×
20.11.2015
216.013.92b6

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОВОЙ ПРОВОДИМОСТИ КОНТАКТОВ ТВЕРДЫХ ТЕЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области теплофизики и может быть использовано для определения тепловой проводимости контактов между прозрачными образцами или между прозрачным и высокотеплопроводным образцами. Систему, состоящую из двух прозрачных образцов либо двух прозрачных и закрепленного между ними высокотеплопроводного образца, где все образцы выполнены в форме прямоугольных параллелепипедов с одинаковыми основаниями, которыми образцы приведены в контакт, помещают в интерферометр. Световой пучок интерферометра направляют перпендикулярно одной из боковых граней каждого прозрачного образца. При создании в системе стационарного одномерного теплового потока, направленного перпендикулярно плоскости контакта, интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через прозрачные образцы. Тепловую проводимость любого из контактов вычисляют из измеренного изменения профиля фазы светового пучка интерферометра, известной теплопроводности и геометрических размеров образцов. Технический результат - повышение достоверности получаемых результатов. 1 ил.
Основные результаты: Способ определения тепловой проводимости контактов твердых тел, в котором создают стационарный одномерный тепловой поток через систему из не менее чем двух образцов твердых тел с известной теплопроводностью, где образцы выполнены в форме прямых цилиндров с одинаковыми основаниями, которыми они приведены в контакт, при этом образцы в системе, расположенные по краям, изготавливают из одного материала, а тепловой поток в системе направляют перпендикулярно плоскости контакта, отличающийся тем, что в системе используют два либо три образца, прямые цилиндры выполняют в виде прямоугольных параллелепипедов, образцы, расположенные по краям, изготавливают с длинами сторон не менее 1 мм из прозрачного материала, в случае системы из трех образцов твердых тел средний образец изготавливают из высокотеплопроводного материала, систему помещают в интерферометр, при этом световой пучок интерферометра направляют перпендикулярно одной из боковых граней каждого прозрачного образца, при создании в системе стационарного одномерного теплового потока интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через прозрачные образцы, а тепловую проводимость любого из контактов вычисляют из измеренного изменения профиля фазы светового пучка интерферометра, известной теплопроводности и геометрических размеров образцов.

Изобретение относится к способу определения теплофизических характеристик твердых тел, а именно тепловой проводимости контактов твердых тел.

Способ позволяет определять тепловую проводимость контактов твердых тел в диапазоне от 400 до 200000 Вт/(м2 К) и наиболее подходит для контактов, созданных с использованием дополнительных материалов, улучшающих теплопередачу между телами, таких как теплопроводная паста, теплопроводный клей, эпоксидная смола, а также оптических контактов и контактов типа термодиффузионной сварки. Способ позволяет исследовать тепловой контакт между двумя прозрачными образцами твердых тел или между прозрачным образцом и образцом из высокотеплопроводного материала. В частности это широко востребовано в области разработки твердотельных лазеров и их компонентов, где в качестве прозрачного образца выступает прозрачный элемент лазерной системы, находящийся под тепловой нагрузкой, а в качестве высокотеплопроводного образца выступает радиатор. Тепловой контакт между двумя прозрачными образцами возникает при создании композитных оптических элементов с использованием методов сращивания, например термодиффузионной сварки, или метода оптического контакта.

Существует способ измерения тепловой проводимости контакта между прозрачным образцом и высокотеплопроводным материалом [S. Chernais, F. Druon, S. Forget, F. Balembois, P. Georges "On thermal sffect in solid-state lasers: the case of ytterbium-doped materials", Progress in Quantum Electronics, 30, р.89-153 (2006)], основанный на измерении распределения температуры на поверхности образца с помощью инфракрасной камеры, когда образец нагревают лазерным излучением и охлаждают через тепловые контакты с высокотеплопроводным материалом. Тепловую проводимость контактов вычисляют из измеренного распределения температуры, рассчитанного тепловыделения в образце, теплопроводности образца и геометрии системы.

Недостатки данного способа в том, что из-за использования лазерного нагрева в качестве образца может выступать только активный элемент лазера, для каждого образца необходимо применять греющее излучение на нужной длине волны, математический расчет сложен и требует точного знания тепловыделения в образце.

Наиболее близким к предлагаемому изобретению по технической сущности является взятый за прототип способ измерения коэффициента теплопередачи теплопроводных электроизоляционных материалов [Американский стандарт ASTM D5470, http://www.astm.org/5470.htm]. Способ включает создание стационарного одномерного теплового потока через систему, представляющую собой два металлических образца известной теплопроводности, выполненных в форме одинаковых прямых круговых цилиндров, приведенных в контакт основаниями, между которыми сжимают исследуемый материал. Тепловой поток направляют перпендикулярно плоскости контакта. Вдоль образцов закрепляют термопары для определения градиента температуры в образцах и скачка температуры между контактирующими гранями образцов. Коэффициент теплопередачи через контакт или тепловая проводимость контакта вычисляются из измеренного градиента температуры, скачка температуры и теплопроводности образцов. Система также обладает возможностью изменения давления на контакт и измерения толщины зазора между образцами.

Данный способ позволяет тестировать различные материалы. Однако коэффициент теплопередачи через контакт сильно зависит также и от материалов контактирующих поверхностей, которые на практике могут быть самыми разнообразными. Используемые в способе-прототипе образцы изготовлены из металла и не могут быть заменены прозрачными образцами из-за громоздкости системы, которая не может быть уменьшена из-за использования термопар для измерения температуры.

Задачей, на которую направлено изобретение, является создание способа, позволяющего определять тепловую проводимость контактов между прозрачными образцами или между прозрачным и высокотеплопроводным образцами.

Технический эффект достигается тем, что создают стационарный одномерный тепловой поток через систему из не менее чем двух образцов твердых тел с известной теплопроводностью, где образцы выполнены в форме прямых цилиндров с одинаковыми основаниями, которыми они приведены в контакт, при этом образцы в системе, расположенные по краям, изготавливают из одного материала, а тепловой поток в системе направляют перпендикулярно плоскости контакта.

Новым является то, что в системе используют два либо три образца, прямые цилиндры выполняют в виде прямоугольных параллелепипедов, образцы, расположенные по краям, изготавливают с длинами сторон не менее 1 мм из прозрачного материала, в случае системы из трех образцов твердых тел средний образец изготавливают из высокотеплопроводного материала, систему помещают в интерферометр, при этом световой пучок интерферометра направляют перпендикулярно одной из боковых граней каждого прозрачного образца, при создании в системе стационарного одномерного теплового потока интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через прозрачные образцы, а тепловую проводимость любого из контактов вычисляют из измеренного изменения профиля фазы светового пучка интерферометра, известной теплопроводности и геометрических размеров образцов.

Способ поясняется Фиг. 1, на которой изображена система из приведенных в контакт образцов твердых тел, а также нагреватель и радиатор, которые создают через систему стационарный одномерный тепловой поток.

Способ осуществляют следующим образом. Используют систему, представленную на Фиг. 1. Система из двух образцов представляет собой два скрепленных прозрачных образца 4 одинаковой формы, выполненных из одного материала. В системе из трех образцов между прозрачными образцами закреплен высокотеплопроводный образец 3. Теплопроводность всех образцов известна. Все образцы выполнены в виде прямоугольных параллелепипедов с одинаковыми основаниями, которыми они и приведены в контакт. Прозрачные образцы 4 имеют высоту от 2 до 5 мм. Высокотеплопроводный образец - высоту 1 мм. Определяют тепловую проводимость контактов 5. С одной стороны к системе прикрепляют нагреватель 1, с другой - радиатор с проточным охлаждением 2, которые в момент измерений создают в системе стационарный одномерный тепловой поток, направленный перпендикулярно плоскости контакта. Систему помещают в интерферометр и интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через прозрачные образцы 4, которое появляется при включении в системе стационарного теплового потока. При этом световой пучок интерферометра перпендикулярен одной из боковых граней каждого из прозрачных образцов 4.

Из измеренного изменения профиля фазы светового пучка интерферометра (L) вычисляют градиент изменения профиля фазы пучка в прозрачных образцах 4 (dL1/dx и dL2/dx) и скачок изменения профиля фазы пучка между обращенными друг к другу основаниями прозрачных образцов 4 (ΔL).

В случае системы из двух прозрачных образцов 4 тепловую проводимость контакта вычисляют по формуле:

,

где dL/dx - среднее арифметическое от dL1/dx и dL2/dx, κ0 - теплопроводность прозрачных образцов 4. Данная формула получается из формулы, используемой для расчета в способе-прототипе:

,

где Т - изменение температуры при включении в системе стационарного теплового потока, ΔT - скачок изменения температуры между обращенными друг к другу основаниями прозрачных образцов 4, dT/dx - среднее арифметическое градиентов изменения температуры в прозрачных образцах 4. При этом используется линейная связь изменения профиля фазы светового пучка интерферометра, проходящего через прозрачные образцы 4, с изменением распределения температуры в них:

,

где L0 - толщина одного из прозрачных образцов 4 в том направлении, в котором направлен световой пучок интерферометра, dn/dT - температурное изменение показателя преломления одного из прозрачных образцов 4, α - коэффициент теплового расширения одного из прозрачных образцов 4.

В случае системы из трех образцов величина ΔL связана со скачком температуры на двух контактах 5 и скачком температуры на высокотеплопроводном образце 3. В этом случае тепловую проводимость любого из контактов вычисляют по формуле:

,

где h - высота высокотеплопроводного образца 3, κ - теплопроводность высокотеплопроводного образца 3.

Мощность тепла, уходящего в атмосферу, оценивают из разности градиентов изменения профиля фазы пучка в прозрачных образцах 4. Она должна быть много меньше мощности тепла, протекающей через систему. Если это условие не выполняется, систему покрывают теплоизолирующей оболочкой или помещают в вакуумную камеру.

Способ может быть применен для измерения при температурах от 10 К до 400 К помещением системы в вакуумную камеру и использованием системы охлаждения с возможностью стабилизации температуры на любом уровне из заданного диапазона.

При этом в качестве хладагентов используют воду (от 280 К), жидкий азот (от 80 К) или жидкий гелий (от 10 К).

Таким образом, предлагаемый способ позволяет определять тепловую проводимость контактов между прозрачными образцами или между прозрачным и высокотеплопроводным образцами.

Результаты измерений могут быть использованы при расчетах распределения температуры и для оптимизации тепловых контактов в конструкциях, состоящих из контактирующих прозрачных и высокотеплопроводных элементов, в частности при разработке твердотельных лазеров и их компонентов.

Способ определения тепловой проводимости контактов твердых тел, в котором создают стационарный одномерный тепловой поток через систему из не менее чем двух образцов твердых тел с известной теплопроводностью, где образцы выполнены в форме прямых цилиндров с одинаковыми основаниями, которыми они приведены в контакт, при этом образцы в системе, расположенные по краям, изготавливают из одного материала, а тепловой поток в системе направляют перпендикулярно плоскости контакта, отличающийся тем, что в системе используют два либо три образца, прямые цилиндры выполняют в виде прямоугольных параллелепипедов, образцы, расположенные по краям, изготавливают с длинами сторон не менее 1 мм из прозрачного материала, в случае системы из трех образцов твердых тел средний образец изготавливают из высокотеплопроводного материала, систему помещают в интерферометр, при этом световой пучок интерферометра направляют перпендикулярно одной из боковых граней каждого прозрачного образца, при создании в системе стационарного одномерного теплового потока интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через прозрачные образцы, а тепловую проводимость любого из контактов вычисляют из измеренного изменения профиля фазы светового пучка интерферометра, известной теплопроводности и геометрических размеров образцов.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОВОЙ ПРОВОДИМОСТИ КОНТАКТОВ ТВЕРДЫХ ТЕЛ
Источник поступления информации: Роспатент

Показаны записи 31-36 из 36.
26.08.2017
№217.015.e5ed

Твердотельный усилитель лазерного излучения с диодной накачкой с большим коэффициентом усиления и высокой средней мощностью

Изобретение относится к лазерной технике. Твердотельный усилитель лазерного излучения с диодной накачкой содержит активный элемент в форме шестигранника с двумя параллельными торцевыми гранями, служащими для ввода и вывода излучения накачки и сигнала, изготовленными в форме тонких...
Тип: Изобретение
Номер охранного документа: 0002626723
Дата охранного документа: 31.07.2017
29.12.2017
№217.015.f3c7

Изолятор фарадея с кристаллическим магнитооптическим ротатором для лазеров большой мощности

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с субкиловаттной средней мощностью излучения. Изолятор Фарадея для лазеров большой мощности с изготовленным из кристалла некубической сингонии магнитооптическим...
Тип: Изобретение
Номер охранного документа: 0002637363
Дата охранного документа: 04.12.2017
19.01.2018
№218.016.0113

Способ определения параметра оптической анизотропии кубического монокристалла, относящегося к классу симметрии m3m, 43m или 432

Способ определения параметра оптической анизотропии кубического монокристалла, относящегося к классу симметрии m3m, или 432, в котором производят измерение распределения локальной степени деполяризации лазерного излучения, прошедшего через цилиндрический образец кубического монокристалла с...
Тип: Изобретение
Номер охранного документа: 0002629700
Дата охранного документа: 31.08.2017
04.04.2018
№218.016.367d

Изолятор фарадея с переменным направлением поля магнитной системы

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров ближнего и среднего ИК-диапазона. Изолятор Фарадея с переменным направлением поля магнитной системы содержит последовательно расположенные на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002646551
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36d4

Способ монтажа дискового активного элемента на высокотеплопроводный радиатор

Изобретение относится к лазерной технике и может быть использовано для изготовления дисковых активных элементов мощных лазеров, обеспечивающих эффективное охлаждение активной среды. В способе согласно изобретению на активный элемент наносят с торцов диэлектрические отражающие и просветляющие...
Тип: Изобретение
Номер охранного документа: 0002646431
Дата охранного документа: 05.03.2018
29.04.2019
№219.017.4468

Оптический вентиль с компенсацией термонаведенной деполяризации для лазеров большой мощности

Оптический вентиль содержит последовательно расположенные на оптической оси поляризатор, магнитооптический ротатор, установленный в магнитной системе, и анализатор. При этом магнитооптический ротатор изготовлен в виде двух фарадеевских элементов, поворачивающих плоскость поляризации на 22,5°...
Тип: Изобретение
Номер охранного документа: 0002458374
Дата охранного документа: 10.08.2012
Показаны записи 31-40 из 44.
25.08.2017
№217.015.d0f7

Ячейка поккельса для мощного лазерного излучения

Изобретение относится к оптической технике. Сущность изобретения заключается в охлаждении электрооптического элемента ячейки Поккельса, выполненного из кристалла DKDP, до криогенных температур в оптическом криостате. Для этого электрооптический элемент присоединен посредством теплопроводящей...
Тип: Изобретение
Номер охранного документа: 0002621365
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.e5ed

Твердотельный усилитель лазерного излучения с диодной накачкой с большим коэффициентом усиления и высокой средней мощностью

Изобретение относится к лазерной технике. Твердотельный усилитель лазерного излучения с диодной накачкой содержит активный элемент в форме шестигранника с двумя параллельными торцевыми гранями, служащими для ввода и вывода излучения накачки и сигнала, изготовленными в форме тонких...
Тип: Изобретение
Номер охранного документа: 0002626723
Дата охранного документа: 31.07.2017
29.12.2017
№217.015.f3c7

Изолятор фарадея с кристаллическим магнитооптическим ротатором для лазеров большой мощности

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с субкиловаттной средней мощностью излучения. Изолятор Фарадея для лазеров большой мощности с изготовленным из кристалла некубической сингонии магнитооптическим...
Тип: Изобретение
Номер охранного документа: 0002637363
Дата охранного документа: 04.12.2017
19.01.2018
№218.016.0113

Способ определения параметра оптической анизотропии кубического монокристалла, относящегося к классу симметрии m3m, 43m или 432

Способ определения параметра оптической анизотропии кубического монокристалла, относящегося к классу симметрии m3m, или 432, в котором производят измерение распределения локальной степени деполяризации лазерного излучения, прошедшего через цилиндрический образец кубического монокристалла с...
Тип: Изобретение
Номер охранного документа: 0002629700
Дата охранного документа: 31.08.2017
04.04.2018
№218.016.367d

Изолятор фарадея с переменным направлением поля магнитной системы

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров ближнего и среднего ИК-диапазона. Изолятор Фарадея с переменным направлением поля магнитной системы содержит последовательно расположенные на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002646551
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36d4

Способ монтажа дискового активного элемента на высокотеплопроводный радиатор

Изобретение относится к лазерной технике и может быть использовано для изготовления дисковых активных элементов мощных лазеров, обеспечивающих эффективное охлаждение активной среды. В способе согласно изобретению на активный элемент наносят с торцов диэлектрические отражающие и просветляющие...
Тип: Изобретение
Номер охранного документа: 0002646431
Дата охранного документа: 05.03.2018
29.04.2019
№219.017.4468

Оптический вентиль с компенсацией термонаведенной деполяризации для лазеров большой мощности

Оптический вентиль содержит последовательно расположенные на оптической оси поляризатор, магнитооптический ротатор, установленный в магнитной системе, и анализатор. При этом магнитооптический ротатор изготовлен в виде двух фарадеевских элементов, поворачивающих плоскость поляризации на 22,5°...
Тип: Изобретение
Номер охранного документа: 0002458374
Дата охранного документа: 10.08.2012
09.05.2019
№219.017.49a4

Активный элемент дискового лазера с системой охлаждения

Изобретение относится к лазерной технике. Сущность заключается в раздельном охлаждении внутренней и внешней части дискового активного элемента либо путем торцевого присоединения внутренней и внешней его части к охлаждающим радиаторам с различной температурой, либо прикреплением внутренней части...
Тип: Изобретение
Номер охранного документа: 0002687088
Дата охранного документа: 07.05.2019
31.05.2019
№219.017.7012

Лазер с модуляцией добротности резонатора и стабилизацией выходных импульсов (варианты)

Изобретение относится к лазерной технике и может быть использовано для конструирования импульсных лазеров с модуляцией добротности. Блок накачки, осуществляющий работу в постоянном режиме, выполнен автономным от задающего генератора, блок управления содержит источник промежуточного напряжения,...
Тип: Изобретение
Номер охранного документа: 0002689846
Дата охранного документа: 29.05.2019
01.06.2019
№219.017.7263

Изолятор фарадея для лазеров с высокой средней мощностью излучения

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с субкиловаттной средней мощностью излучения. Изолятор содержит магнитооптический ротатор, установленный в магнитной системе и представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002690037
Дата охранного документа: 30.05.2019
+ добавить свой РИД