×
20.11.2015
216.013.9319

Результат интеллектуальной деятельности: ПЛИТА ИЗ ВЫСОКОПРОЧНОГО АЛЮМИНИЕВОГО СПЛАВА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к технологии изготовления путем прокатки плит, предпочтительно толщиной более 80 мм из высокопрочных алюминиевых сплавов для изготовления деталей, в том числе крупногабаритных, силовых конструкций в авиакосмической технике, в вертолетостроении, судостроении и транспортном машиностроении. Способ изготовления плиты из термически упрочняемого алюминиевого сплава системы Al-Zn-Mg-Cu включает литье плоского слитка, отжиг слитка, механическую обработку слитка, гомогенизационный отжиг, предварительную прокатку слитка с получением плиты, промежуточный отжиг плиты, окончательную прокатку плиты, закалку плиты, правку растяжением для снятия остаточных закалочных напряжений и искусственное старение плиты, причем после гомогенизационного отжига слиток подвергают деформации путем предварительной горячей прокатки, после которой плиту подвергают промежуточному отжигу, а затем подвергают окончательной горячей прокатке. Техническим результатом настоящего изобретения является повышение однородности структуры, прокаливаемости, повышение уровня и уменьшение разброса прочностных свойств, пластичности, вязкости разрушения и коррозионной стойкости по толщине и объему массивных плит. 2 н. и 5 з.п. ф-лы, 4 табл.

Изобретение относится к области металлургии, в частности к технологии изготовления путем прокатки плит, предпочтительно толщиной более 80 мм из высокопрочных алюминиевых сплавов для изготовления деталей, в том числе крупногабаритных силовых конструкций в авиакосмической технике, в вертолетостроении, судостроении и транспортном машиностроении.

Высокие требования к надежности таких конструкций диктуют необходимость использования в них материалов с высоким уровнем и однородностью таких свойств по толщине и объему изделий, как прочностные характеристики, пластичность, коррозионная стойкость, вязкость разрушения, усталостная долговечность.

Известен способ получения изделий, в том числе в виде плиты (патент RU 2353693, опубл. 27.04.2009), включающий в себя следующие производственные стадии: литье слитка из алюминиевого сплава серии 7000, гомогенизация слитка и/или предварительный нагрев после литья, горячая обработка слитка давлением до получения предварительно деформированной заготовки путем прокатки, штамповки или ковки, необязательно повторный нагрев предварительно деформированной заготовки, горячая и/или холодная обработка давлением до получения формованной заготовки нужной формы, термообработка на твердый раствор, необязательно деформация растяжением или сжатием закаленной заготовки, искусственное старение закаленной и необязательно растянутой или сжатой заготовки.

Недостатком этого способа являются значительные анизотропия и разброс механических свойств по толщине плиты, пониженные коррозионные свойства, трещиностойкость и показатели пластичности, особенно в высотном направлении (по толщине плиты), обусловленные недостаточной прокаливаемостью плит с массивными (более 80 мм) сечениями.

Известен способ получения плиты (US 2002/0153072, опубл. 24.10.2002), включающий следующие операции: гомогенизацию слитка из алюминиевого сплава серии 7000, горячую прокатку слитка многопроходной прокаткой при температуре 400-150°С и при температуре нагрева валков 40°С или более со степенью деформации 70% или более, для изготовления плиты нужной толщины, закалка плиты с температуры выдержки 450-500°С при времени выдержки 5 минут или более, охлаждение плиты со скоростью 10°С/с или более.

Недостатком этого способа являются пониженные температуры прокатки, что не позволяет получать плиты толщиной более 30 мм.

Наиболее близким к предложенному способу, принятым за прототип, является способ получения плит из алюминиевых высокопрочных сплавов системы Al-Zn-Mg-Cu (патент RU 2443797, опубл 27.02.2012 г.), предусматривающий проведение следующих операций: литье слитка из алюминиевого сплава серии 7000, содержащего от 0,12 до 0,35% Si, предварительный нагрев и/или гомогенизацию отлитой заготовки, горячую деформацию путем прокатки, прессования и/или ковки, необязательно холодную деформацию горячедеформированной заготовки, закалку подвергнутой деформации заготовки, необязательно растяжение или сжатие заготовки для снятия остаточных напряжений, старение этой заготовки для достижения требуемого структурного состояния, при этом имеется по меньшей мере одна термообработка, осуществляемая при температуре в интервале более чем 500°С, но ниже, чем температура солидуса алюминиевого сплава, причем эту термообработку осуществляют либо после гомогенизации перед горячей деформацией, либо после закалки, либо как после гомогенизации перед горячей деформацией, так и после закалки.

Недостатком этого способа является проведение длительных высокотемпературных нагревов, которые приводят к окислению границ зерен в металле, что существенно снижает характеристики пластичности и трещиностойкости изделия, особенно в высотном направлении. Кроме того, длительные высокотемпературные нагревы способствуют огрублению цирконий содержащих дисперсоидов (ZrAl3), что ослабляет действие добавки циркония как антирекристаллизатора и приводит к росту зерна в изделии, ухудшению прочностных характеристик, пластичности и усталостной долговечности полуфабрикатов, т.к. сами мелкодисперсные частицы ZrAl3, подобно фазам-упрочнителям MgZn2, вносят заметный вклад в формирование комплекса служебных характеристик плит. Высокое содержание кремния (до 0,35% Si) в изделиях, получаемых по способу, принятому за прототип, также имеет негативное влияние не только на пластичность, вязкость разрушения и усталостные характеристики, но понижает также и прочностные свойства изделия, связывая часть магния, а в некоторых случаях и меди, образуя плохо растворимые соединения Mg2Si и AlSiFeCu.

Технической задачей настоящего изобретения является получение толстой плиты из термоупрочняемого высокопрочного алюминиевого сплава с улучшенными механическими и коррозионными свойствами и прокаливаемостью, что обеспечивает повышение весовой эффективности и усталостной долговечности изделия в эксплуатации, а также снижение остаточных напряжений и коробления при механической обработке детали, изготавливаемой из плиты.

Техническим результатом настоящего изобретения является повышение однородности структуры, прокаливаемости, повышение уровня и уменьшение разброса прочностных свойств, пластичности, вязкости разрушения и коррозионной стойкости по толщине и объему массивных плит (толщиной по крайней мере 80 мм).

Для достижения поставленного результата предложен способ изготовления плит из термоупрочняемых высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu, включающий литье плоского слитка, отжиг слитка, механическую обработку слитка, гомогенизационный отжиг, предварительную горячую прокатку слитка с получением плиты, промежуточный отжиг плиты, окончательную горячую прокатку плиты, закалку плиты, правку растяжением для снятия остаточных закалочных напряжений и искусственное старение плиты, согласно изобретению гомогенизационный отжиг осуществляют при температуре 450-470°С в течение 4-8 часов, предварительную горячую прокатку осуществляют со степенью деформации не менее 20% при температуре 300-350°С, при этом после предварительной горячей прокатки плиту подвергают промежуточному отжигу при температуре 460-475°С в течение 4-10 ч, причем скорость нагрева до температуры промежуточного отжига и охлаждения с температуры промежуточного отжига до температуры 200-250°С составляет не более 50°С/ч, а окончательную горячую прокатку проводят при температуре деформации 360-430°С после промежуточного отжига.

Предпочтительно плита из термически упрочняемого алюминиевого сплава имеет химический состав, включающий в себя, мас.%: Zn от 5 до 9%, Mg от 1,2 до 2,5%, Сu от 0,2 до 2,2, % Zr от 0,05 до 0,18%, Fe от 0,02 до 0,25%, Ti от 0,02 до 0,2%, Si не более 0,15% и дополнительно может включать в себя один или более элементов, выбранных из группы, мас.%: Sc до 0,5%, Ag до 0,5%, Са до 0,1%, Mn до 0,3%, Сr до 0,3%, Be до 0,01%.

Предпочтительно плиту подвергают правке растяжением со степенью остаточной деформации до 3%.

Предпочтительно плита после закалки и правки подвергается многоступенчатому старению.

Предпочтительно плита имеет толщину по крайней мере 80 мм.

Плиту из термоупрочняемого алюминиевого сплава изготавливают вышеописанным способом.

В предлагаемом способе прокатку плиты осуществляют в 2 этапа - предварительная горячая прокатка с последующим промужуточным отжигом и окончательная горячая прокатка. Это позволяет более точно формировать фазовый состав плиты, управляя процессами, происходящими при гомогенизации: диффузионным растворением первичных эвтектических фаз кристаллизационного происхождения, содержащих основные легирующие элементы Zn, Mg, Сu, и процессами выделения из алюминиевого раствора вторичных фаз - цирконийсодержащих дисперсоидов Al3Zr. Частицы этих фаз, как известно [В.Г. Давыдов, В.В. Захаров, Е.Д. Захаров, И.И. Новиков. Диаграммы изотермического распада раствора в алюминиевых сплавах. М.: Металлургия, 1973. 152 с.], оказывают существенное влияние на прокаливаемость плиты, т.е. критическую скорость закалки, которая определяет максимально допустимую толщину плиты при закалке, причем зависимость критической скорости охлаждения от размера дисперсоидов имеет характер кривой с максимумом: при малом количестве выделившихся дисперсоидов критическая скорость закалки невелика, по мере увеличения количества частиц Al3Zr критическая скорость закалки увеличивается и прокаливаемость снижается. Происходит это за счет увеличения площади межфазных границ дисперсоид - твердый раствор, которые являются энергетически выгодными участками для распада алюминиевого твердого раствора в процессе охлаждения плиты при закалке. Очень длительные выдержки (~ 50-100 ч) при температуре гомогенизационного отжига приводят к коагуляции и укрупнению дисперсоидов, что уменьшает площадь межфазных границ и критическая скорость закалки снижается. Однако длительные нагревы при гомогенизации нежелательны, т.к. вызывают окисление границ зерен и появление диффузионной пористости в слитке, что приводит к росту размера микрозерна и снижению уровня свойств в окончательно изготовленных плитах.

В предлагаемом способе выбран наиболее предпочтительный вариант - режим гомогенизации сокращен и нагрев в течение 4-8 ч при температуре 450-470°С перед предварительной прокаткой не приводит к выделению из твердого раствора большого количества вторичных дисперсоидов Al3Zr. Но такой нагрев не позволяет растворить в достаточной мере первичные эвтектичесие фазы кристаллизационного происхождения и перевести легирующие элементы (Zn, Mg, Сu) в твердый раствор, чтобы обеспечить после окончательной упрочняющей термической обработки плиты необходимый комплекс служебных характеристик (прочности, вязкости разрушения, коррозионной стойкости и т.п.). Этот недостаток устраняется благодаря проведению при температуре минимальной устойчивости алюминиевого твердого раствора 300-350°С предварительной прокатки со степенью деформации не менее 20% гомогенизированного по предложенному режиму слитка, которая, внося деформационные дислокации, повышает энергию и интенсифицирует диффузионные процессы в плите при последующих нагревах на этапах промежуточного отжига и перед окончательной прокаткой. Благодаря этому, хотя суммарное время нагрева слитка и предварительно прокатанной плиты оказывается существенно меньше, чем время нагрева при температуре гомогенизации и при дополнительных высокотемпературных нагревах в способе-прототипе (12-23 ч и 30 ч, соответственно), в предлагаемом способе достигается полный эффект по растворению избыточных эвтектических фаз, содержащих Zn, Mg, Сu, и насыщение алюминиевого твердого раствора легирующими элементами для получения требуемого уровня свойств в плитах, а также обеспечивается необходимые размер и плотность распределения частиц дисперсоидов Al3Zr для достижения максимальной прокаливаемости толстых плит и однородности структуры и свойств в объеме толстой плиты, что подтверждается результатами экспериментов, приведенных в таблицах 3 и 4.

Примеры осуществления.

В промышленных условиях были отлиты методом полунепрерывного литья плоские слитки толщиной 300 мм, шириной 1150 мм из сплавов с химическими составами 1 и 2, приведенными в таблице 1. Слитки после отливки подвергали отжигу для снятия остаточных напряжений при температуре 350-380°С в течение 3 ч, а затем гомогенизационному отжигу по режимам, соответствующим минимальным (P1), максимальным (Р3) и средним (Р2) уровням технологических параметров. По режимам, приведенным в таблице 2, из слитков сплава 1 были получены плиты толщиной 150 мм, а из слитков сплава 2 - плиты толщиной 80 мм.

Для оценки прокаливаемости, уровня и однородности свойств плит толщиной 150 мм, полученных по способу изобретения и известному способу-прототипу, образцы для определения прочностных свойств, относительного удлинения, вязкости разрушения вырезали из различных зон по толщине плит: у поверхности, на 1/4 толщины и на 1/2 толщины. Образцы для определения усталостной характеристики - МЦУ и коррозионных свойств - склонности к межкристаллитной (МКК) и расслаивающей (РСК) коррозии вырезали из зоны, расположенной на 1/2 от толщины плиты.

Из более тонких плит (80 мм) сплава №2 образцы на растяжение для определения прочностных свойств и относительного удлинения также вырезали из трех зон по толщине: у поверхности, на 1/4 и 1/2 толщины, а образцы для испытаний на К и для коррозионных испытаний вырезали из зоны 1/2 по толщине.

Результаты испытаний, приведенные в таблицах 3 и 4, свидетельствуют, что полученные по заявляемому способу плиты обладают высокой степенью однородности свойств: образцы, отобранные из различных зон по толщине плит, имеют высокий и практически одинаковый уровень прочностных характеристик, пластичности, вязкости разрушения и коррозионной стойкости.

Отмечается присущая алюминиевым сплавам анизотропия свойств (разница между уровнем свойств в продольном и поперечном или высотном направлениях), особенно для относительного удлинения и вязкости разрушения, составляющая 30-50% по относительному удлинению и около 10-15% по вязкости разрушения K, что значительно меньше, чем у плит, полученных по известному способу (50-100%).

Из таблицы 3 видно, что предлагаемый способ обеспечивает, особенно в зоне 1/2 по толщине и в высотном направлении плит толщиной 150 мм, превышение определяемых показателей плит из сплава №1 по сравнению со способом - аналогом (режим Р4): по прочностным характеристикам на 25-80 МПа, по относительному удлинению в 1,5-2 раза, по вязкости разрушения - в 1,3-1,7 раза, по долговечности при усталостных испытаниях в 1.2 раза, при более высоком уровне стойкости к межкристаллитной и расслаивающей коррозии.

Аналогичные закономерности наблюдаются и для плит толщиной 80 мм из сплава №2 - значительное преимущество плит, полученных по предлагаемому способу: высокий уровень прочностных свойств, превышающий свойства плит, полученных по известному способу: на 35-100 МПа по прочностным свойствам, в 1,3-2 раза по относительному удлинению, до 1,6 раза по вязкости разрушения и в 1,6-2 раза по малоцикловой усталости. Кроме того, у плит из обоих сплавов, полученных по предлагаемому способу, отсутствует склонность к межкристаллитной коррозии, в то время как у плит, полученных по способу-аналогу, наблюдается значительная склонность к МКК.

Все испытания проводили в соответствии с действующими отечественными, аналогичными зарубежным, стандартами на каждый вид испытаний. В таблицах приведены средние значения характеристик, полученные из результатов испытаний не менее чем 5 образцов на точку.

Таким образом, благодаря предварительной горячей прокатке с последующим промужуточным отжигом и окончательной горячей прокатке повышается однородность структуры, прокаливаемости, повышается уровень и уменьшается разброс прочностных свойств, пластичности, вязкости разрушения и коррозионной стойкости.

Таким образом, предлагаемый способ позволяет получить массивные плиты для изготовления конструкций авиакосмической техники, транспортного машиностроения, такие как силовой набор (шпангоуты, балки, фитинги и др.) с повышенным комплексом эксплуатационных свойств, что обеспечит увеличение весовой эффективности, ресурса и надежности конструкций более чем в 1,3 раза.

Источник поступления информации: Роспатент

Показаны записи 331-340 из 369.
06.06.2019
№219.017.7447

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для деталей горячего тракта газотурбинных двигателей и установок. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод 0,005-0,18, хром 13-15,...
Тип: Изобретение
Номер охранного документа: 0002690623
Дата охранного документа: 04.06.2019
09.06.2019
№219.017.76b2

Теплостойкий пеногерметик

Описывается теплостойкий пеногерметик, включающий полиорганосилоксановый каучук, оксид цинка, олигогидридсилоксан, аминосоединение и катализатор вулканизации, отличающийся тем, что в качестве полиорганосилоксанового каучука он содержит полидиметилметилфенилсилоксандиол, в качестве...
Тип: Изобретение
Номер охранного документа: 0002263130
Дата охранного документа: 27.10.2005
09.06.2019
№219.017.76ed

Препрег и изделие, выполненное из него

Изобретение относится к области высокопрочных композиционных материалов на основе волокнистых наполнителей и полимерных связующих, которые могут быть использованы в авиационной промышленности, в машино-, судостроении и других областях техники. Описывается препрег, включающий полимерное...
Тип: Изобретение
Номер охранного документа: 0002264295
Дата охранного документа: 20.11.2005
09.06.2019
№219.017.781e

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как рабочие лопатки газотурбинных двигателей авиационной промышленности....
Тип: Изобретение
Номер охранного документа: 0002256716
Дата охранного документа: 20.07.2005
09.06.2019
№219.017.7824

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к созданию титановых сплавов, предназначенных для изготовления стрингеров, нервюр, шпангоутов, фюзеляжа, крыльев, двигателей самолета, а также для использования в качестве свариваемых материалов. Предложен сплав на основе титана и изделие,...
Тип: Изобретение
Номер охранного документа: 0002256713
Дата охранного документа: 20.07.2005
09.06.2019
№219.017.7826

Жаропрочный свариваемый сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным свариваемым сплавам на основе никеля, предназначены для изготовления корпусов, кожухов, теплозащитных экранов и других сварных узлов и деталей, работающих при температурах до 900°С. Предложен жаропрочный свариваемый сплав на...
Тип: Изобретение
Номер охранного документа: 0002256717
Дата охранного документа: 20.07.2005
09.06.2019
№219.017.7932

Защитное технологическое покрытие для сталей и сплавов

Изобретение относится к защитным покрытиям от окисления при технологических нагревах в процессе получения высококачественных деталей и полуфабрикатов из сталей и сплавов. Технический результат изобретения заключается в повышении температуроустойчивости и теплоизоляционных свойств защитного...
Тип: Изобретение
Номер охранного документа: 0002345963
Дата охранного документа: 10.02.2009
09.06.2019
№219.017.796c

Способ получения литейных жаропрочных сплавов на никелевой основе

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе с применением различного вида отходов, и может быть использовано при получении шихтовых заготовок для литья изделий. Обеспечивается снижение в сплаве содержания вредных примесей,...
Тип: Изобретение
Номер охранного документа: 0002392338
Дата охранного документа: 20.06.2010
09.06.2019
№219.017.79c6

Способ получения высокотемпературного волокна на основе оксида алюминия

Изобретение относится к области теплозащитных материалов. Технический результат изобретения заключается в сокращении технологического цикла, повышении контролируемости процесса доведения волокнообразующего раствора до требуемой вязкости и стабильности химического состава и свойств получаемого...
Тип: Изобретение
Номер охранного документа: 0002395475
Дата охранного документа: 27.07.2010
09.06.2019
№219.017.79e6

Защитное технологическое покрытие для сталей и сплавов

Изобретение относится к защитным технологическим покрытиям для защиты сталей и сплавов от окисления при технологических нагревах и при термомеханической обработке давлением в процессе получения деталей. Технический результат изобретения заключается в понижении сцепления покрытия к сталям и...
Тип: Изобретение
Номер охранного документа: 0002312827
Дата охранного документа: 20.12.2007
Показаны записи 331-340 из 354.
25.03.2020
№220.018.0fa2

Сплав на основе алюминия, изделие из него и способ получения изделия

Изобретение относится к области цветной металлургии, в частности к термически упрочняемым алюминиевым сплавам системы алюминий-магний-кремний и изделиям из него. Cплав на основе алюминия содержит магний, кремний, марганец, медь, железо, титан и бор при следующем соотношении компонентов, мас. %:...
Тип: Изобретение
Номер охранного документа: 0002717437
Дата охранного документа: 23.03.2020
17.04.2020
№220.018.1532

Способ нанесения антикоррозионного покрытия

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитных гальванических покрытий с последующей термообработкой. Способ включает обезжиривание детали, травление детали и последовательное нанесение слоев системы цинк-олово-цинк-олово с последующей...
Тип: Изобретение
Номер охранного документа: 0002718794
Дата охранного документа: 14.04.2020
21.05.2020
№220.018.1f5a

Жаропрочный деформируемый сплав на основе никеля с низким температурным коэффициентом линейного расширения и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным деформируемым сплавам на основе никеля с низким коэффициентом линейного расширения. Жаропрочный деформируемый сплав на основе никеля, содержащий, мас. %: углерод 0,02-0,08, кобальт 18,0-25,0, железо 20,0-35,0, хром 0,3-1,2,...
Тип: Изобретение
Номер охранного документа: 0002721261
Дата охранного документа: 18.05.2020
07.06.2020
№220.018.251d

Сплав на основе алюминия и способ получения изделия из него

Изобретение относится к области цветной металлургии, в частности к термически упрочняемым алюминиевым сплавам на основе системы алюминий-магний-кремний, используемым в различных областях промышленности. Cплав на основе алюминия содержит, мас.%: магний 0,80-1,10, кремний 0,85-1,20, марганец...
Тип: Изобретение
Номер охранного документа: 0002722950
Дата охранного документа: 05.06.2020
27.06.2020
№220.018.2bca

Высокопрочная коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, выплавляемым в вакуумно-индукционной печи с последующим электрошлаковым переплавом для введения азота под давлением, используемым для изготовления подшипников качения. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002724766
Дата охранного документа: 25.06.2020
12.04.2023
№223.018.426b

Теплостойкий плёночный клей

Настоящее изобретение относится к теплостойкому пленочному клею. Теплостойкий пленочный клей содержит армирующий наполнитель с нанесенной на него полимерной основой. Полимерная основа представляет собой имидообразующую смесь, включающую по меньшей мере один диалкоксиэфир тетракарбоновой...
Тип: Изобретение
Номер охранного документа: 0002760127
Дата охранного документа: 22.11.2021
12.04.2023
№223.018.43c7

Литейный алюминиевый сплав

Изобретение относится к области металлургии, а именно к сплавам на основе алюминия, и может быть использовано при получении тонкостенных отливок сложной формы, преимущественно литьем под давлением, применяемых в автомобилестроении, для корпусов электронных устройств, для деталей ответственного...
Тип: Изобретение
Номер охранного документа: 0002793657
Дата охранного документа: 04.04.2023
11.05.2023
№223.018.53e2

Способ получения высокочистого мелкодисперсного металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния

Изобретение относится к порошковой металлургии, а именно к получению металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния, предназначенного для изготовления деталей газотурбинных двигателей методом аддитивного производства. Способ...
Тип: Изобретение
Номер охранного документа: 0002795434
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.57be

Сплав на основе кобальта

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей...
Тип: Изобретение
Номер охранного документа: 0002767961
Дата охранного документа: 22.03.2022
15.05.2023
№223.018.57e7

Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной...
Тип: Изобретение
Номер охранного документа: 0002767968
Дата охранного документа: 22.03.2022
+ добавить свой РИД