×
27.11.2015
216.013.9486

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ЗАЖИГАНИЯ ОБРАЗЦОВ ВЫСОКОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ ЛУЧИСТЫМ ТЕПЛОВЫМ ПОТОКОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследования характеристик высокоэнергетических материалов (ВЭМ) и может быть использовано для определения времени задержки зажигания ВЭМ лучистым тепловым потоком. Способ заключается в непосредственном измерении времени задержки зажигания ВЭМ, на поверхность которого подается лучистый тепловой поток через собирающую линзу, перемещающуюся с заданной скоростью относительно образца в процессе измерения. Зависимость теплового потока от времени рассчитывается по алгебраическим формулам для заданных геометрических параметров оптической системы. Технический результат - повышение точности определения времени задержки зажигания при воздействии на образец ВЭМ динамического теплового потока с возрастающей или убывающей интенсивностью. 5 ил.
Основные результаты: Способ определения характеристик зажигания образцов высокоэнергетических материалов лучистым тепловым потоком, включающий измерение времени задержки зажигания при подаче на поверхность образца теплового потока, отличающийся тем, что перед образцом устанавливают собирающую линзу с возможностью ее продольного перемещения, на облученной поверхности образца размещают диафрагму с отверстием, центр которого расположен на оптической оси линзы, одновременно с подачей теплового потока линзу перемещают относительно образца, радиус отверстия диафрагмы определяют по формуле переменную плотность теплового потока, воздействующего на образец в течение времени t=0÷t, рассчитывают по формуле при перемещении линзы от образца или по формуле при перемещении линзы по направлению к образцу, а значения l, l, f выбирают в соответствии с неравенством где R, f - радиус и фокусное расстояние линзы; l, l - максимальное и минимальное расстояния между линзой и поверхностью образца; Q - лучистый тепловой поток, поступающий на линзу; u, t - скорость и конечное время перемещения линзы.

Изобретение относится к области исследования характеристик высокоэнергетических материалов (ВЭМ), в частности к определению одной из основных характеристик зажигания ВЭМ лучистым тепловым потоком - времени задержки зажигания [1]. Изобретение может быть использовано для определения зависимости времени задержки зажигания твердых ракетных топлив, взрывчатых веществ и других ВЭМ от уровня теплового потока, компонентного состава и размеров образцов ВЭМ, диаметра пучка излучения и т.д.

Зависимости времени задержки зажигания от указанных параметров играют важную роль при оценке взрывобезопасности ВЭМ, а также при разработке систем их инициирования (воспламенители, взрыватели, детонаторы и т.д.).

Известен способ измерения времени задержки зажигания ВЭМ заданным постоянным лучистым тепловым потоком ксеноновой лампы [2]. Время задержки зажигания определяют промежутком времени между открытием оптического затвора и моментом появления пламени на поверхности образца ВЭМ, регистрируемым ионизационным датчиком и фотодиодом.

Известен способ измерения времени задержки зажигания ВЭМ излучением СO2-лазера, фокусируемым на поверхности образца линзой из хлорида натрия [3].

Данные способы позволяют проводить измерения времени задержки зажигания только при воздействии теплового потока с заданной постоянной интенсивностью. В то же время, как показывают результаты экспериментальных и теоретических исследований [4, 5], характеристики зажигания ВЭМ существенно зависят от динамики изменения плотности теплового потока в процессе инициирования ВЭМ. Закономерности зажигания ВЭМ тепловым потоком с убывающей или возрастающей интенсивностью представляют интерес не только в плане дальнейшего развития тепловой теории зажигания, но и важны в практических приложениях, поскольку в реальных условиях, как правило, теплообмен при зажигании является нестационарным, то есть осуществляется в динамическом режиме.

Наиболее близким по технической сущности является способ исследования процесса зажигания ВЭМ при динамических условиях подвода лучистой энергии [6]. В качестве источника излучения в данном способе используется трубчатая газоразрядная ксеноновая лампа. При открытии оптического затвора плотность лучистого теплового потока изменяют за счет изменения силы тока в цепи питания лампы с помощью специального тиристорного блока.

Техническим результатом настоящего изобретения является разработка способа определения характеристик зажигания образцов ВЭМ при изменении плотности теплового потока в период инициирования по заранее заданной зависимости от времени.

Технический результат достигается тем, что разработан способ определения характеристик зажигания образцов высокоэнергетических материалов лучистым тепловым потоком, включающий измерение времени задержки зажигания при подаче на поверхность образца теплового потока. Перед образцом устанавливают собирающую линзу с возможностью ее продольного перемещения, а на облученной поверхности образца размещают диафрагму с отверстием, центр которого расположен на оптической оси линзы. Одновременно с подачей теплового потока линзу перемещают относительно образца, а радиус отверстия диафрагмы определяют по формуле

Переменную плотность теплового потока, воздействующего на образец в течение времени t=0÷tk рассчитывают по формуле

при перемещении линзы от образца или по формуле

при перемещении линзы по направлению к образцу.

Значения lmax, lmin, f выбирают в соответствии с неравенством

Здесь R, f - радиус и фокусное расстояние линзы; lmax, lmin - максимальное и минимальное расстояния между линзой и поверхностью образца; Q - лучистый тепловой поток, поступающий на линзу; u, tk - скорость и конечное время перемещения линзы.

Полученный положительный эффект изобретения связан со следующими факторами.

1. Установка перед исследуемым образцом ВЭМ собирающей линзы с возможностью ее продольного перемещения относительно образца позволяет изменять плотность лучистого теплового потока в плоскости размещения образца. Радиус пучка излучения r в зависимости от расстояния l от линзы до плоскости размещения образца А-А и от радиуса начального пучка R (радиуса линзы) определяется линейной зависимостью (Фиг. 1)

где f - фокусное расстояние линзы.

Плотность потока излучения в плоскости А-А равна

где Q - тепловой поток, поступающий на линзу.

В соответствии с формулой (2) изменением расстояния l можно варьировать плотность теплового потока q.

2. Размещение на облучаемой поверхности образца диафрагмы с отверстием радиусом r0 обеспечивает постоянство величины площади сечения пучка излучения S0, поступающего на образец

что обеспечивает идентичность условий облучения при изменении расстояния l от поверхности образца до линзы.

3. Определение радиуса отверстия диафрагмы по формуле

обеспечивает максимальное значение плотности теплового потока на поверхности образца, размещенного на максимальном расстоянии lmax от линзы. При l<lmax (приближение линзы к образцу), величина q будет уменьшаться.

4. При перемещении линзы относительно образца с постоянной скоростью u, расстояние от линзы до облучаемой поверхности образца будет изменяться:

- при удалении линзы от образца

- при приближении линзы к образцу

Подставляя (5, 6) в формулу (2), получим зависимости плотности теплового потока от времени:

- при удалении линзы от образца

- при приближении линзы к образцу

5. Выбор значений lmax, lmin в соответствии с неравенством

обеспечивает размещение облучаемой поверхности образца перед фокусом линзы (Фиг. 1).

Пример реализации заявляемого изобретения приведен на Фиг. 2. На линзу радиусом R=1 см с фокусным расстоянием f=150 см подается равномерный поток излучения CO2-лазера с длиной волны λ=10.6 мкм и с постоянной интенсивностью Q=100 Вт. На поверхности образца ВЭМ (плоскость А-А) установлена диафрагма с радиусом отверстия r0=0.2 см. Перемещение линзы относительно образца происходит с постоянной скоростью u=1 м·с-1. Максимальное и минимальное расстояния от линзы до образца составляют fmax=120 см, fmin=30 см.

Результаты расчетов зависимости радиуса пучка излучения r и плотности теплового потока q от расстояния l, проведенных по формулам (1, 2), приведены на Фиг. 3.

Зависимости плотности теплового потока от времени для данных условий, рассчитанные по формулам (7, 8), приведены на Фиг. 4 для двух вариантов: удаление линзы от образца и приближение линзы к образцу.

Схема экспериментальной установки для реализации предлагаемого способа приведена на Фиг. 5.

Излучение CO2-лазера (1) при открытии затвора центрального типа (6) подавалось на исследуемый образец ВЭМ (9) системой зеркал (3) и линзой (4) из хлорида натрия, перемещающейся относительно образца. Время задержки зажигания образца ВЭМ определялось по сигналам двух фотодиодов ФД-9 (7), один из которых при открытии затвора включал развертку запоминающего осциллографа Owon PDS 5022 S (8), второй регистрировал появление пламени на поверхности образца ВЭМ. Время воздействия лазерного излучения на образец ВЭМ (9) варьировалось в диапазоне 30÷1500 мс и определялось из условия зажигания ВЭМ при постоянном лучистом тепловом потоке [2]. Для визуализации процесса зажигания ВЭМ, а также для определения скорости и времени движения линзы использовалась видеокамера (2). Тепловой поток излучения Q, падающего на образец ВЭМ, измерялся измерителем средней мощности излучения (5) марки ИМО-2, основная приведенная погрешность измерения мощности излучения составляла 5%.

Результаты измерения плотности лучистого теплового потока в зависимости от расстояния l от линзы до поверхности образца ВЭМ, осредненные по трем дублирующим опытам, приведены на Фиг. 3. Расчетные значения q(l), приведенные на Фиг. 3, удовлетворительно согласуются с экспериментальными данными (расхождение не превышает 5÷7%).

Таким образом, как видно из приведенного примера, при реализации предлагаемого способа достигается положительный эффект, заключающийся в следующем.

1. Способ позволяет определять время задержки зажигания образцов ВЭМ как при убывающей, так и при возрастающей плотности лучистого теплового потока на поверхности образца.

2. Изменяя скорость перемещения линзы относительно образца, можно варьировать динамические характеристики теплового потока.

3. При варьировании геометрических характеристик оптической системы (радиус и фокусное расстояние линзы, радиус отверстия диафрагмы) можно проводить измерения характеристик зажигания образцов ВЭМ в широком диапазоне значений определяющих параметров.

ЛИТЕРАТУРА

1. Вилюнов В.Н. Теория зажигания конденсированных веществ / В.Н. Вилюнов. - Новосибирск: Наука, 1984. - 189 с.

2. Влияние дисперсности порошков металлов на характеристики кондуктивного и лучистого зажигания смесевых композиций / В.А. Архипов, А.Г. Коротких, В.Т. Кузнецов, Е.С. Синогина // Химическая физика. - 2007. - Т. 26, №6. - С. 58-67.

3. Ballistic properties of solid rocket propellants based on dual-oxidizer (ammonium perchlorate and ammonium nitrate) mixtures / L.T. De Luca, L. Galfetti, F. Severini et al. // Progress in Combustion and Detonation. - Moscow: TORUS PRESS Ltd., 2004. - P. 151-152.

4. Мержанов А.Г. Современное состояние тепловой теории зажигания / А.Г. Мержанов, А.Э. Аверсон // Препринт ИХФ АН СССР. - М., 1970. - 62 с.

5. Гусаченко Л.К. Зажигание и гашение гомогенных энергетических материалов световым импульсом / Л.К. Гусаченко, В.Е. Зарко, А.Д. Рычков // Физика горения и взрыва. - 2012. - Т. 48, №1. - С. 80-88.

6. Экспериментальное исследование процесса зажигания конденсированных веществ при динамических условиях подвода лучистой энергии / Р.Ш. Еналеев, В.А. Матеосов, К.И. Синаев и др. // Физика горения и методы ее исследования: сб. статей. - Чебоксары: Чувашский государственный университет, 1973. - С. 80-86.

Способ определения характеристик зажигания образцов высокоэнергетических материалов лучистым тепловым потоком, включающий измерение времени задержки зажигания при подаче на поверхность образца теплового потока, отличающийся тем, что перед образцом устанавливают собирающую линзу с возможностью ее продольного перемещения, на облученной поверхности образца размещают диафрагму с отверстием, центр которого расположен на оптической оси линзы, одновременно с подачей теплового потока линзу перемещают относительно образца, радиус отверстия диафрагмы определяют по формуле переменную плотность теплового потока, воздействующего на образец в течение времени t=0÷t, рассчитывают по формуле при перемещении линзы от образца или по формуле при перемещении линзы по направлению к образцу, а значения l, l, f выбирают в соответствии с неравенством где R, f - радиус и фокусное расстояние линзы; l, l - максимальное и минимальное расстояния между линзой и поверхностью образца; Q - лучистый тепловой поток, поступающий на линзу; u, t - скорость и конечное время перемещения линзы.
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ЗАЖИГАНИЯ ОБРАЗЦОВ ВЫСОКОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ ЛУЧИСТЫМ ТЕПЛОВЫМ ПОТОКОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ЗАЖИГАНИЯ ОБРАЗЦОВ ВЫСОКОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ ЛУЧИСТЫМ ТЕПЛОВЫМ ПОТОКОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ЗАЖИГАНИЯ ОБРАЗЦОВ ВЫСОКОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ ЛУЧИСТЫМ ТЕПЛОВЫМ ПОТОКОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ЗАЖИГАНИЯ ОБРАЗЦОВ ВЫСОКОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ ЛУЧИСТЫМ ТЕПЛОВЫМ ПОТОКОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ЗАЖИГАНИЯ ОБРАЗЦОВ ВЫСОКОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ ЛУЧИСТЫМ ТЕПЛОВЫМ ПОТОКОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ЗАЖИГАНИЯ ОБРАЗЦОВ ВЫСОКОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ ЛУЧИСТЫМ ТЕПЛОВЫМ ПОТОКОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ЗАЖИГАНИЯ ОБРАЗЦОВ ВЫСОКОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ ЛУЧИСТЫМ ТЕПЛОВЫМ ПОТОКОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ЗАЖИГАНИЯ ОБРАЗЦОВ ВЫСОКОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ ЛУЧИСТЫМ ТЕПЛОВЫМ ПОТОКОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ЗАЖИГАНИЯ ОБРАЗЦОВ ВЫСОКОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ ЛУЧИСТЫМ ТЕПЛОВЫМ ПОТОКОМ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 72.
20.07.2014
№216.012.debb

Способ определения смачиваемости мелкодисперсных порошков

Изобретение относится к области исследования характеристик порошковых материалов, в частности их смачиваемости. Целью изобретения является разработка более точного способа определения смачиваемости порошков. Сущность изобретения заключается в том, что в кювете с прозрачными плоско-параллельными...
Тип: Изобретение
Номер охранного документа: 0002522805
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df43

Устройство для подключения к магнитотерапевтическому прибору нескольких индуктивных катушек

Изобретение относится к электротехнике. Конкретно - к устройствам, предназначенным для соединения нескольких индуктивных катушек с общим источником переменного тока, и может использоваться для подключения нескольких катушек к магнитотерапевтическому прибору, имеющему одно выходное гнездо....
Тип: Изобретение
Номер охранного документа: 0002522941
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dffb

Способ нитрования 2-метилимидазола

Изобретение относится к способу получения 2-метил-4(5)-нитроимидазола, включающему нитрование 2-метилимидазола азотнокислым натрием в присутствии серной кислоты при нагревании, охлаждение с последующей нейтрализацией реакционной смеси и выделением целевого продукта, отличающемуся тем, что...
Тип: Изобретение
Номер охранного документа: 0002523125
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e5fa

Способ профилактики массовых желудочно-кишечных и респираторных болезней молочных поросят

Заявленное изобретение относится к области ветеринарии и предназначено для профилактики массовых желудочно-кишечных и респираторных болезней молочных поросят. В качестве растительного лекарственного сырья берут надземную часть девясила высокого и готовят из него настой. Настой вводят орально в...
Тип: Изобретение
Номер охранного документа: 0002524664
Дата охранного документа: 27.07.2014
10.09.2014
№216.012.f2fb

Способ получения диметридазола

Изобретение относится к способу получения 1,2-диметил-5-нитроимидазола, который заключается в реакции синтеза 2-метил-4(5)-нитроимидазола с диметилсульфатом в присутствии муравьиной кислоты при нагревании и под давлением, в дальнейшем удалении из реакционной смеси муравьиной кислоты и...
Тип: Изобретение
Номер охранного документа: 0002528025
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f884

Фоточувствительная к инфракрасному излучению структура и способ ее изготовления

Изобретение относится к инфракрасной технике и технологии изготовления устройств инфракрасной техники, конкретно к фотоприемным устройствам ИК-диапазона длин волн и к технологии их изготовления. Сущность изобретения состоит в том, что в фоточувствительной к инфракрасному излучению структуре,...
Тип: Изобретение
Номер охранного документа: 0002529457
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.fe53

Электролит для электрохимического осаждения иридия на арсенид галлия и способ его приготовления

Изобретение относится к области гальванотехники и может быть использовано в полупроводниковой СВЧ-электронике для получения выпрямляющих иридиевых контактов к арсениду галлия. Кроме того, иридиевые покрытия пригодны для защиты электрических контактов, работающих в условиях эрозионного износа,...
Тип: Изобретение
Номер охранного документа: 0002530963
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.00da

Способ получения метронидазола

Изобретение относится к области органической химии, а именно к способу получения метронидазола путем алкилирования 2-метил-4(5)-нитроимидазола этиленхлоргидрином при нагревании в присутствии соляной кислоты, избыток алкилирующего агента удаляют при пониженном давлении, а непрореагировавший...
Тип: Изобретение
Номер охранного документа: 0002531616
Дата охранного документа: 27.10.2014
27.11.2014
№216.013.0bcf

Способ определения натяжения шнура

Изобретение относится к измерительной технике и может быть использовано для измерения вантовых конструкций. Способ определения натяжения шнура заключается в защемлении шнура между двумя зажимами, в центр которого приложена постоянная поперечная нагрузка и измерение максимального прогиба....
Тип: Изобретение
Номер охранного документа: 0002534431
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0c29

Способ трансдермального введения инсулина и устройство для его осуществления

Изобретение относится к медицине, в частности к лечению диабета. Для этого предложен способ трансдермального введения инсулина. Способ включает наложение на кожу предварительно замоченного в растворе инсулина плоскостного аппликатора в виде пластины из пористого никелида титана толщиной от 0,2...
Тип: Изобретение
Номер охранного документа: 0002534521
Дата охранного документа: 27.11.2014
Показаны записи 31-40 из 109.
20.07.2014
№216.012.dffb

Способ нитрования 2-метилимидазола

Изобретение относится к способу получения 2-метил-4(5)-нитроимидазола, включающему нитрование 2-метилимидазола азотнокислым натрием в присутствии серной кислоты при нагревании, охлаждение с последующей нейтрализацией реакционной смеси и выделением целевого продукта, отличающемуся тем, что...
Тип: Изобретение
Номер охранного документа: 0002523125
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e5fa

Способ профилактики массовых желудочно-кишечных и респираторных болезней молочных поросят

Заявленное изобретение относится к области ветеринарии и предназначено для профилактики массовых желудочно-кишечных и респираторных болезней молочных поросят. В качестве растительного лекарственного сырья берут надземную часть девясила высокого и готовят из него настой. Настой вводят орально в...
Тип: Изобретение
Номер охранного документа: 0002524664
Дата охранного документа: 27.07.2014
10.09.2014
№216.012.f2fb

Способ получения диметридазола

Изобретение относится к способу получения 1,2-диметил-5-нитроимидазола, который заключается в реакции синтеза 2-метил-4(5)-нитроимидазола с диметилсульфатом в присутствии муравьиной кислоты при нагревании и под давлением, в дальнейшем удалении из реакционной смеси муравьиной кислоты и...
Тип: Изобретение
Номер охранного документа: 0002528025
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f884

Фоточувствительная к инфракрасному излучению структура и способ ее изготовления

Изобретение относится к инфракрасной технике и технологии изготовления устройств инфракрасной техники, конкретно к фотоприемным устройствам ИК-диапазона длин волн и к технологии их изготовления. Сущность изобретения состоит в том, что в фоточувствительной к инфракрасному излучению структуре,...
Тип: Изобретение
Номер охранного документа: 0002529457
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.fe53

Электролит для электрохимического осаждения иридия на арсенид галлия и способ его приготовления

Изобретение относится к области гальванотехники и может быть использовано в полупроводниковой СВЧ-электронике для получения выпрямляющих иридиевых контактов к арсениду галлия. Кроме того, иридиевые покрытия пригодны для защиты электрических контактов, работающих в условиях эрозионного износа,...
Тип: Изобретение
Номер охранного документа: 0002530963
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.00da

Способ получения метронидазола

Изобретение относится к области органической химии, а именно к способу получения метронидазола путем алкилирования 2-метил-4(5)-нитроимидазола этиленхлоргидрином при нагревании в присутствии соляной кислоты, избыток алкилирующего агента удаляют при пониженном давлении, а непрореагировавший...
Тип: Изобретение
Номер охранного документа: 0002531616
Дата охранного документа: 27.10.2014
27.11.2014
№216.013.0bcf

Способ определения натяжения шнура

Изобретение относится к измерительной технике и может быть использовано для измерения вантовых конструкций. Способ определения натяжения шнура заключается в защемлении шнура между двумя зажимами, в центр которого приложена постоянная поперечная нагрузка и измерение максимального прогиба....
Тип: Изобретение
Номер охранного документа: 0002534431
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0c29

Способ трансдермального введения инсулина и устройство для его осуществления

Изобретение относится к медицине, в частности к лечению диабета. Для этого предложен способ трансдермального введения инсулина. Способ включает наложение на кожу предварительно замоченного в растворе инсулина плоскостного аппликатора в виде пластины из пористого никелида титана толщиной от 0,2...
Тип: Изобретение
Номер охранного документа: 0002534521
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.1239

Приемник электромагнитного излучения широкого спектрального диапазона

Изобретение может быть использовано для создания устройств, различного назначения, например, датчиков пламени; датчиков электрической искры; оптической локации в УФ-спектре; оптической связи в УФ-диапазоне; дозиметрии УФ-излучения, быстродействующих УФ-фотоприемников для эксимерных лазеров;...
Тип: Изобретение
Номер охранного документа: 0002536088
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.16ec

Способ получения сложных эфиров амиловых спиртов

Изобретение относится к способам получения сложных эфиров амиловых спиртов и простейших карбоновых кислот C-C. В качестве сырья используют спиртосодержащие отходы производства капролактама. Способ включает этерификацию спиртосодержащих отходов производства капролактама простейшими карбоновыми...
Тип: Изобретение
Номер охранного документа: 0002537292
Дата охранного документа: 27.12.2014
+ добавить свой РИД