×
10.12.2015
216.013.9917

Результат интеллектуальной деятельности: МОДУЛЬНАЯ СИСТЕМА ВОЗБУЖДЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002570811
Дата охранного документа
10.12.2015
Аннотация: Изобретение относится к модульной системе возбуждения для испытаний сердечника статора. Устройство возбуждения для высокоэнергетических испытаний сердечников (5) статоров электрогенераторов или двигателей, содержащее один или несколько модулей возбуждения, при этом каждый модуль возбуждения содержит обмотку (1-4) возбуждения и источник (10-13) питания и выполнен с возможностью проведения тока возбуждения через обмотку (1-4) возбуждения, при этом ток возбуждения через каждую обмотку (1-4) возбуждения способствует общему возбуждению сердечника (5) статора, при этом модуль возбуждения дополнительно содержит конденсатор (6-9), и источник (10-13) питания модуля возбуждения действует как источник тока на своем выходе. Технический результат заключается в уменьшении реактивной составляющей тока возбуждения. 2 н. и 14 з.п. ф-лы, 4 ил.

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к модульной системе возбуждения для испытаний слоев сердечника статора. Дополнительно, настоящее описание относится к высокоэнергетическому испытанию сердечника статора электрогенератора.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Сердечник статора электрогенератора состоит из большого количества наслоенных листов. Эти наслоенные листы представляют собой тонкие металлические листы с ориентированными кристаллами. Они изолированы друг от друга для снижения потерь от вихревых токов (токов Фуко) между слоями. Сборка слоев может быть механически упрочнена при помощи множества клиньев через ярмо статора, а также колец и сжимающих пластин.

В ходе сборки, а также в ходе эксплуатации неисправности изоляции между наслоенными листами могут возникнуть вследствие термических и магнитных напряжений, а также механических растяжений и вибраций. Эти неисправности замыкают листы статора. Это может привести к существенным вихревым токам, циркулирующим между поврежденными листами. Потери от подобных вихревых токов могут привести к плавлению железа и даже к термическому нарушению электроизоляции смежных стержней статора.

Существует два известных способа испытаний, известных как высокоэнергетическое и низкоэнергетическое испытание. Настоящее изобретение сфокусировано на высокоэнергетических испытаниях.

При высокоэнергетическом испытании требуется индукция магнитного потока индуцированного в сердечнике статора, примерно от 1,0 до 1,5 Тесла. Индукция потока изменяется со временем подобно индукции потока при работе. Из-за вихревых токов листы с замыканиями будут показывать повышение температуры, которая будет существенно выше средней температуры сердечника статора. Местное перегревание в этом случае обнаруживается при помощи измерений температуры. С этой целью могут быть использованы инфракрасные камеры.

Высокоэнергетический способ тестирования сердечников статора имеет ряд недостатков. Он требует мощный блок питания и высокоэнергетическую обмотку возбуждения. Обмотка возбуждения, как правило, содержит несколько витков из кабеля и имеет адекватные размеры для того, чтобы мощный блок питания мог проводить достаточный переменный ток через обмотку возбуждения. Для достижения индукции магнитного потока в 1,5 Тесла через сердечник статора мощный блок питания должен обеспечивать значительные напряжение и ток.

Токи будут, как правило, в диапазоне нескольких кА, и напряжения порядка нескольких кВ. Следовательно, количество индуктивной реактивной мощности, требуемой для испытания, находится в диапазоне нескольких МВАр. Возбуждение турбогенератора мощностью 300 МВт или гидрогенератора мощностью 50 МВт, как правило, потребует мощного блока питания в форме трансформатора 4 МВА, 6,3 кВ. В условиях эксплуатации, ни электросети, ни любой другой источник энергии не смогут подавать преобладающую реактивную мощностью 4МВА на трансформатор 4МВА, 6,3 кА.

Вышеупомянутый индуктивный ток может, по меньшей мере, частично, компенсироваться при помощи конденсатора. Конденсатор будет присоединен параллельно к обмотке возбуждения. Особенно при испытании больших электрогенераторов витки обмоток возбуждения могут быть расположены симметрично вокруг сердечника статора. Симметричное расположение обмоток возбуждения позволяет достичь более равномерного распределения индукции магнитного потока через сердечник.

Напряжения в несколько кВ, применяемые при высокоэнергетическом испытании, создают угрозу любому персоналу, находящемуся в области проведения испытаний. Это касается как обмоток возбуждения, так и любых трансформаторов, питающих эти обмотки. Следовательно, к высокоэнергетическим испытаниям относятся меры предосторожности, например такие, как соблюдение безопасности труда, заборы с замками вокруг любого оборудования под высоким напряжением, переключатели для экстренного отключения энергии и т.д. Все эти меры предосторожности делают процедуру более обременительной и повышают стоимость высокоэнергетических испытаний.

Другая проблема возникает из-за нелинейной кривой намагничивания сердечника статора. Отношение между индукцией В магнитного потока в сердечнике статора и током возбуждения I через обмотку с N количеством витков может быть описано как

B=N*I

Это отношение, однако, действует лишь при линейном режиме. Поскольку ток I возрастает, проходя через обмотку возбуждения, сердечник статора, изготовленный из слоев железа, намагничивается. Отношение между индукцией В магнитного потока и током возбуждения I становится нелинейным. Из-за намагничивания ток I, проходящий через обмотку возбуждения, будет увеличиваться быстрее, чем по линейному закону, при индукции В магнитного потока ≥1,3 Тесла. В действительности практически недостижимо подать реактивный ток, поскольку не существует адекватного источника индуктивного тока.

При другом подходе силовой электронный преобразователь может быть использован для питания обмотки возбуждения. Реактивная энергия, требуемая для возбуждения обмотки, может, по меньшей мере, частично обеспечиваться контуром для накопления энергии, встроенным в силовой электронный преобразователь. Преимущество этого решения заключается в том, что все расчетные нагрузки вплоть до максимальной реактивной энергии покрыты. Недостаток этого решения заключается в том, что силовой электронный преобразователь должен быть спроектирован для максимальной нагрузки. Это, в свою очередь, увеличивает стоимость преобразователя. Дополнительно, силовые электронные компоненты внутри преобразователя должны быть спроектированы так, чтобы выдерживать напряжения в несколько кВ. Из-за природы силовых электронных компонентов, таких как тиристоры и биполярные транзисторы с изолированным затвором, требования по выдерживанию высокого напряжения сложно соблюсти.

Подход, изложенный в документе ЕР 2541751, в частности, преодолевает эти проблемы путем обеспечения множества модулей возбуждения, каждый из которых имеет обмотку возбуждения.

Обмотки возбуждения расположены вокруг сердечника статора, и каждая обмотка возбуждения создает часть общего возбуждения. Следовательно, напряжение по каждой из обмоток возбуждения становится лишь частью напряжения, которое существовало бы при наличии лишь одной обмотки возбуждения. Другими словами, устраняется вышеуказанная угроза высокого напряжения. Подход, изложенный в ЕР 2541751, тем не менее, не достигает решения проблемы высокого напряжения. Как указано выше, может стать практически невозможно подать полный ток возбуждения, когда индукция магнитного потока через статор переходит к намагничиванию.

Настоящее описание направлено на выполнение вышеуказанных требований и на преодоление вышеуказанных трудностей.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее описание относится к модульной системе возбуждения для испытания слоев сердечника статора. Система возбуждения в соответствии с настоящим описанием устраняет вышеописанные проблемы высокого напряжения и сильного тока. С этой целью обеспечивается множество модулей возбуждения. Типичный модуль возбуждения содержит источник переменного тока, конденсатор и обмотку возбуждения. Однако также возможны модули возбуждения без конденсатора или обмотки возбуждения лишь с конденсатором, но без источника питания. Количество модулей возбуждения зависит от номинальной мощности и типа генератора. Блок синхронизации присоединен к каждому модулю возбуждения. Блок синхронизации синхронизирует или даже задает величины тока через каждую обмотку возбуждения. В предпочтительном воплощении, все эти токи одинаковые и синхронизированы, т.е. имеют по существу одинаковые точки перехода через ноль.

Источник питания отличается тем, что может выполнять функцию источника тока на своем силовом выходе. Термин «источник тока» используется здесь в специальном электротехническом значении, обозначающем, что фактический ток на выходе по существу не зависит от фактического напряжения на выходе. В эквивалентной схеме соединения такое поведение может быть смоделировано путем расположения большого сопротивления на выходе из источника питания. Как электронные силовые преобразователи, так и трансформаторы с высоким сопротивлением на выходе в вышеуказанном смысле на своих выходах подходят в качестве источников питания.

Благодаря этому большому выходному сопротивлению на выходе источника источник не реагирует, например, на быстрые изменения выходного напряжения. Когда выходное напряжение, т.е. напряжение возбуждения испытывает быструю интенсивность изменения, т.е. имеет высокое (абсолютное) значение своей временной производной, из-за эффекта намагничивания сердечника ток на выходе из источника питания не будет подвергаться влиянию этой быстрой скорости изменения. Ток возбуждения в этом случае будет обеспечиваться в высокой степени конденсатором, который также является частью модуля возбуждения. Этот конденсатор предпочтительно соединен параллельно с обмоткой возбуждения.

Выходное сопротивление указанного конденсатора будет, в идеале, нулевым. На практике индуктивность любых проводов, соединяющих конденсатор со схемой, будет вносить паразитные сопротивления на выходе. Эти индуктивные сопротивления на выходе из конденсатора будут, конечно, меньше, чем выходное сопротивление источника. Таким образом, в отличие от источника конденсатор будет способен создавать быстрое увеличение и уменьшение тока возбуждения.

Модульная система возбуждения, в принципе, работает на любых основных частотах переменного магнитного потока через сердечник статора. В предпочтительном воплощении, предназначенном для машин с выходом 50 Гц, в модульной системе возбуждения используется основная частота от 45 Гц до 55 Гц. В предпочтительном воплощении, предназначенном для электрогенераторов с выходом 60 Гц, в модульной системе возбуждения используются основные частоты в диапазоне от 55 Гц до 65 Гц. Эти предпочтительные частоты позволяют осуществлять испытания близко к основным частотам переменного магнитного потока, когда электрогенератор работает в обычном режиме. Следует отметить, что временная форма переменного потока не обязательно будет синусоидальной.

Настоящее описание относится к высокоэнергетическим испытаниям сердечника статора электрогенератора или двигателя. Для осуществления высокоэнергетического испытания множество обмоток возбуждения располагаются вокруг сердечника статора. Каждая обмотка возбуждения затем соединяется с конденсатором и источником питания для формирования модуля возбуждения. Блок синхронизации соединяется со всеми источниками питания.

В иллюстративном воплощении электронных источников питания, выполняющих функцию источников тока, источники питания принимают сигнал от блока синхронизации для регулирования их выходного тока, частот и относительных фаз. Внутри источника блок управления получает этот сигнал. Блок управления также получает входной сигнал от датчика тока, который измеряет ток на выходе. Блок управления сравнивает заданное значение с действительным значением тока на выходе. Сигнал от блока управления используется для регулирования тока на выходе. Регулирование тока на выходе, основанное на сравнении действительного тока и заданного значения, затем повторяется. В отдельном воплощении ПИД (пропорционально-интегральное-дифференциальное) регулирование используется для регулирования тока возбуждения. В других воплощениях регулирование основывается на нейронных сетях, или нечеткой логике, или других продвинутых регулирующих сетевых топологиях.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Вышеупомянутые задачи и прочие сопутствующие преимущества настоящего изобретения станут более очевидны, поскольку их можно лучше понять со ссылкой на следующее подробное описание совместно с прилагаемыми чертежами, на которых:

Фиг. 1 изображает схематичный чертеж устройства возбуждения в соответствии с настоящим описанием.

Фиг. 2 изображает другой схематичный чертеж устройства возбуждения в соответствии с настоящим описанием.

Фиг. 3 изображает третий вариант устройства возбуждения.

Фиг. 4 изображает схему с подробно показанным источником питания.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Фиг. 1 изображает схематичный чертеж устройства возбуждения вместе с сердечником статора. Фиг. 1 изображает четыре обмотки 1-4 возбуждения, симметрично расположенные вокруг сердечника 5 статора. Сердечник 5 статора, как правило, изготовлен из пакета наслоенных листов. До высокоэнергетического испытания ротор, как правило, вынимается из (цилиндрической) расточки 14 статора через центр статора. Сердечник 5 статора, как показано на Фиг. 1, представлен замкнутым контуром из магнитоактивного материала, который соответствует замкнутым контурам, образованным отдельными слоями и сегментами слоев сердечника 5 статора.

Стрелки обозначают направление токов, протекающих через обмотки 1-4 возбуждения. Все токи возбуждения соответствуют одному направлению для индукции В магнитного потока внутри сердечника 5 статора. Токи через обмотки 1-4 возбуждения представляют собой переменные токи. Указанные токи через обмотки 1-4 возбуждения, как указано стрелками, таким образом, изменяют направление примерно 50-60 раз в секунду. Стрелки указывают положительное направление токов возбуждения в один момент времени. То же относится к индукции магнитного потока. Ток через обмотки 1-4 возбуждения является переменным, как и направление индукции В магнитного потока.

Фиг. 1 изображает симметричное расположение четырех обмоток 1-4 возбуждения вокруг одного сердечника 5 статора. В другом воплощении обмотки 1-4 возбуждения не симметрично расположены вокруг сердечника 5 статора. Обмотки 1-4 возбуждения, как правило, содержат от двух до пяти витков. Они могут, например, быть выполнены из силового кабеля низкого напряжения или среднего напряжения, намотанного вокруг сердечника 5 статора.

Конденсатор 6-9 электрически соединен с каждой из четырех обмоток 1-4 возбуждения. В предпочтительном воплощении конденсаторы 6-9 соединены параллельно с обмотками 1-4 возбуждения. Для того чтобы конденсаторы 6-9 создавали быстрые изменения тока по обмоткам 1-4 возбуждения, паразитные индуктивные сопротивления на выходе из конденсаторов 6-9 необходимо исключить. Электрические соединения между конденсаторами 6-9 и обмотками 1-4 возбуждения, как правило, будут как можно более короткими.

Каждая обмотка 1-4 возбуждения с Фиг. 1 также электрически соединена с источником 10-13 питания. Воплощение с Фиг. 1 изображает обмотки 1-4 возбуждения, конденсаторы 6-9 и источники 10-13 питания, соединенные параллельно. Источники 10-13 питания предпочтительно представляют собой источники тока в вышеуказанном смысле. Предпочтительно сопротивления на выходе из источников 10-13, по меньшей мере, в три раза выше, чем индуктивные сопротивления на выходе из конденсаторов 6-9. Таким образом, конденсаторы 6-9 позволяют быстро увеличить или уменьшить ток в отличие от источников 10-13 питания. Особенно когда железо сердечника 5 статора намагничивается, ток через обмотки 1-4 возбуждения будет резко и довольно быстро увеличиваться. Ток возбуждения в этом случае подается конденсаторами 6-9, а не источниками 10-13 питания. В оптимальном случае источники 10-13 питания преимущественно обеспечивают активную энергию, требуемую для компенсации намагничивания и потерь из-за вихревых токов в сердечнике 5 статора. Конденсаторы 6-9 преимущественно обеспечивают реактивную энергию, требуемую нагрузкой, состоящей из обмоток 1-4 возбуждения и сердечника 5 статора.

В другом предпочтительном воплощении источники 10-13 питания представляют собой трансформаторы с высоким индуктивным паразитным сопротивлением или даже отдельными катушками индуктивности на выходе. Трансформатор с паразитным или отдельным сопротивлением в 3 мГн на выходе можно привести в качестве типового примера.

В другом воплощении электронный силовой преобразователь, работающий как источник напряжения, используется в качестве источника 10-13 питания. Достаточно большая катушка индуктивности должна быть присоединена последовательно к выходу электронного силового преобразователя для того, чтобы получить достаточное сопротивление на выходе.

В еще одном воплощении источники 10-13 питания обмоток 1-4 возбуждения совмещены в один источник питания, который питает все обмотки 1-4 возбуждения.

В еще одном воплощении (Фиг. 2) один или несколько компенсирующих конденсаторов (8) присоединены к одной или нескольким обмоткам (3) возбуждения без соединения с источниками тока. Также можно соединить источник (13) тока с обмоткой (2) возбуждения без параллельного компенсирующего конденсатора.

Следует отметить, что принцип настоящего изобретения также может быть использован в случае, когда дополнительная реактивная трансформаторная сеть (Фиг. 3, 28) помещается между компенсирующим конденсатором (6) и катушкой (1) возбуждения для увеличения напряжения в катушке или для увеличения тока через катушку, для снижения соответствующих значений на выходе из источника тока. Такие реактивные трансформаторные сети хорошо известны в данной области техники.

Источники 10-13 питания для обмоток 1-4 возбуждения также должны получать энергию. Предпочтительно источники (10-13) запитаны от электросети 15-18. Еще более предпочтительно трехфазная электросеть переменного тока в 400 В используется для питания модулей возбуждения. Предпочтительно источники питания подают примерно одинаковые токи и, таким образом, одинаковые мощности на сердечник статора. Для того чтобы все источники 10-13 питания подавали одинаковый ток возбуждения с одинаковой частотой и одинаковым фазным углом, обеспечивается блок 19 синхронизации. Блок 19 синхронизации соединен с модулями 1-4 возбуждения. Блок 19 синхронизации посылает типовые сигналы на модули 1-4 возбуждения, которые устанавливают токи возбуждения, частоты и относительные фазы между токами возбуждения.

Фиг. 4 изображает электронный силовой преобразователь в качестве типового источника 10 питания. Источник 10 питания соединен при помощи трехфазного входа 20 с электросетью 15-18. Вход 20 питает преобразователь 21 переменного/постоянного тока предпочтительно, но не обязательно, с гальванической развязкой с сетью, который заряжает конденсатор 22 до требуемого напряжения. После этого регулируемый преобразователь 23 постоянного/переменного тока подает ток на обмотки 1-4 возбуждения через выход 24. Предпочтительно конденсатор 22 обладает достаточной емкостью, так что в нем может также накапливаться энергия для подачи дополнительной реактивной силы на обмотки 1-4 возбуждения. Таким образом, в конечном счете, предпочтительный электронный силовой преобразователь может работать в квадрорежиме. Предпочтительно он будет также иметь контур компенсации реактивной мощности на своем силовом входе и будет способен возвращать энергию в электросеть.

Другой входной разъем 25 источника 10 питания получает сигналы от блока 19 синхронизации. Сигналы от блока 19 синхронизации обрабатываются блоком 26 управления вместе с показаниями датчика 27 тока. Блок 26 управления взаимодействует с преобразователем 23 постоянного/переменного тока для непрерывного регулирования тока на выходе.

Для увеличения сопротивления на выходе из источника 10 питания дополнительный ряд катушек индуктивности может быть соединен с его выходом 24. Также на выходе может быть добавлен фильтр помех для фильтрации высокочастотных сигналов, создаваемых преобразователем 23 постоянного/переменного тока.

Несмотря на то, что настоящее изобретение было полностью описано со ссылкой на предпочтительные воплощения, очевидно, что в пределах изобретения могут быть выполнены модификации, и изобретение не должно рассматриваться как ограниченное этими воплощениями, а лишь содержанием следующей формулы изобретения.

ССЫЛОЧНЫЕ ПОЗИЦИИ

1-4 обмотки возбуждения

5 сердечник статора

6-9 конденсаторы

10-13 источники питания

14 расточка статора

15-18 электросеть

19 блок синхронизации

20 вход

21 преобразователь переменного/постоянного тока

22 конденсатор

23 преобразователь постоянного/переменного тока

24 выход

25 входной сигнальный разъем

26 блок управления

27 датчик тока

28 реактивная сеть


МОДУЛЬНАЯ СИСТЕМА ВОЗБУЖДЕНИЯ
МОДУЛЬНАЯ СИСТЕМА ВОЗБУЖДЕНИЯ
МОДУЛЬНАЯ СИСТЕМА ВОЗБУЖДЕНИЯ
МОДУЛЬНАЯ СИСТЕМА ВОЗБУЖДЕНИЯ
МОДУЛЬНАЯ СИСТЕМА ВОЗБУЖДЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 121-130 из 218.
10.08.2015
№216.013.6998

Способ очистки дымового газа, насыщенного диоксидом углерода, и котельная установка

Изобретение относится к способу очистки дымового газа, насыщенного диоксидом углерода, а также к котельной установке. Котельная установка для реализации способа очистки дымового газа, насыщенного диоксидом углерода, состоит из котла для сжигания топлива в присутствии газа, содержащего кислород,...
Тип: Изобретение
Номер охранного документа: 0002558585
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a28

Способ и устройство для сжижения топочного газа от устройств горения

Изобретение относится к способу получения CO из топочного газа. Топочный газ частично конденсируют в двух ступенях разделения. Каждую ступень разделения охлаждают с помощью расширенного отходящего газа и расширенного жидкого CO. Расширенный COразделяют после прохождения последней ступени...
Тип: Изобретение
Номер охранного документа: 0002558729
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b73

Способ сварки тонкостенных труб посредством закалочной сварки с максимальной температурой

Изобретение относится к способу соединения двух элементов посредством дуговой сварки вольфрамовым электродом в среде инертного газа (варианты). Свариваемые элементы состоят из самозакаливающегося стального сплава, например из материала T23 или T24. Между соединяемыми элементами создают стык,...
Тип: Изобретение
Номер охранного документа: 0002559065
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b96

Способ регулирования температуры природного газа в линии подачи топлива газотурбинного двигателя

Изобретение относится к энергетике. В способе регулирования температуры природного газа для линии подачи топлива газотурбинного двигателя, содержащем этапы, на которых измеряют с помощью инфракрасного анализа процентное содержание природного газа, состоящего из метана (CH), этана (CH), пропана...
Тип: Изобретение
Номер охранного документа: 0002559100
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b98

Охлаждаемая лопатка для газовой турбины

Охлаждаемая лопатка для газовой турбины содержит радиально продолжающийся аэродинамический профиль с передним краем, задним краем, стороной всасывания и стороной нагнетания. На стороне всасывания заднего края предусмотрен свисающий выступ, дополнительно содержащий множество радиальных...
Тип: Изобретение
Номер охранного документа: 0002559102
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cd2

Оптимизированное интегрированное управление для электростанции, работающей на сжигании кислородного топлива

Система управления для оптимизации электростанции, работающей на кислородном топливе, содержит оптимизатор, взаимодействующий с электростанцией, работающей на кислородном топливе; при этом электростанция, работающая на кислородном топливе, выполнена с возможностью возвращать углекислый газ из...
Тип: Изобретение
Номер охранного документа: 0002559416
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d8e

Способ вентиляции электролизера для получения алюминия

Изобретение относится к способу вентиляции электролизера для получения алюминия. Способ включает отведение вентиляционных газов из внутренней зоны, охлаждение по части вентиляционных газов с образованием охлажденных вентиляционных газов, осуществление циркуляции части охлажденных вентиляционных...
Тип: Изобретение
Номер охранного документа: 0002559604
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6dbd

Парогенератор с наддувом, имеющий стеночную нагреваемую поверхность, и способ его эксплуатации

Изобретение относится к энергетике и может быть использовано в парогенераторах с наддувом. Парогенератор имеет камеру сгорания с горелочным устройством. Топливо и смесь, состоящая из чистого кислорода и дымового газа, подаются в камеру сгорания. Дымоход соединен с камерой сгорания в направлении...
Тип: Изобретение
Номер охранного документа: 0002559651
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6ede

Сопловая решетка для сушилки и способ ее работы

Настоящее изобретение относится к сопловой решетке (14) и к способу ее работы. Сопловая решетка (14) для сушилки для сушки твердых частиц содержит по меньшей мере один сегмент (20) сопловой решетки, который имеет множество первых сопел (15a) и множество вторых сопел (15b), при этом первые и...
Тип: Изобретение
Номер охранного документа: 0002559952
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f09

Система снижения утечки при эксплуатации энергетической установки

Система 1000 снижения утечки включает в себя теплообменник 100, канальное устройство 200 и разделительное устройство 300. Теплообменник 100 включает в себя роторный узел 102, установленный на роторной колонне 104 с возможностью вращения. Теплообменник 100 дополнительно включает в себя вторую...
Тип: Изобретение
Номер охранного документа: 0002559995
Дата охранного документа: 20.08.2015
Показаны записи 121-130 из 206.
10.08.2015
№216.013.6935

Способ и направляющая для снятия внутреннего корпуса с турбомашины

При снятии внутреннего корпуса с машины, содержащей наружный и внутренний корпуса и ротор внутри внутреннего корпусы, сначала располагают опоры между наружным и внутренним корпусами. Затем снимают верхнюю часть наружного корпуса и верхнюю часть внутреннего корпуса. Соединяют сектор кольца с...
Тип: Изобретение
Номер охранного документа: 0002558486
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6998

Способ очистки дымового газа, насыщенного диоксидом углерода, и котельная установка

Изобретение относится к способу очистки дымового газа, насыщенного диоксидом углерода, а также к котельной установке. Котельная установка для реализации способа очистки дымового газа, насыщенного диоксидом углерода, состоит из котла для сжигания топлива в присутствии газа, содержащего кислород,...
Тип: Изобретение
Номер охранного документа: 0002558585
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a28

Способ и устройство для сжижения топочного газа от устройств горения

Изобретение относится к способу получения CO из топочного газа. Топочный газ частично конденсируют в двух ступенях разделения. Каждую ступень разделения охлаждают с помощью расширенного отходящего газа и расширенного жидкого CO. Расширенный COразделяют после прохождения последней ступени...
Тип: Изобретение
Номер охранного документа: 0002558729
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b73

Способ сварки тонкостенных труб посредством закалочной сварки с максимальной температурой

Изобретение относится к способу соединения двух элементов посредством дуговой сварки вольфрамовым электродом в среде инертного газа (варианты). Свариваемые элементы состоят из самозакаливающегося стального сплава, например из материала T23 или T24. Между соединяемыми элементами создают стык,...
Тип: Изобретение
Номер охранного документа: 0002559065
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b96

Способ регулирования температуры природного газа в линии подачи топлива газотурбинного двигателя

Изобретение относится к энергетике. В способе регулирования температуры природного газа для линии подачи топлива газотурбинного двигателя, содержащем этапы, на которых измеряют с помощью инфракрасного анализа процентное содержание природного газа, состоящего из метана (CH), этана (CH), пропана...
Тип: Изобретение
Номер охранного документа: 0002559100
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b98

Охлаждаемая лопатка для газовой турбины

Охлаждаемая лопатка для газовой турбины содержит радиально продолжающийся аэродинамический профиль с передним краем, задним краем, стороной всасывания и стороной нагнетания. На стороне всасывания заднего края предусмотрен свисающий выступ, дополнительно содержащий множество радиальных...
Тип: Изобретение
Номер охранного документа: 0002559102
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cd2

Оптимизированное интегрированное управление для электростанции, работающей на сжигании кислородного топлива

Система управления для оптимизации электростанции, работающей на кислородном топливе, содержит оптимизатор, взаимодействующий с электростанцией, работающей на кислородном топливе; при этом электростанция, работающая на кислородном топливе, выполнена с возможностью возвращать углекислый газ из...
Тип: Изобретение
Номер охранного документа: 0002559416
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d8e

Способ вентиляции электролизера для получения алюминия

Изобретение относится к способу вентиляции электролизера для получения алюминия. Способ включает отведение вентиляционных газов из внутренней зоны, охлаждение по части вентиляционных газов с образованием охлажденных вентиляционных газов, осуществление циркуляции части охлажденных вентиляционных...
Тип: Изобретение
Номер охранного документа: 0002559604
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6dbd

Парогенератор с наддувом, имеющий стеночную нагреваемую поверхность, и способ его эксплуатации

Изобретение относится к энергетике и может быть использовано в парогенераторах с наддувом. Парогенератор имеет камеру сгорания с горелочным устройством. Топливо и смесь, состоящая из чистого кислорода и дымового газа, подаются в камеру сгорания. Дымоход соединен с камерой сгорания в направлении...
Тип: Изобретение
Номер охранного документа: 0002559651
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6ede

Сопловая решетка для сушилки и способ ее работы

Настоящее изобретение относится к сопловой решетке (14) и к способу ее работы. Сопловая решетка (14) для сушилки для сушки твердых частиц содержит по меньшей мере один сегмент (20) сопловой решетки, который имеет множество первых сопел (15a) и множество вторых сопел (15b), при этом первые и...
Тип: Изобретение
Номер охранного документа: 0002559952
Дата охранного документа: 20.08.2015
+ добавить свой РИД