×
27.11.2015
216.013.9524

Результат интеллектуальной деятельности: ЭКСПЕРИМЕНТАЛЬНЫЙ ГАЗОГЕНЕРАТОР

Вид РИД

Изобретение

Аннотация: Экспериментальный газогенератор для определения параметров продуктов сгорания твердых топлив, включающий корпус, переднюю крышку, сопловой блок и заряд торцевого горения из твердого топлива, а также датчик тяги, выполненный с возможностью упора в опорную плиту. В корпусе экспериментального газогенератора расположен инертный наполнитель, на который опирается заряд торцевого горения. Между корпусом и сопловым блоком выполнена коническая вставка со штуцерами для датчиков давления и температуры, а в сопловом блоке расположено сопло с дозвуковой и сверхзвуковой частями. Изобретение позволяет испытывать заряд произвольной длины, а также повысить степень достоверности определения потерь удельного импульса тяги. 3 ил.
Основные результаты: Экспериментальный газогенератор (ЭГГ) для определения параметров продуктов сгорания твердых топлив (ТТ), включающий корпус, переднюю крышку, сопловой блок и заряд торцевого горения (ЗТГ) из ТТ, отличающийся тем, что он включает датчик тяги, выполненный с возможностью упора в опорную плиту, причем в корпусе ЭГГ расположен инертный наполнитель, на который опирается ЗТГ, между корпусом и сопловым блоком выполнена коническая вставка со штуцерами для датчиков давления и температуры, а в сопловом блоке расположено сопло с дозвуковой и сверхзвуковой частями.

Изобретение относится к ракетной технике и, в частности, к экспериментальным газогенераторам (ЭГГ) для определения параметров продуктов сгорания (ПС) твердых топлив (ТТ), а также для выбора эффективных газогенераторных рецептур ТТ, применяемых в прямоточных воздушно-реактивных двигателях (ПВРД). Этими параметрами являются давление и температура ПС в ЭГГ, содержание несгоревшего горючего в ПС, истекающих из газогенератора, и другие параметры ПВРД.

Необходимость таких установок особенно актуальна при создании ПВРД на твердом топливе /1, 2, 3, 4/. На фиг. 1 изображена условная схема ПВРД с газогенератором 1, камерой дожигания 2 и воздухозаборником 3. Истекающие из газогенератора несгоревшие ПС сгорают в камере дожигания в смеси с поступающим из воздухозаборника наружным воздухом, создавая дополнительный импульс тяги ПВРД. Полученные при испытаниях ЭГГ значения параметров газогенераторных ТТ могут быть использованы для оценки эффективности и энергетических возможностей ПВРД.

В настоящее время известны различные ЭГГ для определения параметров ПС. Эти ЭГГ обладают конструктивными недостатками и мало информативны. В них /1, 2/ отсутствует сопло со сверхзвуковой частью и не предусмотрен замер температуры ПС. Кроме того, существуют экспериментальные установки, в которых определяется состав ПС с использованием пробоотборников /5, 6, 7, 8/. Эти установки не моделируют условия горения в газогенераторах. Пробоотборники обычно устанавливаются в газогенераторах, испытываемых на стенде. Однако они дают только локальные значения состава ПС, а этого недостаточно для получения полной информации о ПС. Существуют способы определения состава ПС на выходе из сопла, в частности содержания в них конденсированной фазы с помощью известных программных комплексов типа «Астра» /9/. Однако для газогенераторных ТТ применение этих способов дает недостоверные результаты, так как они рассчитывают только равновесные термодинамические процессы в ПС.

В качестве прототипа изобретения принят ЭГГ, описанный в работе /2/. Недостатками этого ЭГГ является наличие нескольких сопел, не имеющих сверхзвуковой части. Кроме того, в прототипе не предусмотрен замер тяги, что необходимо для расчета потерь удельного импульса тяги (УИТ). Для таких конструкций ЭГГ отсутствует достоверная математическая модель процессов в сопле и, следовательно, нет возможности разложения суммарных потерь УИТ на составляющие, что необходимо для определения содержания несгоревшего горючего в ПС. Отсутствует возможность замера такого важного для работоспособности конструкции параметра, как температура ПС. Недостатком также является фиксированная длина заряда, что не позволяет ею варьировать и, таким образом, экономить ТТ при выборе эффективных газогенераторных рецептур ТТ.

Технической задачей изобретения является создание ЭГГ для определения содержания несгоревшего горючего в ПС и других параметров горения ТТ, практически исключающего перечисленные выше недостатки прототипа.

Поставленная техническая задача решается тем, что в ЭГГ, включающем корпус, переднее дно, сопловой блок и заряд торцевого горения (ЗТГ) из ТТ, выполнены следующие изменения. ЭГГ включает датчик тяги, выполненный с возможностью упора в опорную плиту. В корпусе ЭГГ расположен инертный наполнитель, на который опирается ЗТГ. Наличие такого наполнителя позволяет размещать в ЭГГ заряды произвольной длины, т.к. длина наполнителя выбирается таким образом, чтобы суммарная длина заряда и наполнителя была равна длине внутренней цилиндрической части корпуса. Между корпусом и сопловым блоком расположена коническая вставка, на которой выполнены штуцеры для установки датчиков давления и температуры. В сопловом блоке расположено сопло с дозвуковой и сверхзвуковой частями. Такая конструкция позволяет с высокой степенью достоверности рассчитывать газодинамические и двухфазные потери удельного импульса тяги, которые используются для определения количества несгоревшего горючего в ПС.

Ниже рассмотрен пример реализации изобретения. Схема ЭГГ для определения параметров ПС газогенераторных ТТ показана на фиг. 2. ЭГГ состоит из передней крышки 15 с гнездом для установки датчика тяги 14, металлического корпуса 16, инертного наполнителя 4, ЗТГ 5 массой от 0,5 до 2 кг, диаметром 90 мм и переменной длины от 30 до 230 мм. На вставке 6 расположены датчик давления 11 и датчик температуры 7, позволяющие измерять давление и температуру ПС в камере сгорания. Сопловой вкладыш 10, расположенный в сопловом блоке 9, имеет диаметр критического сечения Dкр=5…15 мм. Степень расширения сопла выбрана таким образом, чтобы максимально реализовался режим безотрывного течения ПС в сверхзвуковой части сопла. Зажжение образца производится воспламенителем 13.

При определении параметров горения газогенераторных ТТ сочетаются расчетный и экспериментальный подходы решения проблемы. Перед испытанием ЭГГ устанавливают на ложементы стапеля с подвижной тележкой 12. Датчик тяги 14 упирается в опорную плиту. При срабатывании воспламенителя в камере сгорания ЭГГ происходит подъем давления. Результаты измерений фиксируют на осциллограммах (фиг. 3). В течение испытания измеряют значения давления P(t), температуры ПС T(t) и тяги R(t) в зависимости от времени t.

После испытания по результатам измерений рассчитывают Iэ - экспериментальное значение УИТ ТТ в ЭГГ. Затем рассчитывают ξ - значение суммарных потерь УИТ, обусловленное всеми видами потерь (из-за рассеяния, трения, отвода тепла в стенки ЭГГ, двухфазности потока, неполноты процесса кристаллизации окислов металла и др.), кроме потерь, связанных с неполнотой сгорания горючего в ПС /5/. После этого рассчитывают значения

УИТ (термодинамического) Ip°, соответствующее полученным Iэ и ξ по формуле:

Ip°=Iэ/(1-ξ),

а затем по программе «TERRA» /10/ определяют зависимость термодинамического УИТ Ip от содержания металла q в топливе Ip=f(q) (в предположении химического равновесия процессов в камере сгорания). По этой зависимости и значению Ip° определяют содержание несгоревшего металла qэ в топливе, при котором выполняется условие

Ip(qэ)=Ip°

Здесь значение qэ является искомым количеством (содержанием) несгоревшего горючего.

Проведенные испытания ЭГГ показали работоспособность данного изобретения. При сжигании разных газогенераторных ТТ среднее давление в ЭГГ составляло от 1.5 кгс/см2 до 100 кгс/см2. Измеренная температура ПС составила 800…2100°C. Для различных испытанных газогенераторных ТТ содержание несгоревшего металлического горючего составило 80…100% при содержании конденсированной фазы 40…50% от всей массы ПС. Полученные результаты позволяют выбрать наиболее эффективную рецептуру для использования в ПВРД.

Использованные литературные источники

1. Александров В.Н., Быцкевич В.М, Верхоломов В.К. и др. Интегральные прямоточные воздушно-реактивные двигатели на твердых топливах / Под редакцией докт. техн. наук Л.С. Яновского. М: ИКЦ «Академкнига». 2006, стр. 61-98.

2. Сорокин В.А., Яновский Л.С, Козлов В.А. и др. Ракетно-прямоточные двигатели на твердых и пастообразных топливах / Под редакцией члена-корреспондента РАН, доктора технических наук, профессора Ю.М. Милехина и канд. техн. наук В.А. Сорокина. - М.: Физматлит, 2010, стр. 250-255.

3. Алешичева Л.И., Дунаев В.А., Положай Ю.В и др. «Активно-реактивный снаряд». Патент РФ №2493533 от 20.09.2013.

4. Соломонов Ю.С., Дорофеев А.А. Король Г.Ф. и др. «Твердотопливная ракета». Патент РФ №2492417 от 10.09.2013.

5. Милехин Ю.М., Ключников А.Н., Бурский Г.В., Лавров Г.С. Энергетика ракетных двигателей на твердом топливе / Под редакцией члена-корреспондента РАН Ю.М. Милехина. - М.: Наук, 2013, стр. 148-153.

6. Чесноков М.Н., Горев Л.В. О дисперсности продуктов сгорания механической смеси порошков алюминия и кадмия // Физика аэродисперсных систем. - 1972. - №6.

7. Коэн. Горение топлив с избытком горючего // Ракетная техника и космонавтика. 1969. №7, стр. 161-171.

8. Адаме. Достоверный критерий полноты сгорания // Ракетная техника и космонавтика. 1969. №7, стр. 220-225.

9. Трусов Б.Г. Моделирование химических и фазовых равновесий при высоких температурах: Программа для ЭВМ / МГТУ им. Н.Э. Баумана; РосАПО. - Гос. рег. №920054. - 1992.

10. Трусов Б.Г. Программная система TERRA для моделирования фазовых и химических равновесий при высоких температурах // III Международный симпозиум «Горение и плазмохимия». 24-26 августа 2005. Алматы, Казахстан. - Алматы: Казак университетi, 2005.

Экспериментальный газогенератор (ЭГГ) для определения параметров продуктов сгорания твердых топлив (ТТ), включающий корпус, переднюю крышку, сопловой блок и заряд торцевого горения (ЗТГ) из ТТ, отличающийся тем, что он включает датчик тяги, выполненный с возможностью упора в опорную плиту, причем в корпусе ЭГГ расположен инертный наполнитель, на который опирается ЗТГ, между корпусом и сопловым блоком выполнена коническая вставка со штуцерами для датчиков давления и температуры, а в сопловом блоке расположено сопло с дозвуковой и сверхзвуковой частями.
ЭКСПЕРИМЕНТАЛЬНЫЙ ГАЗОГЕНЕРАТОР
ЭКСПЕРИМЕНТАЛЬНЫЙ ГАЗОГЕНЕРАТОР
ЭКСПЕРИМЕНТАЛЬНЫЙ ГАЗОГЕНЕРАТОР
Источник поступления информации: Роспатент

Показаны записи 21-28 из 28.
29.05.2019
№219.017.640c

Огнеупорная смесь для керамической наплавки

Изобретение предназначено для горячего ремонта футеровок печей в металлургической, коксохимической и других отраслях промышленности. Техническим результатом изобретения является снижение сил адгезии между частицами смеси, повышение ее текучести, уменьшение явлений слеживаемости и сегрегации при...
Тип: Изобретение
Номер охранного документа: 0002289554
Дата охранного документа: 20.12.2006
29.05.2019
№219.017.6748

Порошковая смесь для керамической сварки

Изобретение относится к получению огнеупорного покрытия на горячей поверхности при горячем ремонте кладки промышленных печей методом керамической сварки (наплавки) и может быть использовано в металлургической, коксохимической и других отраслях промышленности. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002326095
Дата охранного документа: 10.06.2008
10.07.2019
№219.017.aa77

Способ определения скорости горения твердого ракетного топлива

Изобретение относится к ракетной технике и может быть использовано для определения скорости горения твердого ракетного топлива. Способ определения скорости горения включает установку в бронированном стержневом образце твердого ракетного топлива, на некотором расстоянии по длине образца, двух...
Тип: Изобретение
Номер охранного документа: 0002267636
Дата охранного документа: 10.01.2006
10.07.2019
№219.017.aede

Вибрационный контейнер с подвижными стенками для высокодисперсных трудносыпучих пожаро-взрывоопасных порошков в производстве зарядов из смесевого твердого ракетного топлива

Изобретение относится к области разработки конструкции технологического аппарата для современных топливных композиций на активном полиэфируретановом связующем, содержащих высокодисперсные и мелкодисперсные трудносыпучие порошкообразные окислители и ВВ. Вибрационный контейнер состоит из...
Тип: Изобретение
Номер охранного документа: 0002327627
Дата охранного документа: 27.06.2008
01.08.2019
№219.017.bade

Аэрозолеобразующий огнетушащий состав с широким температурным диапазоном эксплуатации (от -50˚c до +125˚c)

Изобретение относится к средствам тушения и предотвращения горения легковоспламеняющихся жидкостей, горючих веществ и материалов, а именно к области разработки аэрозолеобразующих огнетушащих составов (АОС). Аэрозолеобразующий огнетушащий состав с температурным диапазоном эксплуатации от -50°С...
Тип: Изобретение
Номер охранного документа: 0002695982
Дата охранного документа: 29.07.2019
08.11.2019
№219.017.df48

Силоксансодержащая эпоксидная композиция

Изобретение относится к области разработки полимерных композиций на основе эпоксидных смол, аминных отвердителей, наполнителей и других составляющих для использования в качестве адгезионно-активных покрытий высоконаполненных полимерных композиций (энергетических конденсированных систем), а...
Тип: Изобретение
Номер охранного документа: 0002705332
Дата охранного документа: 06.11.2019
21.01.2020
№220.017.f780

Ракетный двигатель подачи заряда разминирования

Изобретение относится к ракетным двигателям твердого топлива, используемым для подачи по воздуху заряда разминирования на заданную дистанцию при применении двигателя в установках разминирования. Ракетный двигатель содержит обечайку, переднюю крышку, сопловой блок с шестью соплами, наклоненными...
Тип: Изобретение
Номер охранного документа: 0002711328
Дата охранного документа: 16.01.2020
16.06.2023
№223.018.7a4b

Универсальный катализатор горения баллиститных твердых ракетных топлив (бтрт)

Данное изобретение относится к области разработки баллиститных ракетных твердых топлив (БРТТ) с улучшенными баллистическими характеристиками. Изобретение касается универсального катализатора горения баллиститных твердых ракетных топлив, содержащего индивидуальные катализаторы, например карбонат...
Тип: Изобретение
Номер охранного документа: 0002731103
Дата охранного документа: 28.08.2020
Показаны записи 21-25 из 25.
01.08.2019
№219.017.bade

Аэрозолеобразующий огнетушащий состав с широким температурным диапазоном эксплуатации (от -50˚c до +125˚c)

Изобретение относится к средствам тушения и предотвращения горения легковоспламеняющихся жидкостей, горючих веществ и материалов, а именно к области разработки аэрозолеобразующих огнетушащих составов (АОС). Аэрозолеобразующий огнетушащий состав с температурным диапазоном эксплуатации от -50°С...
Тип: Изобретение
Номер охранного документа: 0002695982
Дата охранного документа: 29.07.2019
02.10.2019
№219.017.cc42

Устройство для предотвращения и тушения лесных, промышленных и аварийно-транспортных пожаров и прокладки заградительных полос

Изобретение относится к противопожарной технике предотвращения и тушения крупномасштабных лесных, торфяных, почвенных, степных, промышленных и аварийно-транспортных пожаров и создания заградительных полос перед кромками пожаров при локализации верховых и низовых лесных, почвенных, торфяных,...
Тип: Изобретение
Номер охранного документа: 0002701614
Дата охранного документа: 30.09.2019
08.11.2019
№219.017.df48

Силоксансодержащая эпоксидная композиция

Изобретение относится к области разработки полимерных композиций на основе эпоксидных смол, аминных отвердителей, наполнителей и других составляющих для использования в качестве адгезионно-активных покрытий высоконаполненных полимерных композиций (энергетических конденсированных систем), а...
Тип: Изобретение
Номер охранного документа: 0002705332
Дата охранного документа: 06.11.2019
21.01.2020
№220.017.f780

Ракетный двигатель подачи заряда разминирования

Изобретение относится к ракетным двигателям твердого топлива, используемым для подачи по воздуху заряда разминирования на заданную дистанцию при применении двигателя в установках разминирования. Ракетный двигатель содержит обечайку, переднюю крышку, сопловой блок с шестью соплами, наклоненными...
Тип: Изобретение
Номер охранного документа: 0002711328
Дата охранного документа: 16.01.2020
16.06.2023
№223.018.7a4b

Универсальный катализатор горения баллиститных твердых ракетных топлив (бтрт)

Данное изобретение относится к области разработки баллиститных ракетных твердых топлив (БРТТ) с улучшенными баллистическими характеристиками. Изобретение касается универсального катализатора горения баллиститных твердых ракетных топлив, содержащего индивидуальные катализаторы, например карбонат...
Тип: Изобретение
Номер охранного документа: 0002731103
Дата охранного документа: 28.08.2020
+ добавить свой РИД