×
20.11.2015
216.013.91c1

Результат интеллектуальной деятельности: СПОСОБ И СИСТЕМА ДЛЯ БЫСТРОЙ РЕКОНСТРУКЦИИ ИЗОБРАЖЕНИЯ МРТ ИЗ НЕДОСЕМПЛИРОВАННЫХ ДАННЫХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к обработке медицинских изображений. Техническим результатом является сокращение времени реконструкции изображения МРТ из недосемплированных данных. Способ включает в себя: получение недосемплированного спектра в k-пространстве, инициализацию несемплированных позиций в k-пространстве начальным приближением, многополосное разложение первоначально реконструированного спектра на ряд отдельных спектров, выполнение реконструкции с использованием словаря изображений, соответствующих разложенным полосам, и объединение реконструированных изображений для получения результирующего целевого изображения, причем инициализацию реализуют посредством регуляризации l-нормы, и реконструкцию с использованием словаря вычисляют посредством чередования разреженной аппроксимации и восстановления измеренных частот. 2 н. и 16 з.п. ф-лы, 5 ил.

Область техники, к которой относится изобретение

Настоящее изобретение относится к обработке медицинских изображений. В частности, изобретение относится к способу и системе для реконструкции изображения объекта из недосемплированного (частично семплированного) комплексно-значного Фурье-спектра.

Известный уровень техники

Метод визуализации с помощью магнитно-резонансной томографии (МРТ) является неинвазивным и неионизирующим и широко используется в диагностике благодаря его отличной способности визуализировать как анатомическую структуру, так и физиологическую функцию. Однако основной недостаток МРТ состоит в относительно медленном получении изображения, так как используемые данные, измерения (семплы) в так называемом k-пространстве Фурье-спектра объекта получают последовательно во времени. Основополагающий метод восстановления/оценки сигнала по его разреженному/сжатому наблюдению (Compressed sensing, CS), предложенный Donoho (заявка на патент США 2006/0029279), продемонстрировал, что визуализацию по неполным данным можно реконструировать из меньшего количества семплированных данных, т.е. для точной реконструкции изображения в магнитно-резонансной томографии не требуется полное семплирование k-пространства согласно этапам фазового кодирования в импульсной последовательности. Поэтому CS является основным методом для обеспечения аппаратного ускорения МРТ. Для CS-реконструкции можно использовать различные алгоритмы, например полную вариацию (В. Liu et al., ′′Regularized Sensitivity Encoding (SENSE) reconstruction using Bregman iterations,′′ Magnetic Resonance in Medicine 61, 145-152 (2009)) или оптимизацию с регуляризацией l1 нормы, метод восстановления/оценки сигнала МРТ по его сжатому наблюдению с помощью пересчитываемого (S. Ravishankar and Y. Bresler, ′′Image reconstruction from highly undersampled k-space data by dictionary learning,′′ IEEE Trans, on Med. Imag. 30, 1028-1041 (2011)) или предварительно вычисленного словаря (A. Migukin et al., ′′Phase retrieval in 4f optical system: background compensation and sparse regularization of object with binary amplitude,′′ Appl. Opt. 52, A269-A280 (2013)). Предложенный в настоящем изобретении алгоритм сочетает в себе преимущества высокой производительности и высокой скорости сходимости оптимизации с регуляризацией по l1-норме, а также эффективности восстановления МРТ-изображения с использованием обученного словаря.

Как отмечалось выше, заявка на патент США 2006/0029279 представляет основу метода восстановления/оценки сигнала по его разреженному/сжатому наблюдению. В ней предложен уже получивший распространение метод, позволяющий точно (с приемлемым качеством) восстанавливать сигналы/изображения, используя значительно меньшее количество измерений, чем количество неизвестных. Основная идея состоит в том, чтобы найти разреженное представление интересующего объекта в избыточных базисах. Однако ввиду слишком общей вариационной постановки задачи оптимизации существует потребность конкретизировать это разрежающее преобразование.

В заявке на патент США 2007/0110290 описан метод реконструкции медицинских изображений из недосемплированных данных, измеренных в k-пространстве, с помощью итеративного алгоритма минимизации. Согласно этому документу реконструкцию выполняют путем безусловной оптимизации сформулированного и/или заранее определенного функционала, который содержит норму разреженного представления пробного изображения, полученного из набора данных, и/или выражение согласованности с данными (невязки). Важным моментом является то, что алгоритм минимизации может содержать подалгоритм метода сопряженных градиентов и/или итерацию Брегмана.

В заявке на патент США 2012/0177128 описана процедура адаптации с целью создания словарей для разреженного представления сигнала/изображения алгоритмом K-SVD. На основании одного или нескольких обучающих сигналов описанная система обработки сигнала формирует словарь, содержащий базисные сигналы-атомы, так что каждый обучающий сигнал можно представить в виде разреженной линейной комбинации сигналов-атомов словаря. Использование избыточных и разреженных представлений продемонстрировано на нескольких эффективных методах, таких как метод поиска соответствий (Matching Pursuit, MP), метод поиска ортогональных соответствий (Orthogonal Matching Pursuit, ОМР), поиска базиса (Basis Pursuit, BP) и алгоритмы Focal Under-determined System Solver (FOCUSS), что соотносится с методом наибольшей апостериорной вероятности (MAP), методом наибольшего правдоподобия (ML), методом независимых компонент (ICA) и методом оптимального направления (MOD).

В заявке на патент США 2012/0259590 описан CS-метод для реконструкции сигнала/изображения из множества векторов измерения, когда сигнал соответствует множеству совместно разреженных векторов. В этом документе предложен способ извлечения информации из множества векторов измерения совместно разреженных сигналов и вычисления подгруппы, имеющей, по меньшей мере, один элемент общего носителя, на основании указанного множества векторов измерения. Разреженное восстановление формулируется посредством вычисления сжатого представления или разреженной аппроксимации к данному вектору путем линейного объединения небольшого числа векторов из группы векторов, известной как словарь.

В качестве недостатков этого и подобных методов можно отметить несколько аспектов. Некоторые из них ориентированы на очень узкую конкретную задачу: известна некоторая предварительная информация о целевом объекте, его свойствах и/или типе использованных данных. Важным моментом каждого CS-алгоритма является его инициализация: почти все авторы публикуют результаты для случая с автоматическим заполнением нулями. Как правило, словари с равновеликими фрагментами изображения (патчами) пересчитываются итеративно.

Сущность изобретения

Настоящее изобретение позволяет решить, по меньшей мере, упомянутые выше проблемы известного уровня и сочетает в себе преимущества высокой производительности и быстрой сходимости, присущие итеративному алгоритму Split Bregman (распределенный алгоритм по Брегману), и эффективность восстановления МРТ-изображения с использованием обученного словаря.

Согласно настоящему изобретению предложен способ для быстрой реконструкции изображения МРТ из недосемплированных данных Фурье-спектра. Основные преимущества включают в себя эффективные процедуры инициализации и разреженной аппроксимации. Согласно изобретению, инициализация алгоритма реконструкции основана на алгоритме Split Bregman или на приближенном разреженном кодировании. Оно существенно повышает точность реконструкции и скорость сходимости. Разреженная регуляризация выполняется посредством предварительно вычисленных словарей с неравновеликими патчами. Это ускоряет вычислительные алгоритмы, потому что не выполняется пересчет словаря, и повышает качество реконструкции благодаря ориентации на недосемплирование используемого Фурье-спектра. Другое преимущество предложенного алгоритма состоит в отдельной обработке Фурье-спектра. Измеренное недосемплированное k-пространство разделяется на две или более полосы частот, которые затем обрабатываются независимо и параллельно. Это позволяет нацеливать словарь на конкретные компоненты различных частот.

Предложенный способ отличается от других высокопроизводительных способов реконструкции изображений МРТ из недосемплированных данных Фурье-спектра следующими аспектами:

- инициализация различного типа (например некоторой константой, разнообразным градиентом или случайной комплексно-значной величиной, объектом, искаженным наложением спектральных компонент, в котором произведена компенсация размытости/подавление шумов/было произведено сглаживание/подчеркивание границ или начальным приближением к объекту, модели объекта или модели сбора данных, первоначальной реконструкцией с использованием итеративного алгоритма Split Bregman, приближенного разреженного кодирования, регуляризированной обратной сверткой, слепой обратной сверткой и т.п.), что обеспечивает существенное подавление эффектов наложения спектральных компонент и значительное повышение скорости сходимости и качества реконструкции;

- использование предварительно вычисленных словарей вместо их итеративного обучения (переобучения) существенно ускоряет вычислительный алгоритм и улучшает реконструированное изображение;

- использование словаря неравновеликих патчей (их наибольший размер ориентирован на недосемплирование) обеспечивает более высокое качество реконструкции;

- разделение спектра реконструированного объекта на две или более полосы частот и их независимая параллельная обработка позволяет более конкретно нацеливать словари на компоненты различных частот.

Краткое описание чертежей

Фиг. 1 иллюстрирует основные этапы способа быстрой реконструкции изображения МРТ.

Фиг. 2 иллюстрирует инициализацию на основе алгоритма Split Bregman.

Фиг. 3 иллюстрирует метод приближенного разреженного кодирования.

Фиг. 4 иллюстрирует метод реконструкции с использованием словаря.

Фиг. 5 иллюстрирует систему, в которой может быть реализован примерный вариант настоящего изобретения.

Подробное описание

Метод визуализации с помощью магнитно-резонансной томографии (МРТ) представляет собой времязатратную процедуру, поэтому важно ускорить получение изображения МРТ. Сигнал МРТ семплируется в спектральном пространстве (так называемом k-пространстве), которое представляет двумерное преобразование Фурье-изображения МРТ. В случае если семплы получают последовательно, то общее время их получения зависит от количества семплов, поэтому одним из способов ускорения получения изображения МРТ является сокращение числа семплируемых частот и реконструкция изображения МРТ только по наблюдаемым частотам (недосемплированному k-пространству).

Предложен способ быстрой реконструкции изображения МРТ из недосемплированного k-пространства. В качестве входных данных способ принимает недосемплированное k-пространство и маску семплирования, которая является бинарной маской, где ′′1′′ означает, что текущая частота семплируется (точка в k-пространстве в соответствующей позиции), а ′′0′′ означает, что текущая частота (точка в k-пространстве в соответствующей позиции) не семплируется. На выходе способ выдает реконструированное изображение.

Согласно настоящему изобретению, способ реконструкции изображения МРТ из недосемплированных данных состоит из нескольких этапов, показанных на фиг. 1. На первом этапе 101 производится съемка спектральных данных с помощью принимающей катушки в k-пространстве в соответствии с заданной схемой семплирования (маской семплирования), в результате чего формируется недосемплированный спектр, подлежащий обработке. Затем выполняется начальная реконструкция 102 путем заполнения несемплированных (пустых) позиций в k-пространстве начальным приближением. На следующем этапе 103 инициализированный спектр (или, иными словами, первоначально реконструированный спектр) в k-пространстве раскладывается на полосы частот, тем самым образуя множество отдельных спектров, соответствующих каждой полосе частот. Затем на этапе 104 каждый полученный спектр реконструируется с помощью алгоритма восстановление/оценки сигнала по его разреженному/сжатому наблюдению с использованием словаря. И наконец, на этапе 105 все реконструированные изображения, соответствующие различным полосам частот, объединяются, используя оператор сложения, и тем самым формируется конечный результат реконструкции, т.е. полный спектр в k-пространстве, соответствующий сигналу МРТ с устраненными размытостью и шумом. В описанной процедуре используется подход на основе обучения для создания словаря, который применяется для реконструкции изображения. Этот словарь обучается предварительно с помощью набора полностью семплированных обучающих МРТ-изображений.

Далее будет представлено более подробное описание упомянутых этапов.

Первоначальная реконструкция

Упрощенный способ восстановления объекта предполагает обратное преобразование Фурье недосемплированных спектральных данных без предварительной обработки. Однако такая реконструкция сильно искажена эффектами наложения спектров из-за наличия нулей в измерениях, особенно в случае равномерного недосемплирования. Простейший способ состоит в заполнении значений в пустых семплах в Фурье-пространстве некоторыми ненулевыми значениями, чтобы избежать наложения спектров и помочь алгоритму реконструкции быстрее достичь сходимости. Эта процедура называется инициализацией или первоначальной реконструкцией. Существует множество подходов к получению первоначальных данных, например: постоянное значение, разнообразный градиент или случайная комплексно-значная величина. Значения в пустых семплах Фурье-спектра можно получить, если объект, искаженный наложением спектральных компонент, предварительно обработать каким-либо методом в пространстве изображения, например путем устранения размытости, шума, путем сглаживания, подчеркивания границ или с помощью какого-либо более сложного метода, например методом регуляризированной обратной свертки, слепой обратной свертки, с помощью итеративного алгоритма Split Bregman или приближенного разреженного кодирования. Это позволяет существенно подавить эффекты наложения спектров и значительно повысить скорость сходимости и качество реконструкции. Также можно использовать некоторую предварительную информацию об объекте, модели объекта или модели сбора данных.

В одном из вариантов изобретения на этапе инициализации 102 можно использовать алгоритм Split Bregman (Т. Goldstein, and S. Osher, ′′The Split Bregman method for L1-regularized problems,′′ SI AM J. on Imag. Sciences 2, 323-343 (2009)). Этот алгоритм обеспечивает эффективность и высокую скорость сходимости в предложенном способе.

Согласно D. L Donoho, ′′Compressed sensing,′′ IEEE Trans. Inf. Theory 52, 1289-1306 (2006), задача CS-реконструкции изначально упрощается и переформулируется как следующая задача поиска базиса шумоподавления (basis pursuit denoising):

что приводит к минимизации выпуклой критериальной функции. Здесь x - вектор изображения объекта, подлежащего реконструкции, Fu преобразование Фурье с частичным семплированием, y - вектор измеренного недосемплированного спектра, Ψ - разрежающее преобразование, λ - параметр регуляризации; l1 норма определяется как сумма абсолютных значений элементов вектора, и l2 норма определяется как квадратный корень суммы квадратов элементов вектора.

Согласно (Y. Wang et at, ′′A fast algorithm for image deblurring with total variation regularization,′′ CAAM Technical Report (2007)) нормы l1 и l2 можно разделить как:

где d - разреженная аппроксимация объекта. Из этого вытекает итеративный алгоритм Split Bregman:

где µ - параметр регуляризации l1-нормы, а bk - обновление параметров Брегмана.

На фиг. 2 представлена блок-схема алгоритма инициализации Split Bregman. Согласно Т. Goldstein, and S. Osher, ′′The Split Bregman method for 11-regularized problems,′′ SIAM J, on Imag. Sciences 2, 323-343 (2009), алгоритм содержит два вложенных цикла.

Сначала инициализируются 201 нулевыми векторами вспомогательные переменные разреженной аппроксимации d° объекта и параметр Брегмана b°.

Затем выполняется этап 202, на котором проверяется, завершен ли внешний цикл 202. Если нет, алгоритм переходит к этапу 203, в противном случае алгоритм переходит к этапу 209.

На этапе 203 проверяется, завершен ли внутренний цикл. Если нет, алгоритм переходит к внутреннему циклу, в противном случае алгоритм переходит к этапу 208.

Во время внутреннего цикла выполняются упомянутые выше операции алгоритма Split Bregman (3.1)-(3.3), а именно внутренний цикл включает в себя:

пересчет 204 оценки xk+1 целевого объекта путем оптимизации l2-нормы,

пересчет 206 разреженной аппроксимации dk+1 объекта путем решения l1-регуляризованной задачи, и

обновление 207 параметров Брегмана bk+1.

Оптимизация относительно l1-нормы 206 реализуется посредством операции сравнения с мягким порогом, равным 1/2µ.

Для повышения точности реконструкции и уменьшения числа итераций реконструированный объект можно дополнительно обновить путем восстановления 205 измеренных семплов k-пространства в реконструированном Фурье-спектре объекта xk+1.

Затем внутренний цикл обновляет вспомогательные независимые переменные 208, которые используются для пересчета 204 оценки объекта.

После выполнения этапа 208 алгоритм возвращается к этапу 202.

Как показано выше, после завершения внешнего цикла 202 алгоритм переходит к этапу 209, на котором полученный объект обновляется снова путем восстановления измеренных семплов k-пространства в реконструированном Фурье-спектре. После этого алгоритм инициализации с использованием алгоритма Split Bregman завершается.

В частности, можно использовать обычный оператор дифференциации в качестве разрежающего преобразования Ψ. В этом случае получаем обычную регуляризацию полной вариации.

Приближенное разреженное кодирование для вычисления начального приближения

В одном из вариантов изобретения начальное приближение можно вычислить методом приближенного разреженного кодирования на этапе инициализации 102. Основная идея метода состоит в использовании обучаемых моделей для прогнозирования разреженных кодов с меньшим числом вычислений, чем в точных алгоритмах. В качестве одного из вариантов обучаемой модели для прогнозирования разреженного кода можно использовать алгоритм обучаемого покоординатного схождения (Learned Coordinate Descent algorithm, LCoD), см., например (Karol Gregor and Yann LeCun, Learning Fast Approximations of Sparse Coding, ICML 2010).

На фиг. 3 показан алгоритм обучения модели для прогнозирования разреженного кода. Для обучения модели следует предварительно определить словарь разреженного кодирования, обучающую последовательность и маску семплирования. Обучающая последовательность должна содержать полностью семплированные данные. На первом этапе 301 обучающего алгоритма из набора данных извлекается полностью семплированное k-пространство. К k-пространству применяется заранее определенная маска семплирования 302, чтобы получить недосемплированное k-пространство, в котором отсутствующие значения заполняются нулями. На этапе 303 путем применения обратного преобразования Фурье реконструируются два изображения: одно из недосемплированного k-пространства (с артефактами в результате заполнения нулями) и другое из полностью семплированного k-пространства. На следующем этапе 304 из обоих изображений извлекаются небольшие фрагменты (патчи) изображения. Размер извлеченного патча равен размеру элемента словаря. Затем выполняется цикл для всех пар патчей (полностью семплированного и недосемплированного). На первом этапе 305 цикла обучаемой моделью прогнозируется разреженный код. Затем реконструируется 306 патч изображения с использованием спрогнозированного кода и заранее определенного словаря. Этот реконструированный патч изображения используется для вычисления 307 погрешности путем сравнения с патчем изображения, извлеченным из полностью семлированного изображения. Используя вычисленную погрешность, параметры модели обновляются 308 любым методом оптимизации, например методом градиентного схождения. Этот процесс повторяется до тех пор, пока процесс обучения достигнет сходимости.

Реконструкция с использованием словаря

Основной частью предложенного способа является этап 104, который основан на разреженной аппроксимации входного сигнала с использованием обученного словаря. На этом этапе решается следующая задача оптимизации:

где l0-норма определяется как количество ненулевых компонент вектора.

В методе с использованием словаря разрежающее преобразование представлено разреженным разложением входного сигнала по базисным элементам словаря. Задачу оптимизации, упомянутую выше, решает следующий итеративный алгоритм, показанный на фиг.4. Сначала получают изображение 403 путем применения обратного Фурье-преобразования 402 к входному недосемплированного k-пространства 401. Затем выполняются следующие этапы до достижения сходимости 404 решения. Извлекается 406 набор перекрывающихся патчей 407 из изображения 403. Затем выполняется разреженное разложение 408 для каждого патча. На этом этапе решают следующую задачу оптимизации:

где столбцы X - векторизованные патчи, столбцы z - векторы разреженных кодов, D - матрица преобразования словаря, δ - параметр регуляризации.

В описанной выше задаче элементы словаря 409 представлены в виде столбцов матрицы D, а каждый столбец X должен быть представлен как линейная комбинация элементов словаря с всего небольшим количеством ненулевых компонент (следовательно, столбцы z разреженные).

Данную задачу можно решить с помощью жадного алгоритма поиска ортогонального соответствия (Orthogonal Matching Pursuit). В то время как для каждого патча получают разреженные коды z 410, патчи 412, подлежащие реконструкции, вычисляются как линейная комбинация словарных элементов с вычисленными разреженными кодами как коэффициентами 411. Затем получают промежуточное реконструированное изображение 414 посредством объединения реконструированных перекрывающихся патчей 413. На следующем этапе промежуточное реконструированное изображение 414 преобразуется обратно в частотное пространство путем применения к нему преобразования 415 Фурье, и получается промежуточное k-пространство 416. Затем реконструированные значения в частотах промежуточного k-пространства 416 восстанавливаются (меняются) 417 измеренными данными. Это k-пространство с восстановленными наблюдаемыми частотами 418 преобразуется в пространство изображения посредством обратного преобразования 402 Фурье. Если данное решение сходится 404, то изображение 403 выдается 405 как результат реконструкции, в противном случае начинается новая итерация.

Неравновеликие патчи

Предложенный способ работает с разными методами семплирования. Процедура извлечения патчей из входного изображения формирует набор прямоугольных кусков изображения. Оптимальное соотношение сторон (отношение между шириной и высотой) патча зависит от схемы семплирования k-пространства. Обычный способ семплирования в устройстве МРТ заключается в получении линий фазового кодирования. Эти линии представляют строчки в k-пространстве. Следовательно, информация о частотах теряется вдоль направления у (вертикальная координата). Эти потери вызывают вертикальные искажения из-за наложения спектральных компонент в изображении (полученном из недосемплированного k-пространства). Если число словарных элементов фиксированное, то размер патча не должен быть очень большим в обоих измерениях, потому что будет трудно кодировать такой объем информации лишь небольшим числом элементов. Использование фиксированного объема информации (постоянного числа пикселей) в патче может быть более оптимальным для охвата большего количества данных вдоль вертикального направления при использовании единственного патча. Это применимо, потому что искажения, вызванные наложением спектров, распределены вдоль вертикального направления из-за декартовой схемы семплирования с пропуском линий фазового кодирования. Такая стратегия охвата с фиксированным объемом информации на патч может быть реализована через применение неравновеликих прямоугольных патчей (например при увеличении высоты патча с одновременным уменьшением его ширины). Неквадратные прямоугольные патчи позволяют достичь более высокого качества реконструкции, чем квадратные патчи, при одинаковом или даже меньшем количестве пикселей в прямоугольном патче, чем в квадратном патче. Для недекартовой изотропной схемы семплирования лучше использовать квадратные патчи (качество реконструкции будет выше). В общем случае соотношение сторон патча зависит от отношения потерянной информации вдоль направления х и направления у (величины анизотропии).

Многополосное разложение

В предложенном способе одним из методов использования многоуровневой структуры данных является реконструкция совокупность компонент изображения, соответствующих различным полосам частот, на этапе 103. В этом методе спектр, первоначально реконструированный на этапе 102, разделяется на несколько частей (полос), например соответствующих группе низких, средних и высоких частот, и т.п. При таком разделении появляется несколько новых разбиений k-пространств, каждое из которых содержит только частоты из соответствующей полосы, тогда как другие частоты заполнены нулями и отмечены как измеренные. Разложение сигнала МРТ на полосы частот уменьшает многообразие сигналов в пределах полосы (в каждой полосе сигнал имеет простую форму) и поэтому увеличивает разреженность сигнала и качество конечной реконструкции. Такие усеченные k-пространства обрабатываются как входные данные в основной цикл реконструкции с использованием словаря на этапе 104 и обрабатываются параллельно. После завершения реконструкции изображений для каждой полосы на этапе 105 получают окончательное реконструированное изображение посредством сложения реконструированных изображений для всех полос. На стадии обучения словаря каждое обучающее изображение разлагается на полосы частот одинаковым способом, и индивидуальный словарь обучается отдельно для каждой полосы. На стадии реконструкции каждую полосу реконструируют с использованием соответствующего словаря. Если все частоты в текущей полосе измерены, реконструкцию полосы выполняют просто применением обратного Фурье преобразования. Выбор форм полосы зависит от схемы семплирования. Например для одномерного декартова семплирования полосы представляют собой прямоугольные полоски в k-пространстве, которые ориентированы в том же направлении, что и линии семплирования. Для радиально-симметричного или изотропного произвольного семплирования полосы представляют собой концентрические кольца, центрированные на нулевой частоте.

Система для реконструкции изображения МРТ из недосемплированных данных

На фиг. 5 изображена система, в которой может быть реализован примерный вариант изобретения. Система содержит медицинское оборудование 501 для получения недосемплированных k-пространств, сервер реконструкции 502 и пульт оператора 503. После получения недосемплированного k-пространства с помощью медицинского оборудования файл с этими данными сохраняется в памяти 505 сервера реконструкции. Оператор, используя пульт 507, запускает программу выполнения реконструкции изображения. Программа выполняется на серверном процессоре 504 и содержит модуль 508 для реконструкции недосемплированных данных МРТ как подпрограмму. Результат программы можно выводить на дисплей 506 пульта.

Промышленная применимость

Настоящее изобретение можно использовать в МРТ-сканерах, чтобы ускорить получение изображения, и можно реализовать в программной или аппаратной части медицинского оборудования.


СПОСОБ И СИСТЕМА ДЛЯ БЫСТРОЙ РЕКОНСТРУКЦИИ ИЗОБРАЖЕНИЯ МРТ ИЗ НЕДОСЕМПЛИРОВАННЫХ ДАННЫХ
СПОСОБ И СИСТЕМА ДЛЯ БЫСТРОЙ РЕКОНСТРУКЦИИ ИЗОБРАЖЕНИЯ МРТ ИЗ НЕДОСЕМПЛИРОВАННЫХ ДАННЫХ
СПОСОБ И СИСТЕМА ДЛЯ БЫСТРОЙ РЕКОНСТРУКЦИИ ИЗОБРАЖЕНИЯ МРТ ИЗ НЕДОСЕМПЛИРОВАННЫХ ДАННЫХ
СПОСОБ И СИСТЕМА ДЛЯ БЫСТРОЙ РЕКОНСТРУКЦИИ ИЗОБРАЖЕНИЯ МРТ ИЗ НЕДОСЕМПЛИРОВАННЫХ ДАННЫХ
СПОСОБ И СИСТЕМА ДЛЯ БЫСТРОЙ РЕКОНСТРУКЦИИ ИЗОБРАЖЕНИЯ МРТ ИЗ НЕДОСЕМПЛИРОВАННЫХ ДАННЫХ
Источник поступления информации: Роспатент

Показаны записи 611-620 из 1 297.
20.01.2018
№218.016.1926

Способ и устройство для мультиплексирования и демультиплексирования видеоданных, чтобы идентифицировать состояние воспроизведения видеоданных

Изобретение относится к средствам мультиплексирования и демультиплексирования видеоданных. Технический результат заключается в экономном использовании системного ресурса за счет использования аппаратного обеспечения. Указанный результат достигается за счет декодирования видео, при этом:...
Тип: Изобретение
Номер охранного документа: 0002636131
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.1927

Носимое устройство биометрической аутентификации с однопиксельным датчиком

Изобретение относится к методикам аутентификации, а именно к аутентификации, основанной на использовании персональных биологических данных, таких как конфигурации вен тела человека. Технический результат – обеспечение достоверной аутентификации и портативность устройства. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002636136
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.194d

Способ и устройство для кодирования видео, а также способ и устройство для декодирования видео, сопровождаемого взаимным прогнозированием с использованием совместно размещенного изображения

Изобретение относится к области кодирования и декодирования видео через взаимное прогнозирование и компенсацию движения. Технический результат заключается в обеспечении взаимного прогнозирования для определения опорного изображения посредством совместно размещенного изображения. Технический...
Тип: Изобретение
Номер охранного документа: 0002636100
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.1995

Способ и устройство для предоставления панели рекомендаций, а также способ и сервер для предоставления рекомендуемого пункта

Изобретение относится к устройствам предоставления рекомендаций пользователю. Технический результат заключается в обеспечении возможности предоставления панели рекомендаций на основе типа устройства. Устройство включает в себя средство пользовательского ввода, которое выполнено с возможностью...
Тип: Изобретение
Номер охранного документа: 0002636124
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.199f

Способ и устройство для приема и передачи информации о состоянии канала в системе беспроводной связи

Изобретение относится к беспроводной связи. Технический результат заключается в обеспечении эффективной передачи и приема информации о состоянии канала (CSI) через множество антенн. Способ передачи CSI терминала включает в себя прием первого опорного сигнала с CSI (CSI-RS) и второго CSI-RS,...
Тип: Изобретение
Номер охранного документа: 0002636057
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.1b0d

Способ и устройство для управления состоянием блокировки/разблокировки терминала через распознавание речи

Изобретение относится к способу для управления терминалом через речевой ввод. Технический результат заключается в обеспечении уменьшения числа требуемых операций при управлении терминалом. Способ включает в себя прием речевого ввода, когда терминал находится в состоянии, в котором терминал...
Тип: Изобретение
Номер охранного документа: 0002635880
Дата охранного документа: 16.11.2017
20.01.2018
№218.016.1b1c

Способ и система обработки изображений для формирования изображений сверхвысокого разрешения

Группа изобретений относится к технологиям обработки изображений, в частности, для формирования изображений сверхвысокого разрешения. Техническим результатом является увеличение разрешения и уровня детализации входного изображения, что обеспечивает улучшение качества изображения. Предложен...
Тип: Изобретение
Номер охранного документа: 0002635883
Дата охранного документа: 16.11.2017
20.01.2018
№218.016.1b40

Способ и устройство для энтропийного кодирования с использованием иерархической единицы данных и способ и устройство для декодирования

Изобретение относится к технологиям кодирования/декодирования видео. Техническим результатом является повышение эффективности декодирования видео. Предложен способ декодирования видео. Способ содержит этап, на котором получают из битового потока флаг разделения единицы преобразования,...
Тип: Изобретение
Номер охранного документа: 0002635893
Дата охранного документа: 16.11.2017
20.01.2018
№218.016.1b41

Устройство и способ кодирования видео и устройство и способ декодирования видео, основанные на иерархической информации о структуре кодированного блока

Изобретение относится к вычислительной технике, в частности к способу декодирования видео. Технический результат заключается в повышении эффективности декодирования видео. Технический результат достигается за счет способа декодирования закодированного видео, включающего определение единицы...
Тип: Изобретение
Номер охранного документа: 0002635877
Дата охранного документа: 16.11.2017
20.01.2018
№218.016.1b7d

Способ передачи зондирующего опорного сигнала восходящей линии связи для системы lte

Изобретение относится к системе беспроводной связи и предназначено для осуществления скачкообразной перестройки частоты сигнала передачи восходящей линии связи. Способ для передачи зондирующего опорного сигнала восходящей линии связи включает в себя индексирование символов Коллективного доступа...
Тип: Изобретение
Номер охранного документа: 0002636579
Дата охранного документа: 24.11.2017
Показаны записи 611-620 из 674.
20.01.2018
№218.016.1713

Оптическое регулировочное устройство

Оптическое регулировочное устройство содержит оптическую регулировочную линзу для стабилизации изображения и автоматической фокусировки. При этом устройство включает в себя держатель линзы, который поддерживает оптическую регулировочную линзу, по меньшей мере один электродинамический (ЭД)...
Тип: Изобретение
Номер охранного документа: 0002635837
Дата охранного документа: 16.11.2017
20.01.2018
№218.016.185b

Мобильный терминал с возможностью осуществления операции с экранным изображением и способ функционирования

Изобретение относится к области взаимодействия пользователя с устройством, основанного на графических интерфейсах пользователя, с использованием сенсорного экрана для ввода команд посредством отслеживаемых жестов. Техническим результатом является повышение защиты устройства от непреднамеренной...
Тип: Изобретение
Номер охранного документа: 0002635358
Дата охранного документа: 13.11.2017
20.01.2018
№218.016.1926

Способ и устройство для мультиплексирования и демультиплексирования видеоданных, чтобы идентифицировать состояние воспроизведения видеоданных

Изобретение относится к средствам мультиплексирования и демультиплексирования видеоданных. Технический результат заключается в экономном использовании системного ресурса за счет использования аппаратного обеспечения. Указанный результат достигается за счет декодирования видео, при этом:...
Тип: Изобретение
Номер охранного документа: 0002636131
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.1927

Носимое устройство биометрической аутентификации с однопиксельным датчиком

Изобретение относится к методикам аутентификации, а именно к аутентификации, основанной на использовании персональных биологических данных, таких как конфигурации вен тела человека. Технический результат – обеспечение достоверной аутентификации и портативность устройства. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002636136
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.194d

Способ и устройство для кодирования видео, а также способ и устройство для декодирования видео, сопровождаемого взаимным прогнозированием с использованием совместно размещенного изображения

Изобретение относится к области кодирования и декодирования видео через взаимное прогнозирование и компенсацию движения. Технический результат заключается в обеспечении взаимного прогнозирования для определения опорного изображения посредством совместно размещенного изображения. Технический...
Тип: Изобретение
Номер охранного документа: 0002636100
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.1995

Способ и устройство для предоставления панели рекомендаций, а также способ и сервер для предоставления рекомендуемого пункта

Изобретение относится к устройствам предоставления рекомендаций пользователю. Технический результат заключается в обеспечении возможности предоставления панели рекомендаций на основе типа устройства. Устройство включает в себя средство пользовательского ввода, которое выполнено с возможностью...
Тип: Изобретение
Номер охранного документа: 0002636124
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.199f

Способ и устройство для приема и передачи информации о состоянии канала в системе беспроводной связи

Изобретение относится к беспроводной связи. Технический результат заключается в обеспечении эффективной передачи и приема информации о состоянии канала (CSI) через множество антенн. Способ передачи CSI терминала включает в себя прием первого опорного сигнала с CSI (CSI-RS) и второго CSI-RS,...
Тип: Изобретение
Номер охранного документа: 0002636057
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.1b0d

Способ и устройство для управления состоянием блокировки/разблокировки терминала через распознавание речи

Изобретение относится к способу для управления терминалом через речевой ввод. Технический результат заключается в обеспечении уменьшения числа требуемых операций при управлении терминалом. Способ включает в себя прием речевого ввода, когда терминал находится в состоянии, в котором терминал...
Тип: Изобретение
Номер охранного документа: 0002635880
Дата охранного документа: 16.11.2017
20.01.2018
№218.016.1b1c

Способ и система обработки изображений для формирования изображений сверхвысокого разрешения

Группа изобретений относится к технологиям обработки изображений, в частности, для формирования изображений сверхвысокого разрешения. Техническим результатом является увеличение разрешения и уровня детализации входного изображения, что обеспечивает улучшение качества изображения. Предложен...
Тип: Изобретение
Номер охранного документа: 0002635883
Дата охранного документа: 16.11.2017
20.01.2018
№218.016.1b40

Способ и устройство для энтропийного кодирования с использованием иерархической единицы данных и способ и устройство для декодирования

Изобретение относится к технологиям кодирования/декодирования видео. Техническим результатом является повышение эффективности декодирования видео. Предложен способ декодирования видео. Способ содержит этап, на котором получают из битового потока флаг разделения единицы преобразования,...
Тип: Изобретение
Номер охранного документа: 0002635893
Дата охранного документа: 16.11.2017
+ добавить свой РИД