×
20.11.2015
216.013.8ffe

Результат интеллектуальной деятельности: СПОСОБ РАЗЛОЖЕНИЯ КАРБОНАТОВ

Вид РИД

Изобретение

№ охранного документа
0002568478
Дата охранного документа
20.11.2015
Аннотация: Изобретение может быть использовано в химической, горнодобывающей промышленности. Способ разложения карбонатов включает измельчение исходного сырья, разложение карбонатов за счет подвода внешней энергии, отвод конверсионного газа, охлаждение целевого продукта. В качестве карбонатов используют сидерит. Подвод внешней энергии осуществляют за счет нагрева сидерита в реакторе водородсодержащим газом. Указанный газ отдельно от целевого продукта выводят из реактора, направляют на паровую конверсию монооксида углерода, после которой отделяют диоксид углерода. Оставшийся водородсодержащий газ нагревают с помощью внешнего источника энергии и возвращают в реактор. Целевой продукт разложения сидерита выводят из реактора и восстанавливают до металлического железа в печи восстановления при подводе нагретого конвертированного газа, полученного конверсией природного газа при подводе тепла от внешнего источника энергии. Изобретение позволяет снизить энергозатраты на разложение карбонатов, упростить процесс и повысить производительность. 7 з.п. ф-лы, 1 ил., 2 табл.

Область техники

Изобретение относится к химической, горнодобывающей промышленности, в частности к технологиям переработки минерального сырья, в особенности карбонатов, и может быть использовано при производстве также восстановленного металлургического сырья и цемента.

Уровень техники

При нагревании карбонаты разлагаются по реакции:

Как видно, разложение сопровождается поглощением тепла. Константа равновесия реакции Kp, в которой МеСО3 и MeO находятся в виде чистых кристаллических фаз, определяется равновесным парциальным давлением CO2, называемым упругостью диссоциации карбоната PCO2 и зависящего только от температуры: Kp=1/PCO2, где PCO2=f(T), Т-температура, К. Чем ниже PCO2 карбоната, тем он прочнее. С ростом температуры парциальное давление CO2 в газовой фазе - PCO2 снижается.

Самым прочным является карбонат кальция, упругость диссоциации которого описывается уравнением: lg(PCO2)CaCO3=-9300/Т+7,85 (engineer.info/metalurg/termodinamika-razlozheniya-karbonatov.html). При нагреве СаСО3 разлагается без плавления на СаО и СО2; давление разложения (в гПа): 8 (650°C), 32 (700°C), 267 (800°C), 1013 (885°C).

Известен способ разложения карбоната кальция (кн. Производство извести. - Монастырев А.В. - Учебник для подгот. рабочих на производстве. - 3-е изд., перераб. и доп. - М.: Высшая школа. 1978, с. 113-210, 63-71), включающий обжиг известняка газообразным или твердым топливом при температуре 900-1100°C с получением оксида кальция и отходящих газов, содержащих 36-42% диоксида углерода, 0,5-2% оксид углерода, 1-3% кислорода, а также пыль. Недостаток способа - низкая эффективность использования топлива, низкая производительность.

Известна электродинамическая сверхвысокочастотная установка для проведения реакции диссоциации карбоната кальция, характеризующаяся тем, что она содержит вертикальный цилиндрический реактор с теплоизолированным корпусом, снабженный генератором электромагнитного излучения СВЧ-диапазона, установленным в верхней части корпуса с устройством загрузки и вывода продуктов реакции, и размещенные в верхней части реактора лопастные питатели, вращающиеся с определенной частотой, с обеспечением равномерного распределения плотности электромагнитного поля в реакторе и равномерного распределения частиц карбоната кальция в горизонтальной плоскости реакционной зоны реактора (патент РФ №2170138, опубл. 10.07.2001).

Использование в качестве энергоносителя электромагнитного излучения СВЧ-диапазона освобождает процесс разложения карбонатов от применения различных топлив, от инициирования побочных реакций вследствие контакта с топливом и материалом печей, он обеспечивает высокую равномерность объемного нагрева. Недостатком данного способа является сложность технологии, высокие затраты на ее создание и эксплуатацию, высокие затраты электроэнергии.

Известен способ разложения карбонатов (патент РФ №2437834, опубл. 27.12.2011), принятый за прототип, включающий измельчение исходного сырья до крупности <1 мм, разложение карбонатов за счет подвода внешней энергии, отвод конверсионного газа, охлаждение целевого продукта, отличающийся тем, что разложение исходного сырья осуществляют путем его облучения ускоренными электронами с энергией 100 кэВ - 10 МэВ. Процесс разложения молекул в нашем случае имеет две составляющие: радиационную и термическую. Для осуществления этого способа возможно использование промышленных электронных ускорителей с энергией от 100 кэВ до 10 МэВ.

Недостатком способа также можно считать крайне низкую глубину проникновения электронов в материал, сложность технологии, высокие затраты на разложение карбонатов, необходимость работать при сниженном давлении, высокие затраты электроэнергии.

Раскрытие изобретения

Техническим результатом заявленного изобретения является повышение коэффициента использования первичной энергии, упрощение технологии и повышение ее производительности, снижение затрат на разложение карбонатов, в первую очередь, электроэнергии.

Технический результат способа достигается тем, что измельчают исходное сырье, разлагают карбонаты за счет подвода внешней энергии, отводят конверсионный газ, охлаждают целевой продукт, при этом в качестве карбонатов используют сидерит, подводят внешнюю энергию за счет нагрева сидерита в реакторе водородсодержащим газом, который отдельно от целевого продукта выводят из реактора, направляют на паровую конверсию монооксид углерода, после которой отделяют диоксид углерода, а оставшийся водородсодержащий газ нагревают с помощью внешнего источника энергии и возвращают в реактор.

В предпочтительном варианте, целевой продукт разложения сидерита выводят из реактора и восстанавливают до металлического железа в печи восстановления при подводе нагретого конвертированного газа, который получают конверсией природного газа при подводе тепла от внешнего источника энергии. В качестве внешнего источника энергии используют ядерный реактор или солнечный нагреватель. Часть водорода отделяют от водородсодержащего газа как дополнительный целевой продукт. Давление водородсодержащего газа в реакторе поддерживают на уровне не ниже 0.2-0.4 МПа. Разложение карбонатов в реакторе ведут в режиме кипящего слоя. Реактор разбивают на по крайней мере два последовательно соединенных объема с отдельным подводом водородсодержащего газа, в первом из которых поддерживают более низкую температуру, чем во втором. Перед реактором проводят предварительный нагрев карбонатов.

Краткое описание чертежей

На фигуре показана схема реализации способа, где

1 - исходное сырье;

2 - измельчитель;

3 - реактор;

4 - нагретый водородсодержащий газ;

5 - нагретый целевой продукт - магнетит;

6 - охлажденный водородсодержащий газ;

7 - водяной пар;

8 - конверсия CO;

9 - узел отделения СО2;

10 - вывод СО2;

11 - газ без СО2;

12 - вывод конденсата;

13 - вывод Н2;

14 - ядерный реактор;

15 - парогенератор;

16 - питательная вода;

17 - охлажденный магнетит;

18 - печь восстановления;

19 -конвертированный газ;

20 - реактор конверсии;

21 - печной газ;

22 - природный газ;

23 - нагретая парометановая смесь;

24 - отвод печного газа;

25 - теплообменник;

26 - железо.

Осуществление и примеры реализации изобретения

Примером реализации изобретения служит способ переработки карбоната железа - сидерита, описанный ниже.

В излагаемом примере осуществления изобретения в качестве исходного сырья 1 применяется карбонат железа - сидерит, соответствующий по формуле FeCO3. В пределах только Бакальского рудоуправления выявлено 194 рудных тела, добыто около 200 млн. т руды, главным образом уже после войны - для Челябинского металлургического завода.

Разведанные запасы - более 1 млрд. т. Сидериты Бакала являются ценным сырьем для производства высококачественных сталей. Они чисты по содержанию серы и фосфора (0,2 и 0,012%) имеют мало глинозема (2,5%), содержат до 2,0% легирующей примеси марганца (дефицит по России). Разложение сидерита с образованием магнетита наблюдается при более низких температурах (400-550°C) по реакции:

с образованием магнетита Fe3O4.

Исходное сырье 1 подают в измельчитель 2, где размалывают до фракций менее 4 мм, а затем направляют в реактор 3, в который подают также нагретый водородсодержащий газ 4 с температурой не менее 600°C, что обеспечивает разложение сидерита до магнетита. Разложение карбоната железа - сидерита в реакторе 3 ведут в режиме кипящего слоя, поддерживая давление водородсодержащего газа в реакторе на уровне не ниже 0.2-0.4 МПа. Нагретый водородсодержащий газ 4 в реакторе 3 выполняет как функцию теплоносителя, так и газодинамического потока, создающего кипящий слой, интенсифицирующий реакцию (1), так и служит средством понижения температуры реакции (1) за счет ее сдвига в сторону уменьшения концентрации газообразных продуктов разложения.

Нагретый целевой продукт 5 (магнетит) выводят из реактора 3. Охлажденный в реакторе водородсодержащий газ 6, обогащенный газообразными продуктами разложения сидерита, направляют на смешение с водяным паром 7, а затем в аппарат каталитической конверсии моноксида углерода (СО) 8, в котором моноксид углерода при взаимодействии с водяным паром 7 образует диоксид углерода и водород. Реакция может быть представлена уравнением:

В аппарате каталитической конверсии СО 8 могут использоваться известные промышленные железохромовые катализаторы [D.S. Newsom, Catal. Rev., 21, р. 275, 1980; Катализаторы, применяемые в азотной промышленности. Каталог / Под общ. ред. A.M. Алексеева. Черкассы, НИИТЭхим. 1979, 23 с.], преимуществом которых является высокая термостабильность. Происходит адиабатный разогрев смеси, т.е. определенное повышение температуры смеси от входа к выходу из реактора, и практически полное превращение СО в диоксид углерода, который затем отделяют в узле отделения CO2 9. Вывод CO2 10 позволяет выдавать диоксид углерода в качестве товарного продукта или использовать в других энерготехнологических процессах и переделах. С этой же целью из газа, свободного от CO2, 11 могут осуществлять вывод Н2 12, например, с помощью мембран или коротко-цикловой адсорбции, а также удаление водяного конденсата 13, который может быть использован для получения водяного пара 7. Сухой газ подают в ядерный реактор 14, который в данном примере служит в качестве внешнего источника энергии. В ядерном реакторе 14 нагревают водородсодержащий газ 4 до температуры не менее 600°C, который направляют в реактор 3.

Нагретый целевой продукт 5 (магнетит), выведенный из реактора 3, охлаждают в парогенераторе 15, где производят водяной пар 7. Затем охлажденный магнетит 17 направляют в печь восстановления 18, в которую подают также нагретый конвертированный газ 19 из реактора конверсии 20. При восстановлении охлажденного магнетита 17 до железа 26 из нагретого конвертированного газа 19, который пропускают через слой магнетита 17, образуется печной газ 21, обогащенный продуктами окисления водорода и моноксида углерода: водяным паром и диоксидом углерода соответственно. Печной газ 21 смешивают с природным газом 22 и направляют на нагрев в ядерный реактор 14, после чего с температурой 700-800°C нагретую парометановую смесь 23 направляют в реактор конверсии 20, в котором производят адиабатическую пароуглекислотную конверсию газа 23 на никелевом катализаторе, в процессе которой получают нагретый конвертированный газ 19, направляемый в печь восстановления 18, из которой выводят нагретое железо 26, охлаждаемое в теплообменнике 25. Из выходящего из печи восстановления 18 печного газа 21 осуществляют частичный отвод печного газа 24, целью которого служит снижение скорости накопления балластных газов, в первую очередь инертных азота и аргона, в тракте конвертированного газа 19.

В печи восстановления 18 проходит реакция восстановления магнетита до железа, описываемая уравнением:

Таким образом, из нагретого конвертированного газа 19 при пропускании противотоком через слой магнетита 17, образуется печной газ 21, обогащенный продуктами окисления водорода и моноксида углерода: водяным паром и диоксидом углерода соответственно. Такой газ может служить окисляющим агентом при конверсии природного газа 22 в реакторе конверсии 20.

Реакции, протекающие в ходе пароуглекислотной конверсии метана, можно представить следующими уравнениями:

Паровой реформинг метана:

ΔН=+206 кДж/моль

Углекислотная конверсия:

ΔН=+247 кДж/моль

А также реакции:

Реакция водяного сдвига:

Реакции коксообразования:

Таким образом, основными газообразными веществами, образующимися в процессе пароуглекислотной конверсии, являются Н2, СО, СО2, Н2О, CH4 и твердые отложения углерода. Кроме реакций паровой и углекислотной конверсии метана, пароуглекислотный реформинг метана на Ni-, Со-, Rh-, Ru- и Pt-катализаторах сопровождается реакцией водяного сдвига и различными процессами образования кокса, снижающего активность катализатора.

Условия проведения процесса пароуглекислотной конверсии с получением нагретого конвертированного газа 19, пригодного для восстановления железа, должны удовлетворять следующим требованиям:

- отсутствие коксообразования;

- остаточное содержание метана и диоксида углерода в синтез-газе не должно превышать 8-12%;

- модуль синтез-газа, отношение Н2/СО, для восстановления железа должен лежать в пределах 2-5.

Отсутствие коксообразования имеет особое значение с точки зрения сохранения активности и стабильности катализатора пароуглекислотной конверсии. Отложение углерода на поверхности катализатора может приводить к блокированию активных центров и уменьшению каталитической активности, вплоть до полной дезактивации катализатора.

Кроме того, образование углеродных волокон при разложении метана может приводить к разрушению поверхности катализатора и ухудшению теплообмена.

Подавить коксообразование и минимизировать количество примесей в конвертированном газе можно путем оптимизации соотношений СО2/CH4 и Н2О/CH4 в исходной смеси. С этой целью были рассчитаны зависимости содержания кокса, метана и диоксида углерода в конвертированном газе и модуля синтез-газа от мольных соотношений СО2/СН4 и Н2О/CH4 в исходной смеси при различных температурах.

В качестве модельной каталитической системы был выбран катализатор ГИАП-19, применяемый в промышленном процессе получения водорода конверсией газообразных углеводородов. Этот катализатор состоит из оксидов никеля (~26.5±1.5%масс.) и кальция (10±2%масс.) на основе оксида алюминия (>57%масс.).

Полученные оптимизированные мольные соотношения для процесса пароуглекислотной конверсии метана и соответствующие им параметры конвертированного газа приведены в таблице 2.

Расчет оптимизированных мольных соотношений был осуществлен методом минимизации энергии Гиббса [данные взяты из работы: Пароуглекислотная конверсия метана как метод получения синтез-газа заданного состава для малогабаритных производств метанола и синтетических углеводородов, в сб. «Инновации в науке»: материалы международной заочной научно-практической конференции. (11 апреля 2012 г.)].

Полученный при конверсии восстановительный газ состоит из 65% водорода и 35% моноксида углерода. При прямом восстановлении железа, в частности на Оскольском электрометаллургическом комбинате, расход водорода в восстановительной печи составляет 630 нм3/т железа. Следует отметить, что в известных технологических агрегатах прямого восстановления железной руды (шахтная печь, установка с кипящим слоем) используется в процессе восстановления только до 40% тепла, вносимого в них восстановительными газами. Остальное тепло в большей части теряется с отходящими газами. В предложенном способе удается избежать этих потерь как за счет разделения переделов, так и за счет максимального использования замкнутых газовых контуров. Также с целью дополнительного повышения эффективности реактор 3 может быть разбит на по крайней мере два последовательно соединенных объема с отдельным подводом водородсодержащего газа 4, в первом из которых поддерживают более низкую температуру, чем во втором.

Перед реактором 3 могут проводить предварительный нагрев карбонатов охлажденным водородсодержащим газом 6, температура которого может составлять 450-500°C.

Процессы, описанные выше, могут применяться для карбонатов различных металлов (кальция, магния, железа).

В СНГ добыча подобных руд ведется на Керченском (РФ, Крым), Халиловском (РФ, Оренбургская область), Лисаковском (Казахстан) ГОКах. Наиболее выгодным для первоочередного освоения является Бакчарское месторождение, находящееся в 150 км к северо-западу от Томска. Площадь месторождения - более 16 тыс. кв. км. Прогнозные запасы железных руд - 15…25 млрд. тонн. Максимально возможный объем производимого железнорудного концентрата и металлизированного брикета может перерабатываться на месте на включаемых в состав комплекса электрометаллургических производствах. Высокотемпературные модульные гелиевоохлаждаемые реакторы (ВТГР, ГТ-МГР, МГР-Т) - единственная ядерная технология, которая может снабжать высокотемпературным теплом описанные выше процессы производства водорода, разложения карбонатов и процесса пароуглекислотной конверсии метана.

За счет реализации заявленного способа удалось повысить коэффициент использования первичной энергии, упростить технологию и повысить ее производительность, снизить затраты на разложение карбонатов, в первую очередь, электроэнергии.


СПОСОБ РАЗЛОЖЕНИЯ КАРБОНАТОВ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 260.
20.12.2015
№216.013.9a62

Способ конверсии метана

Изобретение относится к способу получения водорода, водород-метановой смеси, синтез-газа, содержащего в основном H и CO, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки...
Тип: Изобретение
Номер охранного документа: 0002571147
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9a64

Реактор конверсии метана

Изобретение относится к установкам получения водорода, водород-метановой смеси, синтез-газа, содержащего в основном Н и СО, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки...
Тип: Изобретение
Номер охранного документа: 0002571149
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a3ee

Термоэлектрическая батарея

Изобретение относится к области термоэлектрического приборостроения и может быть использовано при изготовлении термоэлектрических устройств, основанных на эффекте Пельтье или Зеебека, прежде всего термоэлектрических генераторов электрической энергии, а также холодильных термоэлектрических...
Тип: Изобретение
Номер охранного документа: 0002573608
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c33e

Способ изготовления защитного диэлектрического слоя

Изобретение относится к способам получения тонкопленочных материалов, в частности тонких пленок на основе оксида европия(III), и может быть использовано для защиты функционального слоя EuO. Способ изготовления защитного диэлектрического слоя EuO для полупроводниковой пленки, полученной на...
Тип: Изобретение
Номер охранного документа: 0002574554
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c8df

Способ изготовления наноструктурированной мишени для производства радиоизотопа молибдена-99

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (Мо), являющегося основой для создания радиоизотопных генераторов технеция-99m (Tc). В заявленном способе производство радиоизотопа молибден-99 по реакции Мо(n,γ)Мо, осуществляемой в потоке тепловых нейтронов...
Тип: Изобретение
Номер охранного документа: 0002578039
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c8fb

Микротвэл ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к микросферическому топливу с керамическими защитными покрытиями, и может быть использовано в ядерных реакторах, применяемых как для транспорта, так и в стационарных энергоустановках, в частности в сверхвысокотемпературных...
Тип: Изобретение
Номер охранного документа: 0002578680
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.c9f3

Способ защиты от окисления биполярных пластин и коллекторов тока электролизеров и топливных элементов с твердым полимерным электролитом

Изобретение относится к способу защиты от окисления биполярных пластин топливных элементов и коллекторов тока электролизеров с твердым полимерным электролитом (ТПЭ), заключающемуся в предварительной обработке металлической подложки, нанесении на обработанную металлическую подложку...
Тип: Изобретение
Номер охранного документа: 0002577860
Дата охранного документа: 20.03.2016
20.04.2016
№216.015.3472

Способ изготовления сверхпроводящих многосекционных оптических детекторов

Использование: для изготовления сверхпроводниковых датчиков излучения. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих многосекционных оптических детекторов, включающий формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде...
Тип: Изобретение
Номер охранного документа: 0002581405
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3605

Структура полупроводник-на-изоляторе и способ ее получения

Изобретение относится к твердотельной электронике. Изобретение заключается в том, что на изоляторе формируют поверхностный слой полупроводника. В изоляторе на расстоянии от поверхностного слоя полупроводника, меньшем длины диффузии носителей заряда, возникающих при облучении внешним...
Тип: Изобретение
Номер охранного документа: 0002581443
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3891

Способ измерения профиля стационарных мегаваттных пучков ионов и атомов в инжекторах

Изобретение относится к диагностике профилей (распределения плотности тока по сечению пучка) пучков ионов и атомов в мегаваттных квазистационарных (десятки и сотни секунд) инжекторах, предназначенных для нагрева плазмы и поддержания тока в термоядерных установках типа токамак. Способ измерения...
Тип: Изобретение
Номер охранного документа: 0002582490
Дата охранного документа: 27.04.2016
Показаны записи 91-100 из 151.
20.11.2015
№216.013.8fd1

Подводная ядерная термоэлектрическая установка

Изобретение относится к ядерным термоэлектрическим установкам. Для достижения этого результата предложена подводная ядерная термоэлектрическая установка, содержащая расположенные в газоплотной защитной оболочке легководный ядерный реактор и блоки термоэлектрические (БТЭ), равномерно...
Тип: Изобретение
Номер охранного документа: 0002568433
Дата охранного документа: 20.11.2015
20.12.2015
№216.013.9a62

Способ конверсии метана

Изобретение относится к способу получения водорода, водород-метановой смеси, синтез-газа, содержащего в основном H и CO, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки...
Тип: Изобретение
Номер охранного документа: 0002571147
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9a64

Реактор конверсии метана

Изобретение относится к установкам получения водорода, водород-метановой смеси, синтез-газа, содержащего в основном Н и СО, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки...
Тип: Изобретение
Номер охранного документа: 0002571149
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a3ee

Термоэлектрическая батарея

Изобретение относится к области термоэлектрического приборостроения и может быть использовано при изготовлении термоэлектрических устройств, основанных на эффекте Пельтье или Зеебека, прежде всего термоэлектрических генераторов электрической энергии, а также холодильных термоэлектрических...
Тип: Изобретение
Номер охранного документа: 0002573608
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c33e

Способ изготовления защитного диэлектрического слоя

Изобретение относится к способам получения тонкопленочных материалов, в частности тонких пленок на основе оксида европия(III), и может быть использовано для защиты функционального слоя EuO. Способ изготовления защитного диэлектрического слоя EuO для полупроводниковой пленки, полученной на...
Тип: Изобретение
Номер охранного документа: 0002574554
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c8df

Способ изготовления наноструктурированной мишени для производства радиоизотопа молибдена-99

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (Мо), являющегося основой для создания радиоизотопных генераторов технеция-99m (Tc). В заявленном способе производство радиоизотопа молибден-99 по реакции Мо(n,γ)Мо, осуществляемой в потоке тепловых нейтронов...
Тип: Изобретение
Номер охранного документа: 0002578039
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c8fb

Микротвэл ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к микросферическому топливу с керамическими защитными покрытиями, и может быть использовано в ядерных реакторах, применяемых как для транспорта, так и в стационарных энергоустановках, в частности в сверхвысокотемпературных...
Тип: Изобретение
Номер охранного документа: 0002578680
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.c9f3

Способ защиты от окисления биполярных пластин и коллекторов тока электролизеров и топливных элементов с твердым полимерным электролитом

Изобретение относится к способу защиты от окисления биполярных пластин топливных элементов и коллекторов тока электролизеров с твердым полимерным электролитом (ТПЭ), заключающемуся в предварительной обработке металлической подложки, нанесении на обработанную металлическую подложку...
Тип: Изобретение
Номер охранного документа: 0002577860
Дата охранного документа: 20.03.2016
20.04.2016
№216.015.3472

Способ изготовления сверхпроводящих многосекционных оптических детекторов

Использование: для изготовления сверхпроводниковых датчиков излучения. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих многосекционных оптических детекторов, включающий формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде...
Тип: Изобретение
Номер охранного документа: 0002581405
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3605

Структура полупроводник-на-изоляторе и способ ее получения

Изобретение относится к твердотельной электронике. Изобретение заключается в том, что на изоляторе формируют поверхностный слой полупроводника. В изоляторе на расстоянии от поверхностного слоя полупроводника, меньшем длины диффузии носителей заряда, возникающих при облучении внешним...
Тип: Изобретение
Номер охранного документа: 0002581443
Дата охранного документа: 20.04.2016
+ добавить свой РИД