×
20.11.2015
216.013.9003

Результат интеллектуальной деятельности: ПРОТИВОТОЧНО-ЦИКЛИЧЕСКИЙ СПОСОБ МНОГОСТУПЕНЧАТОГО ЭКСТРАКЦИОННОГО РАЗДЕЛЕНИЯ СМЕСИ КОМПОНЕНТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области процессов разделения веществ методами жидкостной экстракции и хроматографии и может быть использовано в гидрометаллургии, а также в химической, микробиологической, фармацевтической и других отраслях промышленности для извлечения, разделения, очистки и концентрирования веществ. Противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов заключается в многократном распределении их между легкой и тяжелой жидкими фазами, перемещаемыми в чередующейся последовательности в противоположных направлениях через каскад последовательно соединенных контактных ступеней в циклическом режиме. Каждый цикл состоит из полупериода движения тяжелой фазы и полупериода движения легкой фазы при многократном периодическом перемешивании и разделении фаз в ступенях. При этом движение каждой фазы через каскад контактных ступеней осуществляют последовательно в несколько этапов, на каждом из которых последовательно проводят три операции: перемещение определенного объема фазы по каскаду, смешение фаз в ступенях, разделение фаз в ступенях, причем смесь подают в первом цикле или в первом и в последующих циклах процесса с одной из фаз в течение количества этапов меньшего, чем общее количество этапов в полупериоде движения этой фазы. Техническим результатом является повышение эффективности разделения и производительности процесса, а также снижение расхода растворителей. 3 з.п. ф-лы, 1 ил., 5 пр.

Изобретение относится к области процессов разделения веществ методами жидкостной экстракции и хроматографии и может быть использовано в гидрометаллургии, а также в химической, микробиологической, фармацевтической и других отраслях промышленности для извлечения, разделения, очистки и концентрирования веществ.

Предшествующий уровень техники

Разделение компонентов в процессах жидкостной экстракции и жидкостной хроматографии без твердого носителя базируется на различной растворимости отдельных компонентов в двух жидких фазах. Жидкостная хроматография без твердого носителя фактически является нестационарным (динамическим) вариантом жидкостной экстракции.

Известны способы разделения смеси компонентов методами жидкостной хроматографии без твердого носителя в центробежных устройствах, состоящих из спиральной трубки или цепочки камер, закрепленных на валу центрифуги. Разделение смеси компонентов осуществляют путем распределения их между двумя жидкими фазами. Смесь подается с одной из фаз, которая является подвижной фазой и прокачивается через другую (неподвижную) фазу, удерживаемую в свободном состоянии в устройстве с помощью центробежных сил. На выходе из устройства отбираются фракции компонентов [Jean - Michel Menet, Didier Thiebaut Countercurrent Chromatography // Chromatographic science series. Volume 82. 1999. Marcel Dekker, Inc. New York. Basel]. Недостатком этих способов является сложность используемых для их реализации центробежных устройств.

Известны также хроматографические способы для разделения смеси компонентов путем распределения их между легкой и тяжелой жидкими фазами в виде спиральной трубки, намотанной на один или несколько барабанов планетарной центрифуги. Трубку заполняют неподвижной жидкой фазой, через которую прокачивают подвижную фазу. Барабанам с намотанной трубкой с помощью планетарного механизма придают сложное вращательное движение вокруг собственной оси и одновременно вокруг центральной оси центрифуги. Смесь компонентов (пробу) вводят в форме импульса с подвижной фазой в спиральную трубку, где в результате многократного распределения и перераспределения компонентов между двумя жидкими фазами происходит их разделение. На выходе подвижной фазы из устройства отбирают обогащенные фракции отдельных компонентов [А.Е. Костанян. Журнал «Химическая технология». 2004. №8. С. 39].

Недостатками этих известных способов являются сложность и дороговизна.

Известен также способ экстракционного разделения смеси компонентов [патент RU 2304453] путем распределения их между легкой и тяжелой жидкими фазами в канале спиралевидной формы, которым для удерживания одной из них в канале с помощью пульсатора сообщают возвратно-поступательное движение.

Недостатками этого известного способа являются сложность его технологического оформления и недостаточно высокая эффективность, обусловленная обратным перемешиванием жидкостей в канале при сообщении им возвратно-поступательного движения.

Известен способ хроматографического разделения смеси компонентов [патент RU 2342970], заключающийся в многократном распределении их между легкой и тяжелой жидкими фазами в хроматографической колонке, содержащей ряд камер, соединенных в форме змеевика. Одну из фаз удерживают в колонке, а другую прокачивают через колонку, при этом ей сообщают движение с периодически изменяющейся скоростью с помощью центробежных сил, вращая колонку вокруг ее центральной оси или организуя возвратно-поступательное движение фаз в ней с помощью пульсатора.

Известен также способ экстракционно-хроматографического разделения смеси компонентов путем распределения их между легкой и тяжелой жидкими фазами [патент RU 2342971], которым сообщают движение с периодически изменяющейся скоростью в канале спиралевидной формы, а смесь вводят в виде импульса в промежуточное сечение канала. Фазы прокачивают в чередующейся последовательности через канал в противоположных направлениях. Противоточное движение фаз в устройстве обеспечивают с помощью центробежных сил, вращая устройство вокруг его центральной оси или организуя возвратно-поступательное движение фаз в нем с помощью пульсатора.

Недостатками и этого известного способа, как и в описанных выше технических решениях, является сложность его технологического оформления, связанная с необходимостью применения центрифуги или специального пульсатора для удерживания одной из фаз или организации противоточного движения фаз в устройстве.

Наиболее близким техническим решением является противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов [патент RU 2403949] (прототип), заключающийся в многократном распределении их между легкой и тяжелой жидкими фазами, перемещаемыми в чередующейся последовательности в противоположных направлениях через каскад последовательно соединенных контактных ступеней. Подлежащую разделению смесь компонентов вводят в промежуточную ступень каскада в виде импульса. Перемещение фаз осуществляют в циклическом режиме, каждый цикл которого состоит из полупериода движения тяжелой фазы и полупериода движения легкой фазы. При этом проводят многократное периодическое перемешивание и гравитационное разделение фаз в ступенях, причем одну фазу удерживают в ступенях в полупериоде движения через ступени другой фазы.

Недостатком данного способа является недостаточно высокая эффективность разделения, особенно при разделения компонентов с близкими свойствами, и низкая производительность. Разделение смесей компонентов по известному способу связано с большим расходом растворителей (фаз) и требует большого числа экстракционных ступеней, что усложняет технологическое оформление способа и затрудняет его практическую реализацию.

Изобретение направлено на повышение эффективности противоточно-циклического способа многоступенчатого экстракционного разделения смеси компонентов, в том числе улучшение селективности разделения компонентов, повышение производительности и сокращение расхода растворителей.

Раскрытие изобретений

Основной задачей настоящего изобретения было создание эффективного и простого в технологическом оформлении противоточно-циклического способа многоступенчатого экстракционного разделения смеси компонентов.

Технический результат достигается тем, что противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов заключается в многократном распределении их между легкой и тяжелой жидкими фазами, перемещаемыми в чередующейся последовательности в противоположных направлениях через каскад последовательно соединенных контактных ступеней в циклическом режиме, каждый цикл которого состоит из полупериода движения тяжелой фазы и полупериода движения легкой фазы при многократном периодическом перемешивании и разделении фаз в ступенях, при этом движение каждой фазы через каскад контактных ступеней осуществляют последовательно в несколько этапов, на каждом из которых последовательно проводят три операции: перемещение определенного объема фазы по каскаду; смешение фаз в ступенях; разделение фаз в ступенях, причем смесь подают в первом цикле или в первом и в последующих циклах процесса с одной из фаз в течение количества этапов меньшего, чем общее количество этапов в полупериоде движения этой фазы.

Целесообразно, что перемещение фазы по каскаду осуществляют в объеме, равном объему, занимаемому этой фазой в единичной ступени.

Технический результат достигается также тем, что смесь подают с одной из фаз в течение количества этапов, не превышающего половину общего количества этапов в полупериоде движения этой фазы.

Важно, что количество этапов в полупериодах движения фаз устанавливают индивидуально для каждого цикла.

Нами обнаружено, что когда полупериод движения через каскад каждой фазы разбивают на несколько этапов, на каждом из которых последовательно осуществляют операции: перемещение определенного объема фазы по каскаду из ступени в ступень, смешение фаз и разделение фаз в ступенях, а смесь подают в первом цикле или в первом и в последующих циклах процесса с одной из фаз в течение количества этапов меньшего, чем общее количество этапов в полупериоде движения этой фазы, существенно повышается эффективность (селективность) разделения компонентов смеси. Как правило, с увеличением производительности процессов разделения снижается эффективность разделения компонентов. Нами установлено, что когда смесь подают периодически в последующих циклах процесса, повышается производительность, сокращается расход растворителей и при этом повышается эффективность разделения.

Наибольший положительный эффект достигается, когда из ступени в ступень перемещают объем фазы, равный объему, занимаемому этой фазой в одной ступени, и смесь подают с одной из фаз в течение количества этапов, не превышающего половину общего количества этапов в полупериоде движения этой фазы, а количество этапов в полупериодах движения фаз устанавливают индвидуально для каждого цикла.

Краткое описание чертежей

Изобретение поясняется описанием конкретных примеров его выполнения и прилагаемым чертежом, на котором иллюстрируется движение фаз при реализации способа, когда полупериод движения легкой фазы состоит из трех этапов, а полупериод движения тяжелой фазы состоит из двух этапов. При этом на каждом из этапов последовательно осуществляют три операции: 1 - перемещение определенного объема фазы по каскаду из ступени в ступень; 2 - смешение фаз в ступенях; 3 - разделение фаз в ступенях, причем из ступени в ступень перемещают объем фазы, равный объему, занимаемому этой фазой в одной ступени. Для наглядности упомянутые операции 1, 2 и 3 на чертеже показаны лишь для ступеней, в которые поступают подаваемые в каскад новые объемы фаз в полупериодах их движения.

Смесь разделяемых компонентов подают в контактные ступени каскада с легкой фазой в течение начальных этапов полупериодов ее движения.

Когда смесь подают периодически в последующих циклах процесса, предлагаемый способ может быть реализован в двух режимах:

1. Стационарный режим: длительность полупериодов движения фаз (определяемая количеством этапов и перемещаемым по каскаду объемом фазы) поддерживают постоянной во всех циклах. При этом после некоторого числа циклов наступает стационарный режим процесса, когда в каждом цикле с потоками фаз из каскада ступеней выводят постоянные количества разделенных компонентов.

2. Нестационарный режим: длительность полупериодов движения фаз в каждом цикле регулируют таким образом, чтобы один (целевой) компонент или группа компонентов удерживалась (накапливалась) в каскаде, в то время как остальные компоненты смеси выводились из каскада с потоками фаз. При этом после некоторого числа циклов получают концентрат одного (целевого) компонента или группы компонентов.

В приводимых ниже примерах противоточно-циклический процесс многоступенчатого экстракционного разделения смеси компонентов проводят следующим образом.

Каскад последовательно соединенных контактных ступеней заполняют легкой и тяжелой жидкими фазами. Объемное соотношение фаз в ступенях задают при заполнении каскада. С противоположных концов каскада в чередующейся последовательности подают в него и выводят из него потоки фаз. Процесс проводят в циклическом режиме, каждый цикл которого включает определенную длительность полупериодов движения тяжелой и легкой фаз. При этом движение через каскад каждой фазы в полупериоде ее движения осуществляют последовательно в несколько этапов, на каждом из которых последовательно проводят три операции: 1 - перемещение определенного объема фазы из ступени в ступень; 2 - смешение фаз в ступенях; 3 - разделение фаз в ступенях. Подлежащую разделению смесь подают в течение определенного времени с одной из фаз в каждом цикле процесса и для каждой фазы устанавливают длительность полупериода ее движения таким образом, чтобы обеспечить раздельный выход компонентов с выходящими из каскада потоками фаз. Перемещаясь по каскаду ступеней с потоками фаз, смесь компонентов совершает челночное движение и многократно и в нестационарном режиме перераспределяется между фазами, благодаря чему компоненты с различными коэффициентами распределения движутся с различной скоростью в разных фазах и разделяются на фракции. Фракции отдельных компонентов выводят из каскада с потоками тяжелой и легкой фаз в отдельных циклах процесса.

Пример 1. Процесс разделения проводят в стационарном режиме, как описано выше. Для создания двухфазной жидкостной системы используют растворители гексан - метанол - этилацетат - вода в соотношении 1:1:1:1, после смешения которых образуются две водно-органические фазы. Разделяемые компоненты - кофеин (коэффициент распределения между тяжелой и легкой фазами Кк=0.13) и аспирин (Ка=0.5) в равных количествах присутствуют в исходной смеси. Процесс проводят в каскаде, состоящем из 60 последовательно соединенных контактных ступеней, каждая объемом 1.2 мл; общий объем каскада 72 мл. Объемное соотношение тяжелой и легкой фаз в ступенях 1:1. С противоположных концов каскада в чередующейся последовательности подают в него и выводят из него потоки фаз с одинаковым средним расходом 2 мл/мин. Среднее время пребывания каждой фазы в одной ступени (время, необходимое для перемещения из ступени в ступень объемов фаз, равных их объемам в одной ступени) составляет 1.2·0.5/2=0.3 мин; время пребывания каждой фазы в каскаде 18 мин. В каждом цикле движение через каскад тяжелой фазы осуществляют в 54 этапа, а легкой фазы - в 132 этапа. На каждом из этапов по каскаду перемещают объем фазы, равный объему, занимаемому этой фазой в одной ступени (0.6 мл), как показано на чертеже, и последовательно проводят операции перемещения, смешения и разделение фаз. Подлежащую разделению смесь кофеина и аспирина подают в каждом цикле процесса с тяжелой фазой в течение первого этапа ее движения по каскаду. После шести циклов устанавливается стационарный режим процесса. После этого в каждом цикле из противоположных концов каскада с тяжелой фазой выводят все количество введенного (100%) кофеина, а с легкой фазой - все количество (100%) аспирина. Расход растворителей в каждом цикле составляет: тяжелой фазы - 32.4 мл, легкой фазы - 79.2 мл.

Пример 2 (по прототипу). Процесс проводят как в примере 1, но по известному способу смесь подают в виде импульса только в первом цикле процесса и движение фаз в полупериодах не разбивают на отдельные этапы (осуществляют в один этап). Процесс завершают в течение одного цикла. Объем перемещаемой по каскаду тяжелой фазы в течение 1-го полупериода - 32 мл. Во 2-м полупериоде с легкой фазой отдельными фракциями выводят смесь, содержащую 95% от общего количества кофеина и 3% от общего количества аспирина, и смесь, содержащую 97% от общего количества аспирина и 5% от общего количества кофеина. Расход растворителей составляет: тяжелой фазы - 32 мл, легкой фазы - 416 мл.

Пример 3. Разделяют трехкомпонентную смесь кофеина, аспирина и кумарина (Ккум=1.3). Процесс проводят как в примере 1, но смесь подают только в первом цикле процесса и количество этапов в полупериодах движения фаз устанавливают индивидуально для каждого цикла: 1-ый цикл - движение через каскад тяжелой фазы осуществляют в 66 этапов (объем перемещаемой по каскаду фазы - 39.6 мл), легкой фазы в 84 этапов (объем перемещаемой по каскаду фазы - 50.4 мл); 2-й цикл - движение через каскад тяжелой фазы в 36 этапов, легкой фазы в 216 этапов. В течение двух циклов завершают процесс. В 1-м цикле с тяжелой фазой выводят 40% кофеина, а с легкой фазой - все количество (100%) кумарина. Во 2-м цикле с тяжелой фазой выводят 60% кофеина, а с легкой фазой - все количество (100%) аспирина. Расход растворителей в двух циклах составляет: тяжелой фазы - 61.2 мл, легкой фазы - 180 мл.

Пример 4 (по прототипу). Процесс проводят как в примере 3, но по известному способу смесь подают в виде импульса и движение фаз в полупериодах не разбивают на отдельные этапы, а длительность полупериодов движения фаз не изменяют при переходе от одного цикла к другому циклу. Процесс завершают в течение трех циклов. Объем перемещаемой по каскаду фазы в течение каждого полупериода - 39.6 мл. В 1-м цикле с тяжелой фазой выводят смесь, содержащую 43% от общего количества кофеина и 2% от общего количества аспирина, а с легкой фазой - 85% от общего количества кумарина. Во 2-м цикле с тяжелой фазой выводят смесь, содержащую 57% от общего количества кофеина и 72% от общего количества аспирина, а с легкой фазой - 11% кумарина. В первом полупериоде 3-го цикла из каскада выводят отдельными фракциями 26% от общего количества аспирина и 4% от общего количества кумарина. Расход растворителей составляет: тяжелой фазы - 187.2 мл, легкой фазы - 79.2 мл.

Пример 5. Процесс разделения проводят по условиям примера 1, но в нестационарном режиме и разделяют трехкомпонентную смесь кофеина, аспирина и кумарина. В каждом цикле вводят одинаковое количество компонентов. Количество этапов в полупериодах движения фаз устанавливают индивидуально для каждого цикла: 1-ый цикл - движение через каскад тяжелой фазы осуществляют в 72 этапа, легкой фазы - 96 этапов; 2-й цикл - движение тяжелой фазы - 44 этапа, легкой фазы - 44 этапа. В третьем цикле завершают процесс. В 1-м цикле с тяжелой фазой выводят 70% кофеина, а с легкой фазой - все количество (100%) введенного в первом цикле кумарина. Во 2-м цикле с тяжелой фазой выводят 30% от общего количества введенного в одном цикле кофеина, а с легкой фазой - 80% введенного кумарина. В 3-м цикле с тяжелой фазой выводят отдельными фракциями 120% от общего количества введенного в одном цикле кумарина и смесь, содержащую концентраты кофеина (200% от общего количества введенного в одном цикле кофеина) и аспирина (все количество введенного в трех циклах аспирина - 300%).

Как следует из приведенных примеров, предлагаемый противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов позволяет существенно повысить как эффективность разделения, так и производительность процесса. При этом снижается расход растворителей.


ПРОТИВОТОЧНО-ЦИКЛИЧЕСКИЙ СПОСОБ МНОГОСТУПЕНЧАТОГО ЭКСТРАКЦИОННОГО РАЗДЕЛЕНИЯ СМЕСИ КОМПОНЕНТОВ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 51.
25.08.2017
№217.015.ba0d

Способ определения удельной электропроводности ионпроводящих материалов

Изобретение относится к физико-химическим исследованиям и может быть использовано в химической и других родственных с ней отраслях промышленности для определения удельной электропроводности ионпроводящих материалов, в том числе полимерных пленок и тканей. Предложен способ определения удельной...
Тип: Изобретение
Номер охранного документа: 0002615601
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bab7

Способ получения стабильных водных коллоидных растворов наночастиц диоксида церия

Изобретение может быть использовано в химической промышленности, биохимии, медицине. Для получения стабильных водных коллоидных растворов наночастиц диоксида церия готовят водный раствор гексанитроцерата(IV) аммония, тщательно перемешивая до его полного растворения. Проводят гидротермальную...
Тип: Изобретение
Номер охранного документа: 0002615688
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bae7

Способ получения композиционного порошка mb-sic, где m=zr, hf

Изобретение относится к неорганической химии и неорганическому материаловедению, конкретно к получению порошковых материалов состава MB-SiC, где М = Zr, Hf, содержащих нанокристаллический карбид кремния. Получаемые композиционные порошки ZrB-SiC и/или HfB-SiC могут быть применены для нанесения...
Тип: Изобретение
Номер охранного документа: 0002615692
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.d135

Индикаторный элемент для обнаружения утечки гидразиновых ракетных горючих

Изобретение относится к химмотологии, а именно к химическим индикаторам на твердофазных носителях для определения компонентов ракетных, авиационных и автомобильных топлив, и может быть использовано для экспрессного обнаружения утечки гидразиновых ракетных горючих на месте сварных швов и...
Тип: Изобретение
Номер охранного документа: 0002622026
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ee

Мембрана ионоселективного электрода для определения октагидротриборатного аниона

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания октагидротриборатного аниона в водных, включая технологические, растворах. Предложена мембрана...
Тип: Изобретение
Номер охранного документа: 0002621888
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d40c

Способ получения керамического прекурсора для синтеза лейкосапфира

Изобретение относится к области неорганической химии, в частности к способу получения прекурсора для синтеза лейкосапфира. Предложенный способ заключается в том, что смесь гидраргиллита с 1÷15 мас.% электрокорунда с размером зерна от 10 до 50 мкм заливают 0,5÷2 мас.% водного раствора соляной...
Тип: Изобретение
Номер охранного документа: 0002622133
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d75a

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей с повышенной удельной емкостью при циклировании токами высокой плотности. Предложен композиционный катодный материал...
Тип: Изобретение
Номер охранного документа: 0002623212
Дата охранного документа: 23.06.2017
26.08.2017
№217.015.e058

Способ получения наполнителей для строительных материалов

Изобретение относится к получению наполнителя для строительных материалов. Соль алюминия в количестве от 40 до 100 г/л растворяют в кипящем водном 10-50 мас.% растворе углевода, добавляют разрыхлитель в виде 5-50 мас.% раствора нитрата алюминия с обеспечением содержания алюминия в растворе до...
Тип: Изобретение
Номер охранного документа: 0002625388
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e1ba

Экстракционный способ получения наноразмерных кристаллов оксидов металлов

Изобретение может быть использовано в производстве компонентов полупроводниковых приборов, датчиков, УФ-фильтров, солнечных батарей, гетерогенных катализаторов. Для получения наноразмерных кристаллов оксидов металлов экстракционным способом в дистиллированной воде готовят гетерогенную систему...
Тип: Изобретение
Номер охранного документа: 0002625877
Дата охранного документа: 19.07.2017
29.12.2017
№217.015.f4e7

Рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов

Изобретение относится к области процессов разделения веществ. Предложен рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов в устройстве с многократным контактом первой и второй жидких фаз. Смесь подают в устройство с первой жидкой фазой, которую до достижения...
Тип: Изобретение
Номер охранного документа: 0002637960
Дата охранного документа: 08.12.2017
Показаны записи 21-30 из 34.
25.08.2017
№217.015.bab7

Способ получения стабильных водных коллоидных растворов наночастиц диоксида церия

Изобретение может быть использовано в химической промышленности, биохимии, медицине. Для получения стабильных водных коллоидных растворов наночастиц диоксида церия готовят водный раствор гексанитроцерата(IV) аммония, тщательно перемешивая до его полного растворения. Проводят гидротермальную...
Тип: Изобретение
Номер охранного документа: 0002615688
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bae7

Способ получения композиционного порошка mb-sic, где m=zr, hf

Изобретение относится к неорганической химии и неорганическому материаловедению, конкретно к получению порошковых материалов состава MB-SiC, где М = Zr, Hf, содержащих нанокристаллический карбид кремния. Получаемые композиционные порошки ZrB-SiC и/или HfB-SiC могут быть применены для нанесения...
Тип: Изобретение
Номер охранного документа: 0002615692
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.d135

Индикаторный элемент для обнаружения утечки гидразиновых ракетных горючих

Изобретение относится к химмотологии, а именно к химическим индикаторам на твердофазных носителях для определения компонентов ракетных, авиационных и автомобильных топлив, и может быть использовано для экспрессного обнаружения утечки гидразиновых ракетных горючих на месте сварных швов и...
Тип: Изобретение
Номер охранного документа: 0002622026
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ee

Мембрана ионоселективного электрода для определения октагидротриборатного аниона

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания октагидротриборатного аниона в водных, включая технологические, растворах. Предложена мембрана...
Тип: Изобретение
Номер охранного документа: 0002621888
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d40c

Способ получения керамического прекурсора для синтеза лейкосапфира

Изобретение относится к области неорганической химии, в частности к способу получения прекурсора для синтеза лейкосапфира. Предложенный способ заключается в том, что смесь гидраргиллита с 1÷15 мас.% электрокорунда с размером зерна от 10 до 50 мкм заливают 0,5÷2 мас.% водного раствора соляной...
Тип: Изобретение
Номер охранного документа: 0002622133
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d75a

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей с повышенной удельной емкостью при циклировании токами высокой плотности. Предложен композиционный катодный материал...
Тип: Изобретение
Номер охранного документа: 0002623212
Дата охранного документа: 23.06.2017
26.08.2017
№217.015.e058

Способ получения наполнителей для строительных материалов

Изобретение относится к получению наполнителя для строительных материалов. Соль алюминия в количестве от 40 до 100 г/л растворяют в кипящем водном 10-50 мас.% растворе углевода, добавляют разрыхлитель в виде 5-50 мас.% раствора нитрата алюминия с обеспечением содержания алюминия в растворе до...
Тип: Изобретение
Номер охранного документа: 0002625388
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e1ba

Экстракционный способ получения наноразмерных кристаллов оксидов металлов

Изобретение может быть использовано в производстве компонентов полупроводниковых приборов, датчиков, УФ-фильтров, солнечных батарей, гетерогенных катализаторов. Для получения наноразмерных кристаллов оксидов металлов экстракционным способом в дистиллированной воде готовят гетерогенную систему...
Тип: Изобретение
Номер охранного документа: 0002625877
Дата охранного документа: 19.07.2017
29.12.2017
№217.015.f4e7

Рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов

Изобретение относится к области процессов разделения веществ. Предложен рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов в устройстве с многократным контактом первой и второй жидких фаз. Смесь подают в устройство с первой жидкой фазой, которую до достижения...
Тип: Изобретение
Номер охранного документа: 0002637960
Дата охранного документа: 08.12.2017
20.01.2018
№218.016.0fa4

Магниточувствительный композит

Изобретение может быть использовано при создании магниточувствительных диодных структур, магнитных переключателей и сенсоров магнитных полей на основе ферромагнитного композита. Магниточувствительный композит состоит из индия, сурьмы и марганца и представляет собой двухфазную систему,...
Тип: Изобретение
Номер охранного документа: 0002633538
Дата охранного документа: 13.10.2017
+ добавить свой РИД