×
27.11.2015
216.013.9523

Результат интеллектуальной деятельности: СИСТЕМА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплоэнергетике, в частности к системам оборотного водоснабжения промышленных предприятий. Система оборотного водоснабжения, содержащая теплообменники, подключаемые прямой и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой магистрали соединительным трубопроводом с регулятором расхода и эжектором, камера смешивания которого подключена к обратной магистрали воды с регулятором давления, а сопловая часть эжектора на внутренней поверхности имеет винтообразные канавки, связанные с кольцевой канавкой, подключенной к сборнику загрязнений, при этом охладитель включает вертикальный корпус, боковые стенки которого и установленные в нем секционные перегородки выполнены загзагообразными и образуют в каждой секции диффузоры и конфузоры, расположенные относительно соседних секций в шахматном порядке, кроме того, регулятор расхода снабжен задвижкой с приводом регулятора скорости в виде блока порошковых электромагнитных муфт, а на прямой магистрали воды установлен датчик температуры, подключенный к регулятору температуры, который содержит блок сравнения и блок задания, при этом блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, кроме того, выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, выход которого подключен к регулятору скорости привода задвижки, причем перегородки диффузоров и конфузоров выполнены из биметалла, при этом внутренний материал диффузоров имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем коэффициент теплопроводности внутреннего материала конфузоров, при этом теплообменники снабжены термоэлектрическим генератором, выполненным в виде корпуса с двумя проходными каналами для горячей и охлажденной воды и комплектом дифференциальных термопар, «горячие» концы которых расположены внутри проходного канала для горячей воды, а их «холодные» концы расположены в проходном канале для охлажденной воды, причем вход проходного канала для горячей воды соединен через трехходовой клапан с обратной магистралью перед бассейном-смесителем, а его выход соединен с обратной магистралью перед бассейном-смесителем, кроме того, вход проходного канала для охлажденной воды соединен с прямой напорной магистралью перед регулятором давления, а его выход соединен через трехходовой клапан с бассейном-смесителем. Наружная поверхность каждого из теплообменников покрыта тонковолокнистым базальтовым материалом, выполненным в виде витых пучков продольно вытянутых от прямой магистрали перед теплообменниками до обратной магистрали после теплообменников. Техническим результатом изобретения является поддержание нормированных энергозатрат на работу системы оборотного водоснабжения в изменяющихся температурных условиях окружающей среды помещения, где размещены теплообменники, путем устранения тепловых потерь от охлажденной воды с обеспечением заданного режима теплообмена за счет покрытия наружной поверхности теплообменников тонковолокнистым базальтовым материалом. 2 ил.
Основные результаты: Array

Изобретение относится к теплоэнергетике, в частности к системам оборотного водоснабжения промышленных предприятий.

Известна система оборотного водоснабжения (см. патент РФ №2425314, МПК F28С 1/108, 2011. Бюл. №21), содержащая теплообменники, подключаемые к прямой магистрали соединительными трубопроводом с регулятором расхода и эжектором, камера смешивания которого подключена к обратной магистрали воды с регулятором давления, а сопловая часть эжектора на внутренней поверхности имеет винтообразные канавки, связанные с кольцевой канавкой, подключенной к сборнику загрязнений, при этом охладитель включает вертикальный корпус, боковые стенки которого и установленные в нем секционные перегородки выполнены зигзагообразными и образуют в каждой секции диффузоры и конфузоры, расположенные относительно соседних секций в шахматном порядке, кроме того, регулятор расхода снабжен задвижкой с приводом регулятора скорости в виде блока порошковых электромагнитных муфт, а на прямой магистрали воды установлен датчик температуры, подключенный к регулятору температуры, который содержит блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, кроме того, выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, выход которого подключен к регулятору скорости привода задвижки, при этом перегородки дуффузоров и конфузоров выполнены из биометалла, причем внутренний материал диффузоров имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем коэффициент теплопроводности внутреннего материала конфузоров.

Недостатком является энергоемкость, обусловленная необходимостью использования дополнительной электроэнергии для питания систем автоматизированного контроля температуры воды в прямой магистрали и регулятора скорости вращения с электронной схемой управления.

Известна система оборотного водоснабжения (см. патент РФ №2482409, МПК F28С 1/00, опубл. 20.05.2013, 2011. Бюл. №14) содержащая теплообменники, подключаемые к прямой магистрали соединительными трубопроводом с регулятором расхода и эжектором, камера смешивания которого подключена к обратной магистрали воды с регулятором давления, а сопловая часть эжектора на внутренней поверхности имеет винтообразные канавки, связанные с кольцевой канавкой, подключенной к сборнику загрязнений, при этом охладитель включает вертикальный корпус, боковые стенки которого и установленные в нем секционные перегородки выполнены зигзагообразными и образуют в каждой секции диффузоры и конфузоры, расположенные относительно соседних секций в шахматном порядке, кроме того, регулятор расхода снабжен задвижкой с приводом регулятора скорости в виде блока порошковых электромагнитных муфт, а на прямой магистрали воды установлен датчик температуры, подключенный к регулятору температуры, который содержит блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, кроме того, выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, выход которого подключен к регулятору скорости привода задвижки, при этом перегородки дуффузоров и конфузоров выполнены из биометалла, причем внутренний материал диффузоров имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем коэффициент теплопроводности внутреннего материала конфузоров, при этом теплообменники снабжены термоэлектрическим генератором, выполненным в виде корпуса с двумя проходными каналами для горячей и охлажденной воды и комплектом дифференциальных термопар, «горячие» концы которых расположены внутри проходного канала для горячей воды, а их «холодные» концы расположены в проходном канале для охлажденной воды; причем вход походного канала для горячей воды соединен через трехходовой клапан с обратной магистралью перед бассейном-теплообменником, а его выход соединен с обратной магистралью перед бассейном-смесителем, кроме того, вход проходного канала для охлажденной воды соединен с прямой напорной магистралью перед регулятором давления, а его выход соединен через трехходовой клапан с бассейном-смесителем.

Недостатком являются энергозатраты, связанные с необходимостью дополнительной подачи охлажденной воды на теплообменники, находящиеся в помещении с температурой, превышающей температуру охлажденной воды, для устранения как тепловых потерь в окружающую среду, так и поддержания нормированного теплообменного процесса между горячей и охлажденной водой в теплообменнике.

Технической задачей предлагаемого изобретения является поддержание нормированных энергозатрат на работу системы оборотного водоснабжения в изменяющихся температурных условиях окружающей среды помещения, где размещены теплообменники, путем устранения тепловых потерь от охлажденной воды с обеспечением заданного режима теплообмена за счет покрытия наружной поверхности теплообменников тонковолокнистым базальтовым материалом.

Технический результат достигается тем, что система оборотного водоснабжения, содержащая теплообменники, подключаемые прямой и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой магистрали соединительным трубопроводом с регулятором расхода и эжектором, камера смешивания которого подключена к обратной магистрали воды с регулятором давления, а сопловая часть эжектора на внутренней поверхности имеет винтообразные канавки, связанные с кольцевой канавкой, подключена к сборнику загрязнений, при этом охладитель включает вертикальный корпус, боковые стенки которого и установленные в нем секционные перегородки выполнены зигзагообразными и образуют в каждой секции диффузоры и конфузоры, расположенные относительно соседних секций в шахматном порядке, кроме того, регулятор расхода снабжен задвижкой с приводом регулятора скорости в виде блока порошковых электромагнитных муфт, а на прямой магистрали воды установлен датчик температуры, подключенный к регулятору температуры, который содержит блок сравнения и блок задания, при этом блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, кроме того, выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, выход которого подключен к регулятору скорости привода задвижки, причем перегородки диффузоров и конфузоров выполнены из биметалла, при этом внутренний материал диффузоров имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем коэффициент теплопроводности внутреннего материала конфузоров, при этом теплообменники снабжены термоэлектрическим генератором, выполненным в виде корпуса с двумя проходными каналами для горячей и охлажденной воды и комплектом дифференциальных термопар, «горячие» концы которых расположены внутри проходного канала для горячей воды, а их «холодные» концы расположены в проходном канале для охлажденной воды, причем вход проходного канала для горячей воды соединен через трехходовой клапан с обратной магистралью перед бассейном-смесителем, а его выход соединен с обратной магистралью перед бассейном-смесителем, кроме того, вход проходного канала для охлажденной воды соединен с прямой напорной магистралью перед регулятором давления, а его выход соединен через трехходовой клапан с бассейном-смесителем, при этом наружная поверхность каждого из теплообменников покрыта тонковолокнистым базальтовым материалом, выполненным в виде витых пучков продольно вытянутых от прямой магистрали перед теплообменниками до обратной магистрали после теплообменников.

На фиг.1 схематически изображена система оборотного водоснабжения, а на фиг. 2 - общий вид корпуса охладителя с диффузорами и конфузорами из биометалла.

Система оборотного водоснабжения состоит из теплообменников 1, подключенных к прямой напорной 2 и обратной 3 магистралями к водосборному бассейну-смесителю 4 с охладителем 5, над которым установлен ороситель 6. Прямая магистраль 2 с датчиком температуры 7 через задвижку 8, регулятор расхода 9 соединительным трубопроводом 10 с установленным эжектором 11 соединена с оросителем 6. Камера смешивания 12 эжектора 11 всасывающим трубопроводом 13 через регулятор 14 соединена с обратной магистралью воды 3, на которой перед бассейном-смесителем 4 установлен регулятор давления 15. На прямой магистрали 2 установлен насос 16 и охладитель 5 при максимальной его подаче на теплообменники 1 обеспечивает оптимальную всасывающую способность эжектора 11, которая регулируется регулятором давления 17. Вдоль сопловой части 18 от меньшего сечения к большему выполнены канавки 19, соединенные в большем сечении сопловой части 18 эжектора 11 с кольцевой канавкой 20, которая подключена к сборнику загрязнений 21 в своей нижней части.

Охладитель 5 включает корпус, боковые стенки 22 которого и установленные в нем секционные перегородки 23 выполнены зигзагообразными и образуют в каждой секции 24 диффузоры 25 и конфузоры 26, расположенные относительно соседних секций в шахматном порядке. Перегородки 23 каждой секции 24 диффузоров 25 и конфузоров 26 выполнены из биометалла, при этом внутренняя поверхность диффузоров 25 выполнена из материала 27 с коэффициентом теплопроводности в 2,0-2,5 раза выше, чем коэффициент теплопроводности материала 28 внутренней поверхности конфузоров 26.

Регулятор расхода 9 снабжен задвижкой 8 с приводом 29 регулятора скорости 30 в виде блока порошковых электромагнитных муфт, а на прямой напорной 2 магистрали воды установлен датчик температуры 7, подключенный к регулятору температуры 31, который содержит блок сравнения 32 и блок задания 33, причем блок сравнения 32 соединен с входом электронного усилителя 34, оборудованного блоком нелинейной обратной связи 35, кроме того, выход электронного усилителя 34 соединен с входом магнитного усилителя 36 с выпрямителем, который подключен к регулятору скорости 30 в виде блока порошковых электромагнитных муфт привода 29 задвижки 8.

Теплообменники 1 снабжены термоэлектрическим генератором 37, выполненным в виде корпуса 38 с проходным каналом для горячей воды 39 и с проходным каналом 40 для охлажденной воды и комплектом дифференциальных термопар 41. «Горячие» концы 42 комплекта дифференциальных термопар 41 расположены внутри проходного канала для горячей воды 39, а их «холодные» концы 43 расположены внутри проходного канала 40 для охлажденной воды. Вход 44 проходного канала для горячей воды 39 через трехходовой клапан 45 соединен с обратной магистралью 3 перед регулятором давления 15 бассейна-смесителя 4. Вход 47 проходного канала 40 для охлажденной воды соединен с прямой магистралью 2 перед регулятором давления 17, а его выход 48 соединен через трехходовой клапан 49 с бассейном-смесителем 4. Наружная поверхность 50 каждого из теплообменников 1 покрыта тонковолокнистым базальтовым материалом 51, выполненным в виде витых пучков 52, продольно вытянутых от прямой напорной магистрали 2 перед теплообменниками 1 до обратной магистрали 3 после теплообменников 1.

Система оборотного водоснабжения работает следующим образом. Температура внутри помещения, где размещены теплообменники 1 находится в пределах 16-22°С (см., например, СНиП 23-02-2003 «Тепловая защита зданий» Строительная теплофизика. М.: ЦНТП Госстрой РФ, 1996, 36 с.), что значительно ниже температуры охлажденной воды, поступающей с прямой напорной магистрали 2 в теплообменники 1. В результате тепловой поток от охлажденной воды поступает к воздуху внутри помещения через наружную поверхность 50 теплообменников 1 и тем самым снижает эффективность теплообмена в процессе охлаждения горячей воды, находящейся в теплообменнике.

При покрытии наружной поверхности 50 теплообменников 1 тонковолокнистым базальтовым материалом 51 устраняется передача теплоты к внутреннему воздуху окружающей теплообменники среды в связи с тем, что тонковолокнистый базальтовый материал 51 является теплоизоляцией. А выполнение тонковолокнистого базальтового материала 51 в виде витых пучков 52, продольно вытянутых от прямой магистрали 2 перед теплообменником 1 до обратной магистрали 3 после теплообменников 1, приводит к тому, что по мере перемещения охлажденной воды по высоте теплообменника наблюдается аккумулирование ее теплоты, что обеспечивает оптимальный режим теплообмена с горячей водой при нормированных энергозатратах на перекачивание насосом 16.

В процессе эксплуатации системы оборотного водоснабжения часть горячей воды через трехходовой клапан 45 поступает в проходной канал 39 для горячей воды через его вход 44, где контактирует с «горячими» концами 42 комплекта дифференциальных термопар 41, и далее через выход 46 направляется к бассейну-смесителю 4 перед регулятором 15 обратной магистрали 3. Одновременно часть охлажденной воды из прямой напорной магистрали 2 после насоса 16 с повышенным напором через вход 47 поступает в проходной канал 40 для охлажденной воды, где контактирует с «холодными» концами 43 комплекта дифференциальных термопар 41 и через выход 48 направляется в бассейн-ороситель 4.

Известно, что температура после теплообменников 1 достигает 90°С более в зависимости от технологической схемы оборотного водоснабжения, а охлажденная вода имеет температуру выше 30°С (см., например, Кургавин В.М. Экономия тепловой и электрической энергии в поршневых компрессорах. М.: Машиностроение, 1985, 80 с.). В результате возникающая разность температур теплоносителей, контактирующих с «горячими» концами 42 и с «холодными» концами 43 комплекта дифференциальных термопар 41 соответственно в проходном канале 39 для горячей воды и в проходном канале 40 для охлажденной воды корпуса 38 термоэлектрического генератора 37, при выполнении элементов комплекта дифференциальных термопар 41, например, из хромель-копеля позволяет получать термо-ЭДС до 6,96 мВ (см., например, Иванова Г.М. Теплотехнические измерения и приборы. М.: Энергоатомиздат, 1980, 560 с.), что вполне хватает для питания схем электронного автоматизированного управления системы оборотного водоснабжения, т.е. отпадает необходимость использования дополнительной электрической энергии от постороннего источника, а это в конечном итоге снижает энергоемкость всей системы оборотного водоснабжения.

Оборотная вода после теплообменников 1 поступает по обратной магистрали 3 в водосборный бассейн-смеситель 4, в котором находится ранее охлажденная в охладителе 5 вода. Если температура атмосферного воздуха ниже расчетной, то в водосборном бассейне-смесителе 4 вода, подаваемая в теплообменники 1, имеет температуру ниже, чем это необходимо. В это время задвижка 8 закрыта и вода в ороситель 6 не подается. Горячая вода из обратной магистрали 3 перемешивается с холодной водой в водосборном бассейне-смесителе 4 и повышает его температуру.

При возрастании температуры атмосферного воздуха до значений, когда не обеспечивается охлаждение оборотной воды в водосборном бассейне смесителе 4 до значений температуры охлажденной воды, что регистрируется датчиком температуры 7. При этом сигнал блока задания 33 регулятора температуры 31 превышает сигнал датчика температуры 7 и на выходе блока сравнения 32 появляется сигнал положительной полярности, который поступает на вход. Туда же поступает и сигнал с блока нелинейной обратной связи 35, который вычитается из сигнала блока сравнения 32.

За счет этого в электронном усилителе 34 компенсируется нелинейность характеристики привода 29 задвижки 8. Сигнал с выхода электронного усилителя 34 поступает на вход магнитного усилителя 36, где он усиливается по мощности, выпрямляется и поступает на обмотку регулятора скорости 30 в виде блока порошковых электромагнитных муфт привода 29 задвижки 8.

Положительная полярность сигнала электромагнитного усилителя 34 вызывает увеличение тока возбуждения на выходе магнитного усилителя 36, тем самым увеличивая передаваемый на регулятор скорости 30 момент от привода 29, чем достигается открытие задвижки 8 на некоторую величину, обеспечивающую частичную подачу воды из прямой напорной магистрали 2 в регулятор расхода 9, и охлажденная вода, смешанная в эжекторе 11 с горячей водой, из обратной магистрали 3 подается по соединительному трубопроводу 10 на ороситель 6 и далее на охладитель 5 для более глубокого охлаждения.

Форсунки оросителя 6 в охладителе 5 расположены таким образом, что каждая форсунка подает воду только в одну из секций 24. В результате обеспечивается равномерная эпюра скоростей водяного потока в поперечном сечении корпуса охладителя 5, поддерживаемая за счет «живого» сечения выходных отверстий форсунок оросителя 6. Распыляемый поток воды с оптимальной эпюрой скоростей, обеспечивающей рациональный контакт воды с зигзагообразными перегородками 23, поступает в секции 24 и, проходя последовательно участки диффузоров 25 и конфузоров 26, непрерывно меняет свою скорость, что приводит к турбулизации потока и повышению теплообмена, а также к распределению в секциях 24 давления движущегося потока воды. Это выравнивает гидравлическое сопротивление воды в секциях 24 и приводит к равномерному смыванию водой всего объема охладителя 5 даже при незначительном перепаде температур между атмосферным воздухом и охлаждаемой водой.

Увеличение скорости охлаждаемой воды в диффузорах 25 за счет уменьшения проходного сечения по мере движения потока приводит к возрастанию теплоты трения пограничного слоя о внутреннюю поверхность диффузоров 25, выполненных из материала 27, что приводит к увеличению температурного градиента (см., например, Лариков Н.Н. Теплотехника. - М.: Строительство, 1975, 369 с.). Последующий переход движущегося потока охлаждаемой воды по конфузорам 26 секций 24 приводит к уменьшению его скорости и соответственно теплоты трения о внутреннюю поверхность диффузоров 25, выполненных из материала 28, что приводит к уменьшению его скорости и соответственно теплоты трения о внутреннюю поверхность конфузоров 26, выполненных из материала 28, что приводит к резкому уменьшению температурного градиента. В результате в секциях 24 на внутренних поверхностях диффузоров 25 и конфузоров 26, выполненных соответственно из материалов 27 и 28, имеющих коэффициенты теплопроводности, в 2,0-2,5 раза отличающиеся друг от друга (например, при выполнении перегородки 24 из биометалла с материалом 27 из алюминия с коэффициентом теплопроводности и материалом 28 из латуни с коэффициентом теплопроводности стр.312, Нащокин В.В. Техническая термодинамика и теплопередача. - М.: Высшая школа, 1975, 469 с., ил.), наблюдаются термовибрации, которые постоянно стряхивают твердые частицы с поверхностей перегородок 23 секций 24, не допуская их налипания (см., например, Дмитриев В.П. Биометаллы. - Пермь: Наука, 1991 - 487 с., ил.). Все это приводит к поддержанию постоянства теплообмена в секциях 24 при длительной эксплуатации охладителя 5.

Известно, что вода, имеющая повышенную температуру, интенсифицирует процесс образования окалины и ржавчины, то есть загрязнений сопутствующих систем оборотного водоснабжения. В результате наблюдается увеличение гидравлического сопротивления трубопроводов, возрастает частота закупорки (засорения) насадок оросителя 6 и, как следствие этого, эффективность работы системы оборотного водоснабжения и возрастают энергозатраты на насосную установку. Поэтому горячая вода с загрязнениями (окалина, ржавчина и т.д.), перемешанная в камере смешивания 12, поступает в сопловую часть 18 эжектора 11 и, перемещаясь по винтообразным канавкам 19, закручивается. Твердые частицы сталкиваются в канавках 19, перемещаются в кольцевую канавку 20 и далее в сборник загрязнений 21, откуда удаляются вручную или автоматически (не показано).

Очищенный от загрязнений поток воды поступает в ороситель 6 и далее в охладитель 5 для более глубокого охлаждения. Оптимальная всасывающая способность эжектора 11 поддерживается регулятором давления 15. Очищенная в эжекторе 11 и охлажденная в охладителе 5 вода смешивается в водосборном бассейне-смесителе 4 с горячей водой, поступающей из теплообменников 1. В процессе смешивания постепенно понижается температура воды до расчетного минимального значения, что регистрируется датчиком температуры 7. При этом сигнал датчика температуры 7 превышает сигнал блока задания 33 регулятора температуры 31 и на выходе блока сравнения 32 появляется сигнал отрицательной полярности, который поступает на вход электронного усилителя 34. Туда же поступает и сигнал с блока нелинейной обратной связи 35, который вычитается из сигнала блока сравнения 32. Сигнал с выхода электронного усилителя 34 поступает на вход магнитного усилителя 36, где он усиливается по мощности, выпрямляется и поступает на обмотку регулятора скорости 30 в виде блока порошковых электромагнитных муфт привода 29 задвижки 8.

Отрицательная полярность сигнала электронного усилителя 34 вызывает уменьшение тока возбуждения на выходе магнитного усилителя 36, тем самым уменьшая передаваемый регулятором скорости 30 момент от привода 29, чем достигается закрытие задвижки 8 на некоторую величину, обеспечивающую частичное снижение (при необходимости и полное перекрытие) подачи воды из прямой напорной магистрали 2 в регулятор расхода 9 и далее по описанному циклу.

Оригинальность предлагаемого изобретения заключается в том, что поддержание эффективного процесса теплообмена между охлажденной и горячей водой в теплообменниках при изменяющихся температурных условиях окружающей среды достигается за счет как устранения тепловых потерь к внутреннему воздуху помещения, где расположены теплообменники, путем покрытия их наружной поверхности тонковолокнистым базальтовым материалом, являющимся теплоизолирующим веществом, выполненным в виде витых пучков, продольно вытянутых от прямой напорной к обратной магистралям, так и обеспечением заданного температурного режима посредством аккумулирования при перемещении охлажденной воды тепловой энергии.


СИСТЕМА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ
СИСТЕМА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 158.
27.04.2013
№216.012.3b0a

Устройство для очистки дымовых газов

Изобретение относится к строительству, а именно к оборудованию теплоэнергетических станций и для промышленных топочных установок. Устройство для очистки дымовых газов содержит конденсатор, расположенный над дымовой трубой в виде купола, конденсатосборник, состоящий из лотка и водосточной трубы,...
Тип: Изобретение
Номер охранного документа: 0002480675
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.41bd

Котел отопительный газовый

Изобретение относится к бытовой топливоиспользующей аппаратуре и может быть использовано для нужд отопления и горячего водоснабжения. Технический результат по снижению энергозатрат на эксплуатацию, особенно в темное время суток, достигается тем, что котел отопительный газовый состоит из...
Тип: Изобретение
Номер охранного документа: 0002482399
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.41c7

Система оборотного водоснабжения

Изобретение относится к теплоэнергетике, в частности к системам оборотного водоснабжения промышленных предприятий. Система оборотного водоснабжения содержит теплообменники, подключаемые прямой и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой...
Тип: Изобретение
Номер охранного документа: 0002482409
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.43b2

Устройство для гранулирования удобрений

Изобретение относится к сельскому и лесному хозяйству, а именно к производству гранулированного удобрения преимущественно из отходов производства, например, дефекта сахарных заводов или смеси дефекта и чернозема, смываемого с корнеплодов свеклы. Устройство для гранулирования удобрений содержит...
Тип: Изобретение
Номер охранного документа: 0002482907
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4484

Сатуратор для свеклосахарного производства

Изобретение относится к пищевой промышленности. Предложен сатуратор для свеклосахарного производства, содержащий цилиндрический корпус с коническим днищем, снабженный технологическими патрубками и размещенными в его нижней части перфорированными перегородками в виде упругих мембран для...
Тип: Изобретение
Номер охранного документа: 0002483117
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.4989

Теплообменник

Изобретение относится к теплообменным аппаратам, преимущественно к кожухотрубным воздухоподогревателям котельных агрегатов. Теплообменник содержит теплообменную поверхность, устройство для подачи теплоносителя с отверстиями, причем теплообменная поверхность включает расширяющийся патрубок ввода...
Тип: Изобретение
Номер охранного документа: 0002484405
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4d71

Устройство для регулирования расхода тепла на отопление в системах теплоснабжения

Изобретение относится к централизованному теплоснабжению жилых, общественных и промышленных зданий. Устройство для регулирования расхода тепла на отопление в системе теплоснабжения, содержащее подающий и обратный трубопроводы, перемычку, соединяющую подающий и обратный трубопроводы с насосом...
Тип: Изобретение
Номер охранного документа: 0002485407
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4d75

Устройство для вентиляции помещения

Устройство предназначено для вентиляции помещения в административных, общественных и промышленных зданиях. Оно содержит приточную магистраль, воздуховод и канал, образованный оконным стеклом из теплоизолирующего материала, при этом приточная магистраль снабжена вентилятором с регулятором...
Тип: Изобретение
Номер охранного документа: 0002485411
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.5158

Вихревая труба

Изобретение относится к холодильной технике. Вихревая труба содержит коническую камеру энергетического разделения с односопловым улиточным вводом сжатого газа, диафрагму с диффузорами для отвода холодного и горячего потоков, аэродинамическую сетку и дроссельный клапан на выходе холодного потока...
Тип: Изобретение
Номер охранного документа: 0002486417
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.546d

Устройство управления подъемно-копающими механизмами

Изобретение относится к пневматическим системам управления экскаваторами и кранами, работающими в условиях отрицательных температур. Устройство управления подъемно-копающими механизмами содержит компрессор, масловлагоотделитель и ресивер, пневматически последовательно соединенные между собой....
Тип: Изобретение
Номер охранного документа: 0002487216
Дата охранного документа: 10.07.2013
Показаны записи 11-20 из 248.
27.02.2013
№216.012.2bba

Компрессорная установка

Компрессорная установка содержит компрессор, установленные на линии нагнетания теплообменник-утилизатор, концевой холодильник, воздухосборник, соединенные между собой основными и дополнительными трубопроводами, которые снабжены клапанами, электрически связанными с блоком управления, и...
Тип: Изобретение
Номер охранного документа: 0002476721
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c27

Установка для испытания расходомеров-счетчиков газа

Изобретение относится к области расходометрии и может быть использовано при испытании и поверке расходомеров-счетчиков газа. Сущность: установка содержит трубопровод, запорную арматуру, компрессор для нагнетания расходуемой среды (1), эластичный резервуар (3), входную испытательную магистраль...
Тип: Изобретение
Номер охранного документа: 0002476830
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c2f

Многокомпонентный датчик перемещений

Изобретение относится к измерительной технике, в частности к устройствам для измерения деформаций и перемещений, и предназначено для измерения статических или плавно меняющихся радиальных перемещений. Многокомпонентный датчик перемещений содержит корпус, чувствительный элемент с пьезодатчиками....
Тип: Изобретение
Номер охранного документа: 0002476838
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2e38

Устройство для совмещенного механического и термического расширения скважин

Изобретение относится к горной промышленности, в частности к бурению скважин. Устройство для совмещенного механического и термического расширения скважин включает буровой став с породоразрушающими элементами, размещенную в торце става горелку с магистралями подвода горючего и воздуха, установку...
Тип: Изобретение
Номер охранного документа: 0002477363
Дата охранного документа: 10.03.2013
27.03.2013
№216.012.30b9

Вихревой классификатор порошковых материалов

Изобретение относится к аппаратам для классификации дисперсных материалов и может быть использовано в строительной, металлургической, химической и других отраслях промышленности. Вихревой классификатор порошковых материалов включает цилиндрическую прямоточную вихревую камеру с каналами вывода...
Тип: Изобретение
Номер охранного документа: 0002478011
Дата охранного документа: 27.03.2013
27.03.2013
№216.012.3157

Плазмохимический способ переработки твердых бытовых и промышленных отходов

Изобретение относится к способу переработки отходов перерабатывающих, коммунальных, промышленных и других производств, содержащих органику. Способ переработки бытовых и промышленных отходов включает их загрузку с предварительной сепарацией путем отделения стекла, бетона, керамики и металла;...
Тип: Изобретение
Номер охранного документа: 0002478169
Дата охранного документа: 27.03.2013
10.04.2013
№216.012.32d1

Устройство для пневматического транспортирования сыпучего материала

Изобретение относится к пневматическому транспортированию сыпучих материалов и может быть использовано в строительной, металлургической, химической и других отраслях промышленности. Устройство содержит расходный бункер с аэрирующим приспособлением, сообщенным своим разгрузочным отверстием...
Тип: Изобретение
Номер охранного документа: 0002478552
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.339f

Устройство управления подъемно-копающими механизмами

Изобретение относится к пневматическим системам управления экскаваторами и кранами, работающими в условиях отрицательных температур. Техническим результатом является снижение энергозатрат при получении сжатого воздуха заданного качества для устройства управления подъемно-копающими механизмами....
Тип: Изобретение
Номер охранного документа: 0002478758
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.3584

Устройство для измерения тремора пальцев рук

Изобретение относится к медицинской технике и может быть использовано при биомеханических исследованиях, в спорте, в нейрофизиологических исследованиях для проведения ранней диагностики заболеваний различных функциональных систем человека, а также при оценке профессиональной пригодности....
Тип: Изобретение
Номер охранного документа: 0002479253
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3608

Демпфирующий резец с регулируемой жесткостью

Резец содержит режущую пластину с узлом ее крепления в державке, имеющей выборку. Для повышения стойкости выборка выполнена с образованием цилиндрической поверхности державки на длине от ее торца до выступающей части с режущей пластиной, цилиндрический конец державки размещен в замкнутой...
Тип: Изобретение
Номер охранного документа: 0002479385
Дата охранного документа: 20.04.2013
+ добавить свой РИД