, содержит трубку Вентури и двухэнергетический гамма-измеритель фракций. Варианты такого многофазного расходомера описаны в патентах США №№ 6265713, 7105805, 7240568, принадлежащих корпорации Schlumberger Technology Corporation.

На предприятиях нефтедобывающей промышленности необходимо периодически контролировать дебит флюида, подаваемого из каждой скважины группы скважин, расположенных рядом друг с другом. Такая группа скважин обычно называется «кустом скважин». С целью снижения затрат на оборудование измерение параметров отдельных скважин куста скважин выполняется индивидуально с использованием одного комплекта измерительных приборов. В связи с этим, предпочтительным способом выполнения измерений является применение одного сепаратора или одного многофазного расходомера, предназначенного для проведения измерений параметров скважин, входящих в состав куста скважин. Обычно для выполнения этой операции используется переключатель скважин, который обеспечивает подачу флюида выбранной скважины на сепаратор или расходомер. Регулирование положения переключателя обычно осуществляется при помощи автоматической системы управления. Однако, поскольку дебит и состав флюида различных скважин куста могут значительно отличаться, сложно получить точные данные измерений, особенно при использовании одного многофазного расходомера. Фактически, очень редко встречается ситуация, когда все скважины куста имеют одинаковую производительность и, таким образом, добываемый флюид подается, по существу, при одинаковом давлении. Обычно наблюдаются значительные различия производительности и дебита флюидов, выдаваемых различными скважинами куста. Например, нередкими являются случаи, когда дебит продукта скважины, имеющей минимальную производительность, составляет примерно одну треть или даже меньшую долю дебита скважины с максимальной производительностью. В связи с этим, существует потребность повышения точности измерений, выполняемых многофазными расходомерами, которые используются для измерения дебита флюидов, выдаваемых различными скважинами, входящими в состав куста скважин.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение позволяет устранить указанные выше, а также другие недостатки известных решений, что будет очевидным для специалистов в данной области техники после ознакомления с подробным описанием изобретения. Среди прочего, в соответствии с настоящим изобретением предлагаются усовершенствованная система и способ «индивидуальной калибровки» многофазного расходомера для каждой отдельной скважины, входящей в состав куста скважин, с целью повышения точности измерений дебита. Способ «индивидуальной калибровки» далее в настоящем документе также называется способом «индивидуальной последовательной калибровки» или «динамической калибровки». Настоящее изобретение, в общем, относится к усовершенствованной системе и способу измерения дебита флюида, выдаваемого отдельными нефтяными скважинами, входящими в состав куста скважин, с использованием одного многофазного расходомера. Многофазный расходомер содержит датчик давления, калиброванный индивидуально для каждой скважины, с целью повышения точности результатов измерения дебита. Датчик давления предпочтительно представляет собой датчик дифференциального давления. Система также содержит клапанный блок, размещенный между каждой отдельной нефтяной скважиной и многофазным расходомером, который включает и выключает подачу флюида от одной выбранной скважины к многофазному расходомеру, и средство индивидуальной калибровки датчика давления для каждой отдельной скважины с целью повышения точности результатов измерения дебита.

В соответствии с другой отличительной особенностью настоящего изобретения предлагается способ измерения дебита отдельных скважин, входящих в состав куста скважин, при помощи одного многофазного расходомера. Указанный способ содержит этапы: определения диапазона давления, в котором функционирует каждая скважина куста; выбора отдельной скважины, для которой определен диапазон давления; калибровки дифференциального расходомера на основе указанного диапазона давления, соответствующего выбранной скважине; и измерения дебита выбранной скважины. Данная последовательность операций повторяется до выполнения измерения дебита всех скважин.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фиг.1 представлена схема предпочтительного примера осуществления системы в соответствии с настоящим изобретением.

На Фиг.2 указана структурная схема предпочтительного примера способа в соответствии с настоящим изобретением.

В соответствии с одной особенностью настоящего изобретения предлагается система для измерения дебита флюида отдельных нефтяных скважин, входящих в состав куста скважин, с использованием одного многофазного расходомера. Указанная система содержит многофазный расходомер, включающий в себя средство, предназначенное для создания поддающегося измерению перепада давления, и датчик давления для измерения перепада давления. Данная система дополнительно содержит клапанный блок, установленный между каждой отдельной нефтяной скважиной и многофазным расходомером, который осуществляет включение и выключение подачи флюида от одной выбранной скважины к многофазному расходомеру. Кроме того, система содержит средство, предназначенное для выполнения индивидуальной калибровки датчика давления для каждой отдельной скважины с целью повышения точности измерения дебита. Средство индивидуальной калибровки включает в себя цифровой контроллер, функционально связанный с датчиком давления и клапанным блоком, который определяет диапазон давления для каждой скважины, входящей в состав куста скважин, осуществляет выбор отдельной скважины для измерения дебита и выполняет калибровку расходомера в указанном диапазоне давления, соответствующем выбранной скважине.

На Фиг.1 представлена схема примера осуществления системы 1 в соответствии с настоящим изобретением, установленная в структуре нефтяных скважин 2, входящих в состав куста 3 скважин. Куст 3 скважин может включать в себя две или большее число скважин. Куст скважин, указанный на Фиг.1, состоит из восьми скважин 2. В общем, система 1 содержит многофазный расходомер 5, поворотный клапанный блок 7, обеспечивающий последовательную подачу флюида от каждой скважины 2 к многофазному расходомеру 5, и цифровой контроллер 9, функционально связанный с многофазным расходомером 5 и клапанным блоком 7.

Многофазный расходомер 5 включает в себя датчик 11 дифференциального давления, трубку 13 Вентури и двухэнергетический измеритель 15 фракций, установленный в средней части или на горловине трубки 13 Вентури. Многофазный расходомер 5 содержит секцию трубопровода, включающую в себя сужающуюся трубку 13 Вентури, самая узкая часть которой называется горловиной. Секцию трубопровода предпочтительно устанавливают вертикально, в результате чего флюид протекает через секцию трубы и трубку Вентури в направлении вверх. Конфигурация проходного сечения трубки Вентури вызывает возникновение перепада Δp давления. Перепад Δp давления связан с общим массовым дебитом Q и плотностью ρm многофазного флюида уравнением, известным в области многофазных расходомеров. Общий дебит Q флюида, проходящего через сопло 13 Вентури (или диафрагму), пропорционален корню квадратному перепада Δp давления на трубке Вентури, как указано следующим упрощенным выражением:

. (Уравнение 1)

Измерение перепада Δp давления осуществляется при помощи датчика 11 дифференциального давления, связанного с двумя отверстиями для замера давления, размещенными на измерительной секции трубопровода. Как указано на Фиг.1, датчик 11 дифференциального давления подключен к входному и выходному участкам сопла 13 Вентури. Можно использовать также другие схемы подключения датчика 11 дифференциального давления. Например, первая точка замера датчика 11 дифференциального давления может быть размещена за горловиной трубки Вентури по ходу потока, а вторая точка замера - на горловине. Кроме того, следует учитывать, что вместо датчика дифференциального давления для осуществления аналогичного измерения можно использовать два датчика абсолютного давления. В примере осуществления изобретения данное измерение выполняется при помощи двух датчиков абсолютного давления, подключенных к указанным точкам замера. Плотность ρm многофазной смеси определяется с использованием датчика 15, обеспечивающего измерение затухания гамма-излучения при помощи источника и приемника излучения, размещенных на противоположных сторонах горловины трубки Вентури. Входная секция 16a сопла 13 Вентури подключена к выходному трубопроводу 17a клапанного блока 7, а выходная секция 16b сопла 13 Вентури подключена к общему выходному трубопроводу 17b всех скважин 2 куста 3 скважин.

Кроме датчика дифференциального давления многофазный расходомер предпочтительно включает в себя трубку Вентури и гамма-плотномер, например, аналогично расходомерам, которые серийно выпускает корпорация Schlumberger под наименованиями PhaseWatcher и PhaseTester. Однако следует учитывать, что преимущества изобретения сохраняются при использовании любого типа многофазного расходомера, включающего в себя датчик дифференциального давления. Например, измеритель 15 фракций может представлять собой рентгеновский измеритель фракций, описанный в патенте США № 7684540, выданном корпорации Schlumberger Technology Corporation.

Существует много факторов, которые определяют составляющие суммарной неопределенности общего дебита, например диаметр горловины трубки Вентури, плотность и соотношение фракций флюида, вязкость, погрешность измерения дифференциального давления. Однако заявители установили, что при измерении параметров флюидов отдельных скважин, входящих в состав куста скважин, погрешность измерения дифференциального давления является преобладающим фактором влияния на общую погрешность результатов измерения дебита. Это особенно заметно, если различные скважины имеют значительно отличающиеся значения дебита. Другим воздействующим факторам соответствуют примерно одинаковые составляющие общей неопределенности, которые можно контролировать с использованием известных способов. Таким образом, точная калибровка датчика 11 дифференциального давления расходомера 5 для каждой скважины является основным фактором обеспечения точных результатов измерения дебита. Например, исходя из упрощенного уравнения 1, можно установить, что относительная неопределенность или погрешность результатов измерения дифференциального давления определяет примерно половину относительной неопределенности данных измерения общего дебита:

δQ ~ 1/2[δ(Δp]. (Уравнение 2)

В общем, погрешность функционирования датчика дифференциального давления зависит от калиброванного интервала, то есть погрешность равна относительной доле указанного интервала в пределах диапазона дифференциального давления. Чем выше значение измеряемого перепада давления, тем ниже относительная неопределенность соответствующей рассчитанной величины дебита.

В примере осуществления изобретения, указанном на Фиг.1, многофазный расходомер 5 представляет собой многофазный расходомер (МФРМ), который в результате использования двухэнергетического измерителя 15 фракций кроме измерения общего дебита флюида позволяет определить массовую или объемную долю каждой фазы многофазного флюида.

Многофазный расходомер может также содержать другие измерительные приборы, например датчик давления флюида в трубопроводе, датчик температуры флюида в трубопроводе, измеритель фракций, а также другие устройства, однако изменение дебита скважины влияет на погрешность измерений указанных устройств значительно меньше, чем на погрешность измерений датчика дифференциального давления.

Поворотный клапанный блок 7 содержит корпус 19, гидравлически связанный с выходным трубопроводом каждой скважины 2. Внутреннее пространство корпуса 19 клапанного блока имеет кольцевую форму. Каналы 21 для флюида расположены вокруг внутренней окружности корпуса 19 клапанного блока, как указано на Фиг.1. Каждый из каналов 21 для флюида соединен с выходным трубопроводом одной из скважин 2. Поворотный элемент 23 клапанного блока, имеющий цилиндрическую форму, установлен в кольцевом пространстве корпуса 19 клапанного блока с возможностью вращения. Элемент 23 клапанного блока содержит один радиальный канал 25, внутренний конец которого соединен с выходным трубопроводом 17a. Наружный конец канала 25 подключается к одному выбранному каналу 21 для флюида при помощи электродвигателя (не показан), вращающего цилиндрический элемент 23 клапанного блока до достижения точного совмещения канала 25 с выбранным каналом 21. Хотя в данном примере осуществления изобретения клапанный блок 7 представлен в виде одного устройства переключения скважин, данный блок может быть реализован с использованием любого количества узлов дистанционно управляемых клапанов, предназначенных для последовательной подачи флюида от отдельных скважин к многофазному расходомеру 5, причем наиболее важной особенностью системы является возможность подачи на многофазный расходомер 5 флюида отдельной выбранной скважины 2.

Цифровой контроллер 9 функционально связан с датчиком 11 дифференциального давления многофазного расходомера 5 и электродвигателем поворотного клапанного блока 7. Соответственно, цифровой контроллер 9 осуществляет калибровку и управление многофазным расходомером 5, а также управление поворотным клапанным блоком 7. С целью определения калиброванного интервала давления для каждой скважины цифровой контроллер 9 назначает датчику 11 дифференциального давления диапазон давления, достаточно широкий для охвата прогнозируемого максимального перепада давления в выходном трубопроводе любой из скважин 2. Затем цифровой контроллер приводит в действие поворотный элемент 23 клапанного блока 7 с целью подключения датчика 11 дифференциального давления к трубопроводу выбранной скважины, например скважины № 2. После этого, цифровой контроллер 9 выполняет расчет дебита флюида, поступающего с выхода датчика 11 дифференциального давления. Далее на основе расчетных данных дебита цифровой контроллер 9 осуществляет расчет прогнозируемого максимального дебита для выбранной скважины № 2 и регистрирует калиброванный интервал давления для выбранной скважины. Данная последовательность операций повторяется до определения и регистрации калиброванных интервалов давления для каждой из скважин 2.

После выполнения калибровки датчика давления многофазного расходомера для всех отдельных скважин и сохранения данных калибровки в цифровом контроллере система является готовой к осуществлению фактического измерения или контроля дебита. При проведении такой операции цифровой контроллер 9 дополнительно выбирает конкретную скважину 2 с целью проведения измерения дебита, выполняет калибровку датчика 11 дифференциального давления с использованием данных калиброванного интервала давления, соответствующего выбранной скважине 2, совмещает канал 25 поворотного элемента 23 клапанного блока с трубопроводом выбранной скважины 2 (то есть скважины № 1), осуществляет измерение дебита и повторяет данный цикл для каждой скважины до выполнения измерения дебита всех скважин 2. Хотя цифровой контроллер 9 указан в виде отдельного компонента, не входящего в состав многофазного расходомера 5, данный контроллер может также быть составной частью многофазного расходомера.

Способ 30 в соответствии с настоящим изобретением, реализованный с использованием цифрового контроллера 9, представлен структурной схемой, указанной на Фиг.2. На первом этапе 32 способа 30 контроллер 9 осуществляет выбор скважины 2 (в данном примере - скважина № 1), для которой следует выполнить калибровку, и приводит в действие поворотный клапанный блок 7 с целью поворота элемента 23 клапанного блока до совмещения канала 25 указанного элемента с каналом 21 корпуса 19 клапанного блока, соответствующим выбранной скважине 2 (то есть скважине № 1). Вследствие этого, флюид, поступающий из выбранной скважины 2 (скважина № 1), подается через выходной трубопровод 17a на сопло 13 Вентури.

На следующем этапе 34 контроллер 9 выполняет измерение перепада Δp давления флюида, подаваемого из выбранной скважины 2 (то есть скважины № 1) через датчик 11 дифференциального давления. Очевидно, что для измерения указанного давления необходимо провести калибровку датчика 11 дифференциального давления в пределах исходного диапазона давления. С этой целью осуществляется выбор достаточно широкого интервала для калибровки, охватывающего прогнозируемое максимальное давление в скважине с максимальной производительностью. Хотя использование такого широкого диапазона давления не обеспечит получения высокоточных отсчетов давления для скважин 2, имеющих производительность, равную небольшой доле производительности скважины 2 с максимальной производительностью, полученные отсчеты являются достаточно точными для определения давления, которое может быть использовано с целью индивидуальной калибровки датчика 11 дифференциального давления на этапе измерения дебита выбранной скважины 2. Далее контроллер 9 на основе результатов указанного исходного измерения давления выполняет определение интервала, в котором осуществляется калибровка для выбранной скважины. Поскольку со временем давление продукта, подаваемого из конкретной скважины, изменяется, калиброванный интервал определяется посредством умножения измеренного значения давления на коэффициент, превышающий 1,0, с целью определения прогнозируемого максимального давления. В примере, описанном далее, указанный коэффициент изменяется в пределах примерно от 1,10 до 2,00. Данный коэффициент зависит от конкретной ситуации и определяется для конкретного случая, однако, в общем, наиболее высокие значения коэффициента следует использовать для наименее производительных скважин 2 с наиболее низким давлением флюида. Прогнозируемое максимальное значение измеряемого давления определяется посредством умножения максимального измеренного дифференциального давления для конкретной скважины на коэффициент, превышающий 1,00. Данный коэффициент может изменяться в пределах примерно от 1,10 до 2,00, так что значения примерно 1,10 и 1,20 соответствуют максимальным значениям измеренного давления примерно от 5000 мбар до 25 мбар, примерно от 4000 мбар до 500 мбар или примерно от 4000 мбар до 25 мбар.

После определения контроллером 9 калиброванного интервала для выбранной скважины 2 контроллер регистрирует данный интервал, как указано на этапе 36. Затем контроллер переходит к выполнению этапа 38 и запрашивает, определен ли калиброванный интервал для всех скважин 2. Если на запрос получен ответ «нет», то контроллер 9 переходит к этапу 39 и приводит в действие поворотный клапанный блок с целью выбора следующей скважины. Этапы 32-38 повторяются до получения на этапе 38 ответа «да» на поданный запрос.

На этапах 40-46 выполняется измерение дебита каждой скважины 2. В частности, на этапе 40 цифровой контроллер выбирает требуемую скважину 2. На следующем этапе 42 цифровой контроллер 9 проводит калибровку датчика 11 дифференциального давления на основе данных калиброванного интервала, соответствующего выбранной скважине 2, который был ранее определен на этапах 32-38. На этапе 44 цифровой контроллер 9 запрашивает, является ли соответствующий калиброванный интервал достаточно актуальным, чтобы получить точные результаты измерений. Актуальность интервала определяется посредством контроля наличия значительного увеличения или уменьшения дебита скважины с момента последнего цикла определения калиброванного интервала для данной скважины. В альтернативном варианте определение актуальности калиброванного интервала может быть осуществлено посредством сравнения текущей даты с датой последнего определения калиброванного интервала для выбранной скважины. Например, в общем, предполагается, что в течение коротких интервалов времени, таких как неделя или месяц, дебит выведенной на режим скважины не изменяется или незначительно изменяется, если не возникает событие, нарушающее стабильное функционирование, такое как изменение режима погружного насоса с электроприводом, гидроразрыв пласта, замена дросселя и т.д. В случае получения ответа «нет» на запрос, поданный на этапе 44, контроллер определяет новый калиброванный интервал посредством повторения этапов 32-38. Данные калибровки для каждой отдельной скважины сохраняются в контроллере. Указанные данные могут также периодически обновляться по мере необходимости. При получении ответа «да» на этапе 44 цифровой контроллер переходит к этапу 46 и (1) приводит в действие поворотный клапанный блок 7 с целью поворота элемента 23 клапанного блока до совмещения канала 25 с каналом 21 в корпусе 19 клапанного блока, соответствующим выбранной скважине 2, и (2) выполняет измерение дебита при помощи дифференциального расходомера 5.

Процесс согласования параметров переключателя скважин, профиля скважины и данных калибровки может осуществляться контроллером многофазного расходомера или внешним контроллером, содержащим соответствующее программное обеспечение. Предпочтительно, программа контроллера предусматривает возможность функционирования в системе скважин, имеющих различные профили, посредством сохранения в памяти характеристик отдельных скважин, таких как параметры и контрольные точки флюида, и использования этой информации по мере необходимости в модели калибровки. Например, может потребоваться согласовать данные калибровки дифференциального давления с данными профиля отдельных скважин и использовать эту информацию для датчика давления каждый раз при выборе переключателем соответствующей скважины.

Система и способ по настоящему изобретению предусматривают использование индивидуальных параметров калибровки датчиков давления для различных скважин, входящих в состав куста скважин, и, таким образом, обеспечивают значительное повышение точности измерения, а также возможность использования одного многофазного расходомера для всех скважин, входящих в состав куста скважин. В свою очередь, это позволяет получить значительную экономию финансовых средств.

ПРИМЕР

Многофазный расходомер, серийно выпускаемый корпорацией Schlumberger под наименованием PhaseWatcher, установлен в структуре куста скважин для контроля продукции восьми скважин. Датчик дифференциального давления многофазного расходомера имеет неопределенность 0,2% в калиброванном интервале и исходный калиброванный диапазон давления 0-5000 мбар. Следовательно, абсолютная неопределенность (погрешность) многофазного расходомера составляет 10 мбар. Величина дебита прямо пропорциональна корню квадратному разности давлений, определенной на измерительной ячейке (горловине Вентури). В связи с этим в данном примере указана только разность давлений, измеренная датчиком дифференциального давления.

Таблица 1
1 2 3 4 5 6
Номер скважины Дифференциальное давление скважины, мбар Текущая относительная неопределенность (0,2 % диапазона), % Доля в относительной неопределенности общего дебита, % Новый калиброванный интервал датчика дифференциального давления, мбар Относительная неопределенность после перекалибровки, %
1 5000 0,20 0,10 5000 0,20
2 3000 0,33 0,16 3300 0,22
3 1000 1,00 0,50 1100 0,22
4 800 1,25 0,63 900 0,23
5 500 2,00 1,00 600 0,24
6 200 5,00 2,50 250 0,25
7 100 10,00 5,00 150 0,30
8 50 20,00 10,00 100 0,40

Очевидно, что в столбце 6 относительная неопределенность общего дебита после перекалибровки с использованием способа в соответствии с настоящим изобретением значительно ниже неопределенности для стандартной конфигурации (столбец 3). Применение динамической калибровки датчика дифференциального давления для отдельных скважин обеспечивает повышение общей точности измерений.

В таблице 1 представлена следующая информация:

Столбец 1: номер скважины, входящей в состав куста скважин;

Столбец 2: исходная разность давления флюида отдельных скважин для данного расходомера (например, расходомера PhaseWatcher (корпорации Schlumberger), имеющего диаметр горловины трубки Вентури, равный 52 мм);

Столбец 3: относительная погрешность измерения дифференциального давления при фиксированном диапазоне 0-5000 мбар;

Столбец 4: доля относительной погрешности общего дебита, обусловленная инструментальной погрешностью датчика;

Столбец 5: оптимальный диапазон для каждой скважины, определенный цифровым контроллером и записанный в памяти контроллера;

Столбец 6: относительная погрешность измерения дифференциального давления после индивидуальной последовательной калибровки датчика дифференциального давления.

Хотя настоящее изобретение подробно описано со ссылками на определенные предпочтительные примеры осуществления изобретения, очевидно, что в пределах объема и сущности изобретения могут быть реализованы изменения и модификации, которые ограничиваются только приложенной формулой изобретения и эквивалентами пунктов формулы.


СИСТЕМА И СПОСОБ ИЗМЕРЕНИЯ ДЕБИТА ОТДЕЛЬНЫХ НЕФТЯНЫХ СКВАЖИН, ВХОДЯЩИХ В СОСТАВ КУСТА СКВАЖИН
СИСТЕМА И СПОСОБ ИЗМЕРЕНИЯ ДЕБИТА ОТДЕЛЬНЫХ НЕФТЯНЫХ СКВАЖИН, ВХОДЯЩИХ В СОСТАВ КУСТА СКВАЖИН
Источник поступления информации: Роспатент

Показаны записи 41-50 из 324.
20.12.2013
№216.012.8e3c

Абсолютные концентрации элементов из ядерной спектроскопии

Использование: для определения абсолютных концентраций элементов из нейтронной гамма-спектроскопии. Сущность: заключается в том, что система для нейтронной гамма-спектроскопии содержит скважинный инструмент, содержащий источник нейтронов, сконфигурированный испускать нейтроны в подземную...
Тип: Изобретение
Номер охранного документа: 0002502095
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8e3d

Скважинное измерение посредством нейтронной активации

Использование: для каротажа скважины с помощью нейтронно-индуцируемого гамма-излучения. Сущность: заключается в том, что скважинный инструмент содержит источник нейтронов, сконфигурированный для излучения нейтронов согласно схеме формирования импульсов, причем схема формирования импульсов...
Тип: Изобретение
Номер охранного документа: 0002502096
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8ecc

Маломощные генераторы нейтронов

Изобретение относится к генератору нейтронов и способу его конструирования. Генератор включает в себя решетку, выполненную с возможностью выработки ионизируемого газа при нагреве электронами, сталкивающимися с ней. Катод испускает электроны для нагрева решетки и столкновений с выработанными...
Тип: Изобретение
Номер охранного документа: 0002502239
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.9135

Способ гидроразрыва подземных пластов во время их бурения

Изобретение относится, в общем, к области бурения стволов скважин через подземные геологические пласты. Более конкретно, изобретение относится к способам и системам для создания гидроразрывов в геологических пластах во время бурения таких пластов. Обеспечивает повышение эффективности способа....
Тип: Изобретение
Номер охранного документа: 0002502866
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9139

Способы и устройство для планирования и динамического обновления операций отбора проб во время бурения в подземном пласте

Изобретение относится к способу планирования и динамического обновления операций отбора проб во время бурения в подземном пласте. Техническим результатом является увеличение эффективности и/или производительности операции отбора проб пластовой текучей среды или работы. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002502870
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.94d4

Система и способ для отбора текучей среды из ствола скважины

Изобретение относится к системе и способам отбора текучей среды из конкретной зоны ствола скважины. Обеспечивает увеличенные степени расширения и более высокие перепады давления депрессии в скважине, уменьшает напряжения, в противном случае создаваемые оправкой инструмента с пакером вследствие...
Тип: Изобретение
Номер охранного документа: 0002503794
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.958d

Способ и устройство для обработки спектроскопических данных в скважине

Описан способ обработки спектроскопических данных в скважине. Способ включает в себя: получение исходных спектроскопических данных посредством использования скважинного устройства; обработку исходных спектроскопических данных посредством использования скважинного устройства для получения...
Тип: Изобретение
Номер охранного документа: 0002503979
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.958f

Способ и устройство для определения во время бурения насыщения водой пласта

Изобретение относится к области геофизики и может быть использовано для определения насыщения флюидом порового пространства пород исследуемых пластов. Способ определения насыщения водой в подземном пласте включает в себя определение глубины проникновения в пласт на основании множества...
Тип: Изобретение
Номер охранного документа: 0002503981
Дата охранного документа: 10.01.2014
27.01.2014
№216.012.9c13

Способы и системы для проведения спускоподъемных операций

Группа изобретений относится к способу и системам для проведения спускоподъемных операций на полу буровой установки, размещенной над скважиной. Способ проведения спускоподъемных операций включает в себя этапы, на которых: измеряют, посредством измерительного устройства, параметры длины первой...
Тип: Изобретение
Номер охранного документа: 0002505661
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c20

Система и способ для управления многочисленными скважинными инструментами

Группа изобретений относится к системам и способам для управления многочисленными скважинными инструментами. Многочисленные скважинные инструменты можно приводить в действие между рабочими положениями. Скважинные инструменты соединяют с множеством многоотводных модулей, при этом каждый...
Тип: Изобретение
Номер охранного документа: 0002505674
Дата охранного документа: 27.01.2014
Показаны записи 41-50 из 236.
20.10.2013
№216.012.7703

Устройство электромагнитного каротажа

Изобретение относится к геофизике. Сущность: устройство содержит каротажный инструмент, перемещаемый по стволу скважины, электромагнитный зонд 1, включающий в себя башмак 2 каротажного зонда, установленный на каротажном инструменте, выполненный с возможностью сцепления со стволом скважины,...
Тип: Изобретение
Номер охранного документа: 0002496127
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.7a4e

Устройство, способ и система стохастического изучения пласта при нефтепромысловых операциях

Группа изобретений относится к способам выполнения нефтепромысловых операций. Этапы способа содержат получение массивов данных о нефтяном месторождении, связанных с нефтепромысловыми объектами. Формируют самоорганизующуюся карту (SOM) посредством назначения каждого из множества полей данных...
Тип: Изобретение
Номер охранного документа: 0002496972
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a50

Способ оптимизации добычи в скважине с искусственным подъемом

Изобретение относится к нефтегазодобывающей промышленности. Предложен способ оптимизации добычи в скважине, в котором управляют системой искусственного подъема в стволе скважины, отслеживают множество параметров добычи на поверхности и в стволе скважины. Строят модель скважины с вычисленными...
Тип: Изобретение
Номер охранного документа: 0002496974
Дата охранного документа: 27.10.2013
20.11.2013
№216.012.82af

Применение разлагаемых волокон в растворах обращенных эмульсий для глушения скважины

Изобретение относится к растворам для глушения скважин. Способ обработки подземного пласта включает: закачивание в обсаженный, перфорированный ствол скважины, который рассекает пласт, раствора обращенной эмульсии для глушения скважины, содержащего: маслянистую непрерывную фазу, немаслянистую...
Тип: Изобретение
Номер охранного документа: 0002499131
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.89ab

Подводная насосная система

Создано техническое оснащение для прокачки текучей среды для работы под водой, такой, как для прокачки с созданием подпора. Автономный насосный модуль имеет насос и двигатель, установленные на раме модуля. Автономный насосный модуль также включает в себя электрические разъемы для подачи...
Тип: Изобретение
Номер охранного документа: 0002500925
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8d5e

Способы производства нефтепромысловых разлагаемых сплавов и соответствующих продуктов

Изобретение относится к области производства новых разлагаемых металлических материалов, таких как разлагаемые сплавы на основе алюминия, и к способам получения продуктов из разлагаемых в среде ствола нефтепромысловой скважины алюминиевых сплавов, применимых на нефтепромыслах при разведке,...
Тип: Изобретение
Номер охранного документа: 0002501873
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8d9a

Буровая труба, система покрытия и способ нефтепромысловых применений

Изобретение относится к буровой трубе, способу ее сооружения, покрытию для нанесения на буровую трубу и способу сооружения защищенной таким покрытием буровой трубы. Буровая труба включает: полимерную основную структуру, образованную из армированного волокнами бисмалеимидного полимера; и...
Тип: Изобретение
Номер охранного документа: 0002501933
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8da0

Скважинный перфоратор (варианты) и способ перфорации

Группа изобретений относится к области перфорирования, а именно к созданию переходного состояния с давлением скважины, меньшим пластового давления, связанного с перфорированием. Перфоратор содержит носитель перфоратора, проходящий в продольном направлении, зарядную трубу, помещенную внутри...
Тип: Изобретение
Номер охранного документа: 0002501939
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8e3b

Установка и система для геологического сопровождения бурения скважины и определения характеристик коллектора

Изобретения относятся к области подземной разведки, в частности к устройствам и способам определения параметров среды и геологического сопровождения бурения скважины. Модульная скважинная установка каротажа включена к состав бурильной колонны, содержащей один или несколько скважинных приборов и...
Тип: Изобретение
Номер охранного документа: 0002502094
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8e3c

Абсолютные концентрации элементов из ядерной спектроскопии

Использование: для определения абсолютных концентраций элементов из нейтронной гамма-спектроскопии. Сущность: заключается в том, что система для нейтронной гамма-спектроскопии содержит скважинный инструмент, содержащий источник нейтронов, сконфигурированный испускать нейтроны в подземную...
Тип: Изобретение
Номер охранного документа: 0002502095
Дата охранного документа: 20.12.2013
+ добавить свой РИД