Вид РИД
Изобретение
Изобретение относится к области производства строительных материалов, а именно к производству искусственных пористых заполнителей с развитой контактной поверхностью из кремнистых пород для легких бетонов, теплоизоляционных засыпок и других изделий.
Известен способ изготовления теплоизоляционного материала на основе кремнистых пород (патент РФ на изобретение №2154618), относящийся к производству неорганических строительных материалов на основе природного сырья, включающий перемешивание предварительно отдозированной кремнистой породы из группы: трепел, диатомит, опока и щелочной компонент, укладку смеси в формы и ее термическую обработку нагреванием при температуре 40-60°C в течение 30-60 мин и дальнейшим нагревом до температуры 800-900°C со скоростью 50-150°C/мин, выдерживанием при данной температуре 20-30 мин. Технический результат данного решения - повышение водостойкости теплоизоляционного материала. Однако теплоизоляционный материал, полученный данным способом, имея агломерационную структуру, не может быть использован как гранулированный легкий заполнитель бетона или в виде теплоизоляционной засыпки без дополнительных операций дробления и классификации, разделения по фракциям.
Известен также способ получения заполнителя из кремнистых камневидных пород для конструкционных бетонов (патент РФ на изобретение №2160722), включающий их дробление, обработку поверхности водным раствором натриевой соли адипиновой кислоты, обжиг и охлаждение. При этом дробление ведут до получения зерен фракции 10-15 мм, а обработку осуществляют водным раствором щелочного стока производства капролактама концентрации 5-10% в течение 3-5 мин при перемешивании. Недостатком данного способа является то, что легкий заполнитель бетона, полученный за счет частичной кольматации пор и «залечивания» структурных дефектов и трещин легкоплавкими стеклофазами, несмотря на приобретаемую повышенную прочность и морозостойкость, из-за большого процента оставшихся открытых и сообщающихся пор обладает значительным водопоглощением.
Наиболее близкими к изобретению являются обожженный пустотелый или пористый гранулированный заполнитель и способ его получения (патент РФ на полезную модель №74384). Заполнитель состоит из ядра с нанесенным на него покрытием из глинистого материала, при этом в качестве ядер он содержит дробленое теплоизоляционное пеностекло либо дробленое звукоизоляционное пеностекло с размером зерен 3-30 мм. Способ получения заполнителя включает подачу увлажненного дробленого теплоизоляционного пеностекла с размером зерен 3-30 мм на вибролоток на слой измельченного до дисперсности частиц менее 0,1 мм Шебекинского суглинка с формированием в процессе продвижения зерен пеностекла по вибролотку, гранул с размером 4-32 мм, обжиг полученных гранул в муфельной печи при температуре 790-1050°С с последующим охлаждением вместе с муфелем до комнатной температуры.
Недостатком известных технических решений является необходимость применения в качестве ядер при формировании сырцовых гранул - дробленого пеностекла, не нашедшего широкого распространения и являющегося дорогостоящим материалом (уже изначально из-за высокой энергоемкости производства). Кроме того, сформированные полые гранулы обладают низкими показателями прочности и морозостойкости.
Задачей изобретения является получение прочного и морозоустойчивого гранулированного заполнителя с развитой волокнистой контактной поверхностью.
Техническим результатом является повышение прочности и морозостойкости заполнителя, повышение его удельной поверхности.
Поставленная задача решается тем, что способ получения пористого заполнителя бетона включает дробление кремнистой опоки с выделением ядер с размером фракции 5-20 мм, обработку полученных ядер 40-50% водной суспензией шликера, образованной смесью водного раствора метасиликата натрия с силикатным модулем 1,7-2,0 и плотностью 1,2-1,3 г/см3 и легкоплавкой монтмориллонитовой глины или бентонитовой глины, взятых в соотношении 1:10, с формированием оболочки на поверхности ядра, последующее опудривание влажной оболочки пылевидно-волокнистыми отходами производства термостойкого базальтового волокна и обжиг при температуре 800-900°С и в течение времени, обеспечивающих вплавление базальтовых волокон с формированием плотной стеклокерамической оболочки. При этом обработку ядер шликером могут осуществлять методом окунания или полива. Обжиг ведут при температуре 800-900°С с изотермической выдержкой в течение 15 мин.
Поставленная задача также решается тем, что пористый заполнитель бетона, полученный по вышеописанному способу, выполнен в виде гранул размером 5-20 мм с развитой контактной поверхностью, состоящих из ядра и оболочки, при этом в качестве ядра содержит зерна дробленой кремнистой опоки, а оболочка выполнена в виде стеклокерамического покрытия толщиной 1-2 мм с вплавленными базальтовыми волокнами.
Предлагаемый способ реализуется следующим образом.
Осуществляют приготовление пористых ядер из кремнистой опоки путем дробления горной породы, например, на щековой дробилке с последующим разделением ядер по фракциям крупности от 5 до 20 мм (например, с помощью вибросита или виброгрохота). Образованные ядра обрабатывают шликером, например, посредством погружения или поливом с помощью нисходящей струи. При этом шликер представляет собой 40-50% водную суспензию, образованную смесью водного раствора метасиликата натрия (жидкого стекла) и легкоплавкой монтмориллонитовой или бентонитовой глины, взятых в соотношении 1:10 соответственно. В результате такой обработки за счет фильтрационных процессов отбора влаги и обезвоживания шликера на границе контакта с ядрами на их пористой поверхности формируется оболочка (пленка) толщиной 1-2 мм в виде глиняной корки (толщина образующейся пленки набирается в течение не более 1 мин). Затем осуществляют опудривание влажной поверхности оболочки пылевидно-волокнистыми отходами производства термостойкого базальтового волокна с последующим обжигом сформированных сырцовых гранул в печи при температуре 800-900°С с образованием плотной стеклокерамической оболочки на поверхности гранулы. При обжиге обеспечивается совмещение процесса тридимитизации кремнезема и сохранение природной микропористой структуры в ядре, формирование плотной стеклокерамической оболочки гранулы, а вплавленные в ее поверхность волокна повышают удельную поверхность, увеличивая у заполнителя контактную зону и сдвиговую устойчивость. Образованные в процессе обжига гранулы заполнителя в результате огневой усадки имеют размер от 5 до 20 мм.
В примерах реализации заявляемого способа изготовления заполнителя в качестве сырья использованы следующие исходные компоненты и технологические операции.
Опоки - лёгкие сцементированные тонкопористые породы, состоящие в основном из мельчайших (менее 0,005 мм) частиц кремнезёма. Средняя плотность составляет около 900 кг/м3, пористость достигает 60%. Постоянной составляющей опок являются опаловый кремнезем 54-80%, глинистые минералы 10-40% и до 10% песчаные частицы.
В качестве сырья для получения ядер заполнителя использовали опоку Вольского месторождения Саратовской области, химический состав которой приведен в табл. 1.
Эффективный диаметр пор у относительно крупнопористых и трепеловидных опок колеблется в пределах от 80 до 110 Ǻ, а удельная поверхность - от 90 до 130 м2/г.
Таблица 1. Химический состав опок Вольского месторождения Саратовской области, мас.%
|
Мелкопористые опоки имеют эффективный диаметр пор менее 60 Ǻ и удельную поверхность менее 90-60 м2/г. Использовали монофракционные ядра опоки размером 5 и 20 мм соответственно.
В основу глиняного шликера входила глина Елшанского месторождения (г. Саратов) - легкоплавкая, монтмориллонитовая, морского происхождения, среднеюрского возраста, синевато-серой окраски, среднепластичная (число пластичности 13-40). Химический состав: оксид кремния 38-70%, оксид алюминия 10-21%, оксид железа 4-9%, оксид кальция 1-7%, оксид магния 1-2%. Температура обжига 750-1050°С. В качестве щелочного компонента шликера использовали натриевое жидкое стекло по ТУ 2385-001-54824507-2000 с силикатным модулем 1,7-2,0 и плотностью 1,2-1,3 г/см3. Шликер приготавливали в два этапа. Сначала смешивали 10 мас.ч. глины и 1 мас.ч. жидкого стекла, в полученную смесь добавляли воду до получения суспензии с 40-50% влажностью. При этом допускается первоначальное растворение отмеренной дозы жидкого стекла в воде и дальнейшее перемешивание с необходимым количеством глины. Количество жидкого стекла в шликере не менее 10% подобрано таким образом, чтобы обеспечить стабильное, не склонное к расслаиванию состояние суспензии с 40-50% влажностью. Количество жидкого стекла в шликере более 10% в процессе последующего обжига гранул может привести к повышенному содержанию плавней в составе стеклокерамической оболочки, что негативно повлияет на технологические параметры термообработки и качество конечной продукции.
Средний химический состав базальтового волокна, мас.%: SiO2 -49,06; TiO2 - 1,36; Al2O3 - 15,7; Fe2O3 - 5,38%; FeO - 6,37; MgO - 6,17; CaO - 8,95; Na2O - 3,11; K2O -1,52; MnO - 0,31; P2O5 - 0,45; H2O - 1,62. Температура плавления 1100-1250°С.
Для опудривания влажной глиняной поверхности оболочки (после погружения ядер в шликер) использовали пылевато-волокнистые отходы, образованные в производстве базальтового волокна на Саратовском заводе стройматериалов. Основные характеристики отходов приведены в табл. 2.
Таблица 2. Характеристика пылевато-волокнистых отходов, образованных в производстве базальтового волокна на Саратовском заводе стройматериалов
|
Опудривание влажной поверхности сырцовых гранул пылевидно-волокнистыми отходами производства термостойкого базальтового волокна производили в барабанном смесителе, их последующий обжиг производили в муфельной печи при атмосферном давлении в интервале температур 800-900°С по режиму: нагрев до 600°С за 20 мин, последующий нагрев до 800-900°С со скоростью 100°С/мин, изотермическая выдержка при данной температуре в течение 15 мин, охлаждение до комнатной температуры со скоростью 100°С/мин.
В стеклокерамическом покрытии гранул в процессе их обжига при 800-900°С и изотермической выдержке в течение 15 мин, вплавленные базальтовые волокна претерпевают кристаллизацию с образованием минералов пироксеновой группы (авгит, диопсид, геденбергит). Изотермическая выдержка в течение интервала времени более 15 мин приводит к полнообъемной кристаллизации базальтовых волокон, что приводит к повышению их хрупкости, и, как следствие, снижению удельной поверхности гранул.
Свойства полученных заполнителей в сравнении с прототипом приведены в табл. 3.
Таблица 3. Свойства полученных заполнителей
|
Исследование свойств полученных материалов проводилось в соответствие с требованиями ГОСТ 9758-86 «Заполнители пористые неорганические для строительных работ» Методы испытаний.
Анализ данных табл. 3 результатов испытаний полученных заполнителей показывает следующее.
1. Полученный пористый заполнитель бетона c насыпной плотностью 380-450 кг/м3, морозостойкостью не менее F15 и прочностью при сжатии в цилиндре до 8 МПа в соответствии c ГОСТ 9757-90 «Заполнители пористые неорганические для строительных работ» отвечает марке П400.
2. Увеличение размера гранул более 20 мм (примеры 4 и 8) приводит к снижению их прочности как в сухом, так и в насыщенном водой состоянии, а также падению морозостойкости.
3. Уменьшение размера гранул менее 5 мм (примеры 1 и 5) приводит к возрастанию насыпной плотности, за счет перераспределения соотношения кремнистой и стеклокерамической составляющих частей гранулы (увеличение стеклокерамической доли и уменьшение кремнистой).
4. Температура обжига менее 800°С недостаточна для перехода опаловидной структуры ядра в кристаллическое состояние, а также для формирования прочного керамического черепка скорлупы. Температура обжига выше 900°С приводит к образованию значительного количества стекловидной фазы в керамическом слое гранулы и опасности оплавления базальтовых волокон (ассимиляции со стеклокерамической массой), что приводит к снижению величины удельной поверхности зерна. Возникает также опасность сплавления гранул.
Примеры 2, 3, 6, 7 отвечают поставленному техническому результату, отличаются от прототипа улучшенными эксплуатационными показателями и имеют преимущества по прочности, морозостойкости и удельной поверхности. Полученные в соответствии с предлагаемым техническим решением заполнители обладают развитой волокнистой контактной поверхностью, позволяющей обеспечить лучшую адгезию и равномерное объемное распределение зерен в композиции с цементным камнем.
Таким образом, предлагаемое техническое решение расширяет сырьевую базу производства теплоизоляционных засыпок и гранулированных легких заполнителей бетонов, обладающих улучшенными характеристиками по прочности и морозостойкости.