×
20.11.2015
216.013.9319

Результат интеллектуальной деятельности: ПЛИТА ИЗ ВЫСОКОПРОЧНОГО АЛЮМИНИЕВОГО СПЛАВА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к технологии изготовления путем прокатки плит, предпочтительно толщиной более 80 мм из высокопрочных алюминиевых сплавов для изготовления деталей, в том числе крупногабаритных, силовых конструкций в авиакосмической технике, в вертолетостроении, судостроении и транспортном машиностроении. Способ изготовления плиты из термически упрочняемого алюминиевого сплава системы Al-Zn-Mg-Cu включает литье плоского слитка, отжиг слитка, механическую обработку слитка, гомогенизационный отжиг, предварительную прокатку слитка с получением плиты, промежуточный отжиг плиты, окончательную прокатку плиты, закалку плиты, правку растяжением для снятия остаточных закалочных напряжений и искусственное старение плиты, причем после гомогенизационного отжига слиток подвергают деформации путем предварительной горячей прокатки, после которой плиту подвергают промежуточному отжигу, а затем подвергают окончательной горячей прокатке. Техническим результатом настоящего изобретения является повышение однородности структуры, прокаливаемости, повышение уровня и уменьшение разброса прочностных свойств, пластичности, вязкости разрушения и коррозионной стойкости по толщине и объему массивных плит. 2 н. и 5 з.п. ф-лы, 4 табл.

Изобретение относится к области металлургии, в частности к технологии изготовления путем прокатки плит, предпочтительно толщиной более 80 мм из высокопрочных алюминиевых сплавов для изготовления деталей, в том числе крупногабаритных силовых конструкций в авиакосмической технике, в вертолетостроении, судостроении и транспортном машиностроении.

Высокие требования к надежности таких конструкций диктуют необходимость использования в них материалов с высоким уровнем и однородностью таких свойств по толщине и объему изделий, как прочностные характеристики, пластичность, коррозионная стойкость, вязкость разрушения, усталостная долговечность.

Известен способ получения изделий, в том числе в виде плиты (патент RU 2353693, опубл. 27.04.2009), включающий в себя следующие производственные стадии: литье слитка из алюминиевого сплава серии 7000, гомогенизация слитка и/или предварительный нагрев после литья, горячая обработка слитка давлением до получения предварительно деформированной заготовки путем прокатки, штамповки или ковки, необязательно повторный нагрев предварительно деформированной заготовки, горячая и/или холодная обработка давлением до получения формованной заготовки нужной формы, термообработка на твердый раствор, необязательно деформация растяжением или сжатием закаленной заготовки, искусственное старение закаленной и необязательно растянутой или сжатой заготовки.

Недостатком этого способа являются значительные анизотропия и разброс механических свойств по толщине плиты, пониженные коррозионные свойства, трещиностойкость и показатели пластичности, особенно в высотном направлении (по толщине плиты), обусловленные недостаточной прокаливаемостью плит с массивными (более 80 мм) сечениями.

Известен способ получения плиты (US 2002/0153072, опубл. 24.10.2002), включающий следующие операции: гомогенизацию слитка из алюминиевого сплава серии 7000, горячую прокатку слитка многопроходной прокаткой при температуре 400-150°С и при температуре нагрева валков 40°С или более со степенью деформации 70% или более, для изготовления плиты нужной толщины, закалка плиты с температуры выдержки 450-500°С при времени выдержки 5 минут или более, охлаждение плиты со скоростью 10°С/с или более.

Недостатком этого способа являются пониженные температуры прокатки, что не позволяет получать плиты толщиной более 30 мм.

Наиболее близким к предложенному способу, принятым за прототип, является способ получения плит из алюминиевых высокопрочных сплавов системы Al-Zn-Mg-Cu (патент RU 2443797, опубл 27.02.2012 г.), предусматривающий проведение следующих операций: литье слитка из алюминиевого сплава серии 7000, содержащего от 0,12 до 0,35% Si, предварительный нагрев и/или гомогенизацию отлитой заготовки, горячую деформацию путем прокатки, прессования и/или ковки, необязательно холодную деформацию горячедеформированной заготовки, закалку подвергнутой деформации заготовки, необязательно растяжение или сжатие заготовки для снятия остаточных напряжений, старение этой заготовки для достижения требуемого структурного состояния, при этом имеется по меньшей мере одна термообработка, осуществляемая при температуре в интервале более чем 500°С, но ниже, чем температура солидуса алюминиевого сплава, причем эту термообработку осуществляют либо после гомогенизации перед горячей деформацией, либо после закалки, либо как после гомогенизации перед горячей деформацией, так и после закалки.

Недостатком этого способа является проведение длительных высокотемпературных нагревов, которые приводят к окислению границ зерен в металле, что существенно снижает характеристики пластичности и трещиностойкости изделия, особенно в высотном направлении. Кроме того, длительные высокотемпературные нагревы способствуют огрублению цирконий содержащих дисперсоидов (ZrAl3), что ослабляет действие добавки циркония как антирекристаллизатора и приводит к росту зерна в изделии, ухудшению прочностных характеристик, пластичности и усталостной долговечности полуфабрикатов, т.к. сами мелкодисперсные частицы ZrAl3, подобно фазам-упрочнителям MgZn2, вносят заметный вклад в формирование комплекса служебных характеристик плит. Высокое содержание кремния (до 0,35% Si) в изделиях, получаемых по способу, принятому за прототип, также имеет негативное влияние не только на пластичность, вязкость разрушения и усталостные характеристики, но понижает также и прочностные свойства изделия, связывая часть магния, а в некоторых случаях и меди, образуя плохо растворимые соединения Mg2Si и AlSiFeCu.

Технической задачей настоящего изобретения является получение толстой плиты из термоупрочняемого высокопрочного алюминиевого сплава с улучшенными механическими и коррозионными свойствами и прокаливаемостью, что обеспечивает повышение весовой эффективности и усталостной долговечности изделия в эксплуатации, а также снижение остаточных напряжений и коробления при механической обработке детали, изготавливаемой из плиты.

Техническим результатом настоящего изобретения является повышение однородности структуры, прокаливаемости, повышение уровня и уменьшение разброса прочностных свойств, пластичности, вязкости разрушения и коррозионной стойкости по толщине и объему массивных плит (толщиной по крайней мере 80 мм).

Для достижения поставленного результата предложен способ изготовления плит из термоупрочняемых высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu, включающий литье плоского слитка, отжиг слитка, механическую обработку слитка, гомогенизационный отжиг, предварительную горячую прокатку слитка с получением плиты, промежуточный отжиг плиты, окончательную горячую прокатку плиты, закалку плиты, правку растяжением для снятия остаточных закалочных напряжений и искусственное старение плиты, согласно изобретению гомогенизационный отжиг осуществляют при температуре 450-470°С в течение 4-8 часов, предварительную горячую прокатку осуществляют со степенью деформации не менее 20% при температуре 300-350°С, при этом после предварительной горячей прокатки плиту подвергают промежуточному отжигу при температуре 460-475°С в течение 4-10 ч, причем скорость нагрева до температуры промежуточного отжига и охлаждения с температуры промежуточного отжига до температуры 200-250°С составляет не более 50°С/ч, а окончательную горячую прокатку проводят при температуре деформации 360-430°С после промежуточного отжига.

Предпочтительно плита из термически упрочняемого алюминиевого сплава имеет химический состав, включающий в себя, мас.%: Zn от 5 до 9%, Mg от 1,2 до 2,5%, Сu от 0,2 до 2,2, % Zr от 0,05 до 0,18%, Fe от 0,02 до 0,25%, Ti от 0,02 до 0,2%, Si не более 0,15% и дополнительно может включать в себя один или более элементов, выбранных из группы, мас.%: Sc до 0,5%, Ag до 0,5%, Са до 0,1%, Mn до 0,3%, Сr до 0,3%, Be до 0,01%.

Предпочтительно плиту подвергают правке растяжением со степенью остаточной деформации до 3%.

Предпочтительно плита после закалки и правки подвергается многоступенчатому старению.

Предпочтительно плита имеет толщину по крайней мере 80 мм.

Плиту из термоупрочняемого алюминиевого сплава изготавливают вышеописанным способом.

В предлагаемом способе прокатку плиты осуществляют в 2 этапа - предварительная горячая прокатка с последующим промужуточным отжигом и окончательная горячая прокатка. Это позволяет более точно формировать фазовый состав плиты, управляя процессами, происходящими при гомогенизации: диффузионным растворением первичных эвтектических фаз кристаллизационного происхождения, содержащих основные легирующие элементы Zn, Mg, Сu, и процессами выделения из алюминиевого раствора вторичных фаз - цирконийсодержащих дисперсоидов Al3Zr. Частицы этих фаз, как известно [В.Г. Давыдов, В.В. Захаров, Е.Д. Захаров, И.И. Новиков. Диаграммы изотермического распада раствора в алюминиевых сплавах. М.: Металлургия, 1973. 152 с.], оказывают существенное влияние на прокаливаемость плиты, т.е. критическую скорость закалки, которая определяет максимально допустимую толщину плиты при закалке, причем зависимость критической скорости охлаждения от размера дисперсоидов имеет характер кривой с максимумом: при малом количестве выделившихся дисперсоидов критическая скорость закалки невелика, по мере увеличения количества частиц Al3Zr критическая скорость закалки увеличивается и прокаливаемость снижается. Происходит это за счет увеличения площади межфазных границ дисперсоид - твердый раствор, которые являются энергетически выгодными участками для распада алюминиевого твердого раствора в процессе охлаждения плиты при закалке. Очень длительные выдержки (~ 50-100 ч) при температуре гомогенизационного отжига приводят к коагуляции и укрупнению дисперсоидов, что уменьшает площадь межфазных границ и критическая скорость закалки снижается. Однако длительные нагревы при гомогенизации нежелательны, т.к. вызывают окисление границ зерен и появление диффузионной пористости в слитке, что приводит к росту размера микрозерна и снижению уровня свойств в окончательно изготовленных плитах.

В предлагаемом способе выбран наиболее предпочтительный вариант - режим гомогенизации сокращен и нагрев в течение 4-8 ч при температуре 450-470°С перед предварительной прокаткой не приводит к выделению из твердого раствора большого количества вторичных дисперсоидов Al3Zr. Но такой нагрев не позволяет растворить в достаточной мере первичные эвтектичесие фазы кристаллизационного происхождения и перевести легирующие элементы (Zn, Mg, Сu) в твердый раствор, чтобы обеспечить после окончательной упрочняющей термической обработки плиты необходимый комплекс служебных характеристик (прочности, вязкости разрушения, коррозионной стойкости и т.п.). Этот недостаток устраняется благодаря проведению при температуре минимальной устойчивости алюминиевого твердого раствора 300-350°С предварительной прокатки со степенью деформации не менее 20% гомогенизированного по предложенному режиму слитка, которая, внося деформационные дислокации, повышает энергию и интенсифицирует диффузионные процессы в плите при последующих нагревах на этапах промежуточного отжига и перед окончательной прокаткой. Благодаря этому, хотя суммарное время нагрева слитка и предварительно прокатанной плиты оказывается существенно меньше, чем время нагрева при температуре гомогенизации и при дополнительных высокотемпературных нагревах в способе-прототипе (12-23 ч и 30 ч, соответственно), в предлагаемом способе достигается полный эффект по растворению избыточных эвтектических фаз, содержащих Zn, Mg, Сu, и насыщение алюминиевого твердого раствора легирующими элементами для получения требуемого уровня свойств в плитах, а также обеспечивается необходимые размер и плотность распределения частиц дисперсоидов Al3Zr для достижения максимальной прокаливаемости толстых плит и однородности структуры и свойств в объеме толстой плиты, что подтверждается результатами экспериментов, приведенных в таблицах 3 и 4.

Примеры осуществления.

В промышленных условиях были отлиты методом полунепрерывного литья плоские слитки толщиной 300 мм, шириной 1150 мм из сплавов с химическими составами 1 и 2, приведенными в таблице 1. Слитки после отливки подвергали отжигу для снятия остаточных напряжений при температуре 350-380°С в течение 3 ч, а затем гомогенизационному отжигу по режимам, соответствующим минимальным (P1), максимальным (Р3) и средним (Р2) уровням технологических параметров. По режимам, приведенным в таблице 2, из слитков сплава 1 были получены плиты толщиной 150 мм, а из слитков сплава 2 - плиты толщиной 80 мм.

Для оценки прокаливаемости, уровня и однородности свойств плит толщиной 150 мм, полученных по способу изобретения и известному способу-прототипу, образцы для определения прочностных свойств, относительного удлинения, вязкости разрушения вырезали из различных зон по толщине плит: у поверхности, на 1/4 толщины и на 1/2 толщины. Образцы для определения усталостной характеристики - МЦУ и коррозионных свойств - склонности к межкристаллитной (МКК) и расслаивающей (РСК) коррозии вырезали из зоны, расположенной на 1/2 от толщины плиты.

Из более тонких плит (80 мм) сплава №2 образцы на растяжение для определения прочностных свойств и относительного удлинения также вырезали из трех зон по толщине: у поверхности, на 1/4 и 1/2 толщины, а образцы для испытаний на К и для коррозионных испытаний вырезали из зоны 1/2 по толщине.

Результаты испытаний, приведенные в таблицах 3 и 4, свидетельствуют, что полученные по заявляемому способу плиты обладают высокой степенью однородности свойств: образцы, отобранные из различных зон по толщине плит, имеют высокий и практически одинаковый уровень прочностных характеристик, пластичности, вязкости разрушения и коррозионной стойкости.

Отмечается присущая алюминиевым сплавам анизотропия свойств (разница между уровнем свойств в продольном и поперечном или высотном направлениях), особенно для относительного удлинения и вязкости разрушения, составляющая 30-50% по относительному удлинению и около 10-15% по вязкости разрушения K, что значительно меньше, чем у плит, полученных по известному способу (50-100%).

Из таблицы 3 видно, что предлагаемый способ обеспечивает, особенно в зоне 1/2 по толщине и в высотном направлении плит толщиной 150 мм, превышение определяемых показателей плит из сплава №1 по сравнению со способом - аналогом (режим Р4): по прочностным характеристикам на 25-80 МПа, по относительному удлинению в 1,5-2 раза, по вязкости разрушения - в 1,3-1,7 раза, по долговечности при усталостных испытаниях в 1.2 раза, при более высоком уровне стойкости к межкристаллитной и расслаивающей коррозии.

Аналогичные закономерности наблюдаются и для плит толщиной 80 мм из сплава №2 - значительное преимущество плит, полученных по предлагаемому способу: высокий уровень прочностных свойств, превышающий свойства плит, полученных по известному способу: на 35-100 МПа по прочностным свойствам, в 1,3-2 раза по относительному удлинению, до 1,6 раза по вязкости разрушения и в 1,6-2 раза по малоцикловой усталости. Кроме того, у плит из обоих сплавов, полученных по предлагаемому способу, отсутствует склонность к межкристаллитной коррозии, в то время как у плит, полученных по способу-аналогу, наблюдается значительная склонность к МКК.

Все испытания проводили в соответствии с действующими отечественными, аналогичными зарубежным, стандартами на каждый вид испытаний. В таблицах приведены средние значения характеристик, полученные из результатов испытаний не менее чем 5 образцов на точку.

Таким образом, благодаря предварительной горячей прокатке с последующим промужуточным отжигом и окончательной горячей прокатке повышается однородность структуры, прокаливаемости, повышается уровень и уменьшается разброс прочностных свойств, пластичности, вязкости разрушения и коррозионной стойкости.

Таким образом, предлагаемый способ позволяет получить массивные плиты для изготовления конструкций авиакосмической техники, транспортного машиностроения, такие как силовой набор (шпангоуты, балки, фитинги и др.) с повышенным комплексом эксплуатационных свойств, что обеспечит увеличение весовой эффективности, ресурса и надежности конструкций более чем в 1,3 раза.

Источник поступления информации: Роспатент

Показаны записи 311-320 из 369.
09.05.2019
№219.017.4aa9

Способ получения элемента соплового аппарата турбины и соплового аппарата турбины

Изобретение может быть использовано при получении отливок с направленной и монокристаллической структурой из никелевых жаропрочных сплавов. Изготавливают модель элемента соплового аппарата, состоящую из стартовой и лопаточной частей. Стартовую часть модели изготавливают в виде двух пластин в...
Тип: Изобретение
Номер охранного документа: 0002265496
Дата охранного документа: 10.12.2005
09.05.2019
№219.017.4aaa

Способ получения элемента рабочего колеса турбины и рабочего колеса турбины

Изобретение может быть использовано при получении отливок с направленной и монокристаллической структурой из никелевых жаропрочных сплавов. Изготавливают модель элемента колеса турбины, состоящего из дисковой и лопаточной частей. Дисковую часть модели изготавливают в виде двух пластин, имеющих...
Тип: Изобретение
Номер охранного документа: 0002265497
Дата охранного документа: 10.12.2005
09.05.2019
№219.017.4b7a

Способ термической обработки изделий из жаропрочных, деформируемых, дисперсионно-твердеющих сплавов на никелевой основе

Изобретение относится к области металлургии, а именно к термической обработке изделий из жаропрочных, деформируемых, дисперсионно-твердеющих сплавов на никелевой основе. Предложен способ термической обработки изделий из жаропрочных, деформируемых, дисперсионно-твердеющих сплавов на никелевой...
Тип: Изобретение
Номер охранного документа: 0002256723
Дата охранного документа: 20.07.2005
09.05.2019
№219.017.4b7e

Жаростойкий сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным жаростойким сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как, например, рабочие и сопловые лопатки, проставки соплового аппарата...
Тип: Изобретение
Номер охранного документа: 0002256714
Дата охранного документа: 20.07.2005
18.05.2019
№219.017.5447

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения деталей турбин авиационного и энергетического назначения. Устройство содержит вакуумную камеру, загрузочную шлюзовую камеру, направляющие для перемещения литейных форм, печь подогрева форм и плавильно-заливочную печь, расположенные в вакуумной...
Тип: Изобретение
Номер охранного документа: 0002267380
Дата охранного документа: 10.01.2006
18.05.2019
№219.017.544d

Огнестойкая термопластичная композиция и изделие, выполненное из нее

Изобретение относится к огнестойкой термопластичной композиции на основе поликарбоната. Композиция содержит, мас.ч.: поликарбонат 81-92, модифицированный полибутилентерефталат 7-15, декабромдифенилоксид, модифицированный терефталевой кислотой 1-4. Также изобретение относится к изделию....
Тип: Изобретение
Номер охранного документа: 0002283327
Дата охранного документа: 10.09.2006
18.05.2019
№219.017.55ed

Способ получения защитного покрытия на изделии из бериллия и его сплавов

Изобретение относится к области машиностроения и к технике производства изделий из цветных сплавов, в частности к защитным покрытиям от газовой коррозии в процессах длительной эксплуатации и при технологических нагревах в процессе получения высококачественных деталей и полуфабрикатов из...
Тип: Изобретение
Номер охранного документа: 0002344098
Дата охранного документа: 20.01.2009
18.05.2019
№219.017.5683

Полиимидное связующее для армированных пластиков, препрег на его основе и изделие, выполненное из него

Изобретение относится к области получения полиимидов, а именно к области получения полиимидного связующего для армированных пластиков. Полиимидное связующее представляет собой продукт взаимодействия диангидрида бензофенон-3,3′-4,4′-тетракарбоновой кислоты и м-фенилендиамина и модифицирующую...
Тип: Изобретение
Номер охранного документа: 0002394857
Дата охранного документа: 20.07.2010
18.05.2019
№219.017.56b8

Способ получения пористо-волокнистого металлического материала

Изобретение относится к способам получения пористых материалов из металлических волокон, а именно к способам получения волокнистых металлических материалов с высокой пористостью (до 95%) из жаростойких сплавов для звукопоглощающих конструкций горячего тракта газотурбинного двигателя на рабочие...
Тип: Изобретение
Номер охранного документа: 0002311262
Дата охранного документа: 27.11.2007
18.05.2019
№219.017.576d

Устройство для получения отливок из жаропрочных сплавов с монокристаллической структурой

Изобретение относится к области литейного производства. Устройство содержит керамическую форму, в основании которой выполнены затравочная полость с размещенной в ней монокристаллической затравкой, полость кристалловода и коническая стартовая полость, соединенная с полостью формы, образующей...
Тип: Изобретение
Номер охранного документа: 0002353471
Дата охранного документа: 27.04.2009
Показаны записи 311-320 из 354.
09.06.2019
№219.017.7ad9

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и других деталей летательных аппаратов. Сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002356977
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7add

Низковязкая силоксановая композиция

Изобретение относится к области низковязких силоксановых композиций, способных отверждаться при комнатной температуре с образованием эластомерных материалов, которые могут быть использованы в качестве диэлектриков и изоляторов. Предложена низковязкая силоксановая композиция, включающая, мас.ч.:...
Тип: Изобретение
Номер охранного документа: 0002356117
Дата охранного документа: 20.05.2009
09.06.2019
№219.017.7ade

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов Может использоваться для деталей и узлов авиакосмической и ракетной техники, изготовление которых требует высокой технологической пластичности сплава. Сплав на основе титана содержит, мас.%: алюминий 2,0-6,5;...
Тип: Изобретение
Номер охранного документа: 0002356976
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7ae0

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов. Может использоваться для изготовления деталей и узлов авиакосмической и ракетной техники, материал которых работает в условиях высоких температур. Сплав на основе титана содержит, мас.%: алюминий 3,0-7,0,...
Тип: Изобретение
Номер охранного документа: 0002356978
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7f72

Полимерная теплоотражающая композиция для покрытия

Изобретение относится к полимерным теплоотражающим композициям для покрытий, которые наносятся на надувные конструкции, защитные и спасательные средства (трапы самолетов гражданской авиации, плоты, дирижабли, надувные ангары, теплоотражающие экраны, щиты для пожарных), состоящие из герметичного...
Тип: Изобретение
Номер охранного документа: 0002467042
Дата охранного документа: 20.11.2012
13.06.2019
№219.017.811d

Способ нанесения защитных покрытий и устройство для его осуществления

Изобретение относится к области нанесения защитных покрытий. Может применяться для получения керамического слоя теплозащитных покрытий на изделия авиационной техники, преимущественно на рабочих и сопловых лопатках турбин из жаропрочных литейных сплавов. Устройство для нанесения покрытий методом...
Тип: Изобретение
Номер охранного документа: 0002691166
Дата охранного документа: 11.06.2019
10.07.2019
№219.017.aa19

Слоистый композиционный материал и изделие, выполненное из него

Изобретение относится к слоистому алюмополимерному материалу для изготовления или ремонта силовых элементов планера самолета: обшивок, перегородок, стрингеров фюзеляжа и крыла, панелей пола, а также для наземного транспорта. Предложен слоистый композиционный материал, состоящий из чередующихся...
Тип: Изобретение
Номер охранного документа: 0002270098
Дата охранного документа: 20.02.2006
10.07.2019
№219.017.ab12

Сплав на основе магния и изделие, выполненное из него

Изобретение относится к области машиностроения и авиастроения, где могут быть применены высокопрочные и жаропрочные свариваемые магниевые сплавы с малой анизотропией механических свойств в качестве легкого свариваемого конструкционного материала, например, для изготовления несущих деталей,...
Тип: Изобретение
Номер охранного документа: 0002293784
Дата охранного документа: 20.02.2007
10.07.2019
№219.017.ab21

Защитное покрытие

Изобретение относится к области производства защитных покрытий, которые могут быть использованы при эксплуатации неорганических волокнистых композиционных материалов конструкционного и технологического назначения, в изделиях авиационно-космической и машиностроительной промышленности....
Тип: Изобретение
Номер охранного документа: 0002290371
Дата охранного документа: 27.12.2006
10.07.2019
№219.017.ac1f

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой, таким как сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие...
Тип: Изобретение
Номер охранного документа: 0002349662
Дата охранного документа: 20.03.2009
+ добавить свой РИД