×
20.11.2015
216.013.8f5b

Результат интеллектуальной деятельности: УСТРОЙСТВО ФОРМИРОВАНИЯ СИГНАЛОВ КВАДРАТУРНОЙ АМПЛИТУДНОЙ МАНИПУЛЯЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиотехнике, в частности к устройствам формирования сигналов квадратурной амплитудной манипуляции (КАМ), применяемых на линиях многоканальной цифровой связи. Технический результат - снижение пиковых напряжений сигнальных векторов формируемой сигнальной конструкции КАМ-16 без существенного увеличения значения средней энергии и повышение помехоустойчивости за счет формирования каждой точки сигнального созвездия с различными значениями синфазной и квадратурной составляющих. В устройство формирования сигналов КАМ методом сложения значений синфазных и квадратурных составляющих на выходе сумматора дополнительно введены блок формирования коэффициентов квадратурной составляющей (БФККС), блок формирования коэффициентов синфазной составляющей (БФКСС), первый и второй блоки перемножителей (БП), первый, второй и третий блоки коммутации (БК), а также первый и второй дешифраторы. БФККС состоит из восьми формирователей коэффициентов квадратурной составляющей. БФКСС состоит из восьми формирователей коэффициентов синфазной составляющей. Первый и второй БП состоят из восьми перемножителей. Первый БК состоит из четырех, а второй и третий БК из восьми электронных ключей. 5 з.п. ф-лы, 7 ил.

Изобретение относится к радиотехнике, в частности к устройствам формирования сигналов квадратурной амплитудной манипуляции (КАМ), применяемых на линиях многоканальной цифровой связи, а также в области цифрового радиовещания и цифрового телевидения.

Известно устройство для управления передачей данных по радиоканалу (Патент РФ №2205518, МПК7 H04L 27/20, 2001 г.), содержащее источник сообщения, подключенный к первому входу 1-го синхронизатора, выход которого подключен к первому входу 1-го фазового манипулятора (ФМ), выход которого подключен к первому входу 1-го балансного модулятора, выход которого подключен к первому входу сумматора, выход которого является выходом устройства, второй вход которого подключен к выходу 2-го ФМ, вход которого подключен ко входу 2-го фазовращателя (ФВ), вход которого объединен и подключен ко входу 2-го делителя напряжения (ДН) и входу 1-го ФМ, выход 2-го ДН подключен ко входу 1-го ДН и 1-го балансного модулятора, выход 2-го ФВ подключен ко второму входу 2-го ФМ, выход второго источника сообщения подключен ко второму входу 2-го синхронизатора.

Недостатком данного устройства является относительно низкая помехоустойчивость вследствие относительно высокого пик-фактора (ПФ) формируемой сигнальной конструкции.

Известно устройство формирования сигналов квадратурной амплитудной модуляции (Патент РФ №2365050, МПК H04L 27/06, 2008 г.), содержащее общий задающий генератор (ЗГ), 1-й, 2-й, 3-й ФВ, 1-й, 2-й, 3-й, 4-й КН, сумматор, 1-й, второй управляемый ДН, вычислитель отношений, ДН на два. Входы 1-го, 2-го ФВ и первый вход 1-го КН и выход общего ЗГ соединены. Выход 1-го ФВ подключен ко входу 3-го ФВ и к первому входу 2-го КН. Выход 3-го ФВ соединен со вторым входом 2-го КН. Первый выход 2-го КН соединен с первым входом 4-го КН. Второй выход 2-го КН соединен с первым входом 2-го управляемого ДН. Выход 2-го управляемого ДН подключен ко второму входу 4-го КН. Выход 4-го КН соединен со вторым входом сумматора. Выход 2-го ФВ соединен со вторым входом 1-го КН. Первый выход 1-го КН соединен с первым входом 3-го КН. Второй выход 1-го КН подключен к первому входу 1-го управляемого ДН. Выход 1-го управляемого ДН подключен с первым входом 3-го КН. Выход 3-го КН соединен с первым входом сумматора. Вход ДН на два соединен с демодулятором приемника. Выход ДН на два подключен ко входу вычислителя отношения. Выход вычислителя отношения соединен со вторыми входами управляемых ДН. Выход информационного канала 1-го информационного бита (ИБ) соединен с третьим входом 1-го КН. Выход информационного канала 2-го ИБ соединен с третьим входом 3-го КН. Выход информационного канала 3-го ИБ подключен к третьему входу 2-го КН. Выход информационного канала 4-го ИБ соединен с третьим входом 4-го КН. Выход сумматора является выходом устройства.

Недостатком устройства является относительно высокий уровень ПФ формируемой сигнальной конструкции, что приводит к снижению помехоустойчивости ее приема.

Наиболее близким по технической сущности и выполняемым функциям к заявляемому устройству является устройство формирования сигналов КАМ (см. Патент РФ 2439819, опубликованный 10.01.2012, бюл. №1).

Устройство-прототип содержит ЗГ, выход которого подключен ко входам 1-го, 2-го ФВ и к первому входу 1-го КН, второй вход которого подключен к выходу 2-го ФВ, первый выход 1-го КН подключен к первому входу 3-го КН, второй вход которого подключен к выходу 1-го ДН, вход которого подключен ко второму выходу 1-го КН, выход 3-го КН подключен к первому входу сумматора, второй вход которого подключен к выходу 4-го КН, второй вход которого подключен к выходу 4-го ДН, вход которого подключен к второму выходу 2-го КН, первый выход которого подключен к первому входу 4-го КН, первый и второй входы 2-го КН подключены соответственно к первому выходу 1-го ФВ и выходу 3-го ФВ, вход которого подключен ко второму выходу 1-го ФВ, причем 1-й и 2-й КН снабжены цифровыми входами соответственно 1-го и 2-го ИБ, а 3-й и 4-й КН снабжены входами 3-го и 4-го ИБ, а выход сумматора является выходом устройства, дополнительно введены 2-й, 3-й, 5-й и 6-й ДН. Входы 5-го и 6-го ДН объединены и подключены к второму выходу 2-го КН. Входы 2-го и 3-го ДН объединены и подключены к второму выходу 1-го КН. Выходы 2-го и 3-го ДН подключены соответственно к третьему и четвертому входам 3-го КН. Выходы 5-го и 6-го ДН подключены соответственно к третьему и четвертому входам 4-го КН, причем вход 3-го ИБ 3-го КН соединен с входом 3-го ИБ 4-го КН, вход 4-го ИБ соединен с входом 4-го ИБ 3-го КН.

Однако недостатком устройства-прототипа является большие значения амплитуд формируемых векторов сигнального созвездия (ВСС), что определяет увеличение мощности, затрачиваемой на формирование сигнала. Кроме того, в устройстве-прототипе низкое значение помехоустойчивости формируемого сигнала, так как любые две точки формируемого сигнального созвездия имеют одинаковые значения синфазной или квадратурной составляющих.

Целью заявленного технического решения является устройство формирования сигналов КАМ со сниженным значением средней мощности и увеличенным значением помехоустойчивости их приема.

Поставленная цель достигается за счет уменьшения различий амплитудных значений ВСС и установления максимальной величины амплитуды ВСС, равной исходному амплитудному значению напряжения СС и . Кроме того, каждая точка формируемого сигнального созвездия имеет различные значения синфазной и квадратурной составляющих. Благодаря новой совокупности указанных признаков обеспечивается повышение помехоустойчивости формируемых сигналов КАМ.

Заявляемое устройство поясняется чертежами.

Фиг. 1 - устройство формирования сигналов КАМ.

Фиг. 2 - первый блок коммутации (БК) (2).

Фиг. 3 - первый блок перемножителей (БП) (6).

Фиг. 4 - блок формирования коэффициентов квадратурной составляющей (БФККС) (4).

Фиг. 5 - второй дешифратор (9).

Фиг. 6 - второй блок коммутации (БК) (8).

Фиг. 7 - сигнальное созвездие сформированной конструкции КАМ.

Заявленное устройство, показанное на фиг. 1, состоит из: задающего генератора ЗГ (1), выход (1.1) которого подключен к входу (2.1.1) первого БК (2), а выходы (1.2-1.4) ЗГ (1) подключены к входам первого БК (2) через соответствующие фазовращатели (ФВ) (11), (12), (13). К управляющим входам (2.1.5-2.1.8) БК (2) подключены соответствующие управляющие выходы (3.1-3.4) первого дешифратора (3). К первому и второму ходам первого дешифратора (3) подключены информационные входы r1, r2, которые являются входами устройства. Первый (2.1.9) и второй (2.1.10) выходы первого БК (2) подключены соответственно к квадратурному входу (6.1.9) первого БП (6) и синфазному входу (7.1.9) второго БП (7). Информационные выходы (4.1.1-4.1.8) БФККС (4) подключены к соответствующим входам (6.1.1-6.1.8) первого БП (6). Выходы (6.1.10-6.1.17) первого БП (6) подключены к соответствующим информационным входам (8.1.1.-8.1.8) второго БК (8), выход (8.1.17) которого подключен к первому входу (14.1) сумматора (14). Информационные выходы (5.1.1-5.1.8) блока формирования коэффициентов квадратурной составляющей (БФКСС) (5) подключены к соответствующим информационным входам (7.1.1-7.1.8) второго БП (7). Выходы (7.1.10-7.1.17) второго БП (7) подключены к соответствующим информационным входам (10.1.1-10.1.8) третьего БК (10), выход (10.1.17) которого подключен к второму входу (14.2) сумматора (14). Выход сумматора (14) является выходом устройства. Первая группа управляющих выходов (9.1.1-9.1.8) второго дешифратора (9) подключена к соответствующим управляющим входам (8.1.9-8.1.16) второго БК (8), а вторая группа управляющих выходов (9.1.9-9.1.16) второго дешифратора (9), подключена к соответствующим управляющим входам (10.1.9-10.1.16) третьего БК(10).

ЗГ (1) предназначен для генерации напряжения косинусоидальной формы. В качестве ЗГ может быть использована схема мостового генератора косинусоидальных сигналов (генератор Вина) (см. Достал И. Операционные усилители. - М.: Мир, 1982. - С. 200-201, рис. 6.27).

Первый БК (2) предназначен для коммутации исходных синфазных и квадратурных составляющих сигнального созвездия. Первый БК (2) состоит из первого (2.1), второго (2.2), третьего (2.3) и четвертого (2.4) электронных ключей (ЭК). Вход (2.1.1) первого БК (2) подключен к информационному входу ЭК (2.1), вход (2.1.2) первого БК (2) подключен к информационному входу ЭК (2.2), вход (2.1.3) первого БК (2) подключен к информационному входу ЭК (2.3), вход (2.1.4) первого БК (2) подключен к информационному входу ЭК (2.4). Управляющий вход (2.1.5) первого БК (2) подключен к управляющему входу ЭК (2.1), управляющий вход (2.1.6) первого БК (2) подключен к управляющему входу ЭК (2.2), управляющий вход (2.1.7) первого БК (2) подключен к управляющему входу ЭК (2.3), управляющий вход (2.1.8) первого БК (2) подключен к управляющему входу ЭК (2.4). Информационные выходы первого (2.1) и второго (2.2) ЭК объединены и подключены к выходу (2.1.9) первого БК (2). Информационные выходы третьего (2.3) и четвертого (2.4) ЭК объединены и подключены к выходу (2.1.10) первого БК (2).

Электронные ключи (2.1-2.4) предназначены для коммутации исходных синфазных и квадратурных составляющих сигнального созвездия на выход первого БК (2). Реализация электронных ключей известна и описана в патенте РФ №2037265 09.06.1995.

Дешифратор (3) предназначен для формирования управляющего напряжения на выходах в зависимости от поступившей информационной битовой последовательности (ИБП) на его информационные входы (r1, r2). В качестве дешифратора возможно использование дешифратора, описанного в патенте РФ №2017208 от 30.07.1994.

БФККС (4) предназначен для формирования напряжений квадратурных составляющих сигнального созвездия. БФККС (4) состоит из первого (4.1), второго (4.2), третьего (4.3), четвертого (4.4), пятого (4.5), шестого (4.6), седьмого (4.7), восьмого (4.8) формирователей коэффициентов квадратурных составляющих (ФККС). Выходы первого (4.1), второго (4.2), третьего (4.3), четвертого (4.4), пятого (4.5), шестого (4.6), седьмого (4.7), восьмого (4.8) ФККС подключены соответственно к выходам (4.1.1-4.1.8) БФККС (4).

ФККС (4.1-4.8) предназначены для формирования уровней напряжений, определяющих значения квадратурных оставляющих. Схема блока формирования коэффициентов известна и представлена в патенте на изобретение SU 1322272 от 07.07.1987.

БФКСС (5) предназначен для формирования напряжений синфазных составляющих сигнального созвездия. БФКСС (5) состоит из первого (5.1), второго (5.2), третьего (5.3), четвертого (5.4), пятого (5.5), шестого (5.6), седьмого (5.7), восьмого (5.8) формирователей коэффициентов синфазных составляющих (ФКСС). Выходы первого (5.1), второго (5.2), третьего (5.3), четвертого (5.4), пятого (5.5), шестого (5.6), седьмого (5.7), восьмого (5.8) ФКСС подключены соответственно к выходам (5.1.1-5.1.8) БФКСС (5).

ФКСС (4.1-4.8) предназначены для формирования уровней напряжений определяющих значения синфазных оставляющих. Схема блока формирования коэффициентов известна и представлена в патенте на изобретение SU 1322272 от 07.07.1987.

Первый БП (6) предназначен для формирования квадратурных составляющих сигнального созвездия в зависимости от ИБП. Первый БП (6) состоит из первого (6.1), второго (6.2), третьего (6.3), четвертого (6.4), пятого (6.5), шестого (6.6), седьмого (6.7), восьмого (6.8) перемножителей. Первые входы перемножителей (6.1-6.8) подключены к соответствующим входам (6.1.1-6.1.8) первого БП (6). Вторые входы перемножителей (6.1-6.8) объединены и подключены к входу (6.1.9) первого БП (6). Выходы перемножителей (6.1-6.8) подключены соответственно к выходам (6.1.10-6.1.17) первого БП (6).

Перемножители (6.1-6.8) предназначены для формирования квадратурных составляющих сигнального созвездия. Реализация перемножителя известна и представлена в патенте РФ №2419145 от 20.05.2011.

Второй БП (7) предназначен для формирования синфазных составляющих сигнального созвездия в зависимости от ИБП. Второй БП (7) состоит из первого (7.1), второго (7.2), третьего (7.3), четвертого (7.4), пятого (7.5), шестого (7.6), седьмого (7.7), восьмого (7.8) перемножителей. Первые входы перемножителей (7.1-7.8) подключены к соответствующим входам (7.1.1-7.1.8) второго БП (7). Вторые входы перемножителей (7.1-7.8) объединены и подключены к входу (7.1.9) второго БП (7). Выходы перемножителей (7.1-7.8) подключены соответственно к выходам (7.1.10-7.1.17) второго БП (7).

Перемножители (7.1-7.8) предназначены для формирования синфазных составляющих сигнального созвездия. Реализация перемножителя известна и представлена в патенте РФ №2419145 от 20.05.2011.

Второй БК (8) предназначен для коммутации сформированных квадратурных составляющих сигнального созвездия. Второй БК (8) состоит из первого (8.1), второго (8.2), третьего (8.3), четвертого (8.4), пятого (8.5), шестого (8.6), седьмого (8.7) и восьмого (8.8) ЭК. Информационные входы ЭК (8.1-8.8) подключены соответственно к информационным входам (8.1.1-8.1.8) второго БК (8). Управляющие входы ЭК (8.1-8.8) подключены соответственно к управляющим входам (8.1.9-8.1.16) второго БК (8). Информационные выходы ЭК (8.1 -8.8) объединены и подключены к выходу (8.1.17) второго БК(8).

Электронные ключи (8.1-8.8) предназначены для коммутации сформированных квадратурных составляющих сигнального созвездия на выход второго БК (8). Реализация электронных ключей известна и описана в патенте РФ №2037265, 09.06.1995.

Второй дешифратор (9) предназначен для формирования сигналов управления электронными ключами в зависимости от поступившей на его вход ИБП. Второй дешифратор (9) состоит из первого (9.1) и второго (9.2) дешифраторов. Входы r1, r2, r3, r4 являются входами одновременно первого (9.1) и второго (9.2) дешифраторов, выходы первого дешифратора (9.1) являются выходами (9.1.1-9.1.8) дешифратора (9), а выходы второго дешифратора (9.2) являются выходами (9.1.9-9.1.16) дешифратора (9).

Реализация дешифраторов известна и описана в патенте РФ №2017208 от 30.07.1994.

Третий БК (10) предназначены для коммутации сформированных синфазных составляющих сигнального созвездия. Третий БК (10) состоит из первого (10.1), второго (10.2), третьего (10.3), четвертого (10.4), пятого (10.5), шестого (10.6), седьмого (10.7) и восьмого (10.8) ЭК. Информационные входы ЭК (10.1-10.8) подключены соответственно к информационным входам (10.1.1-10.1.8) третьего БК (10). Управляющие входы ЭК (10.1-10.8) подключены соответственно к управляющим входам (10.1.9-10.1.16) третьего БК (10). Информационные выходы ЭК (10.1-10.8) объединены и подключены к выходу (10.1.17) третьего БК(10).

Электронные ключи (10.1-10.8) предназначены для коммутации сформированных инфазных составляющих сигнального созвездия на выход третьего БК (10). Реализация электронных ключей известна и описана в патенте РФ №2037265 09.06.1995.

Фазовращатель (11) на 180° предназначен для изменения фазы косинусоидального сигнала на 180°. В качестве фазовращателя 180° может быть использована схема инвертора напряжения (см. Достал И. Операционные усилители. - М.: Мир, 1982. - С. 182-184, рис. 6.6).

Фазовращатель (12) на 90° предназначен для изменения фазы косинусоидального сигнала на 90°. Реализация фазовращателя известна (см. Достал И. Операционные усилители. - М.: Мир, 1982. - С. 196, рис. 6.20).

Фазовращатель (13) на 270° предназначен для сдвига фазы косинусоидального сигнала на 270°. В качестве фазовращателя 270° возможно совместное использование фазовращателя 90° и фазовращателя 180°, подключенных последовательно.

Сумматор (14) предназначен для сложения сформированных синфазной и квадратурной составляющих сигнального созвездия. В качестве сумматора (14) использована схема суммирующего усилителя (см. Достал И. Операционные усилители. - М.: Мир, 1982. - С. 184-185, рис. 6.7).

Заявленное устройство формирования сигналов КАМ работает следующим образом. Исходная информационная битовая последовательность, разбитая на блоки по четыре информационных бита в каждом, поступает на информационные входы r1, r2, r3, r4.

При поступлении на информационные входы устройства значений ИБП r1=0, r2=0, r3=1, r4=0 на выходе (3.1) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.5) первого БК (2). В результате с выхода (1.1) ЗГ (1) не инвертированное косинусоидальное колебание, поступающее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей cos(60+α), поступившего на его вход (6.1.1) с выхода (4.1.1) БФККС (4), а затем сформированное в результате этого квадратурная составляющая (КС) сигнала поступает на выход (6.1.10) первого БП (6). Одновременно на выходе (9.1.1) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.9) второго БК (8). В результате чего поступившая с выхода (6.1.10) первого БП (6) на вход (8.1.1) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется единичное напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей sin(60+α), поступившего на его вход (7.1.1) с выхода (5.1.1) БФКСС (5), и затем сформированное в результате этого синфазная составляющая (СС) сигнала поступает на выход (7.1.10) второго БП (7). Одновременно на выходе (9.1.9) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.9) третьего БК (10). В результате чего поступившая с выхода (7.1.10) второго БП (7) на вход (10.1.1) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка А3).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=1, r3=1, r4=0 устройство работает аналогичным образом, как и в случае, если на информационные входы устройства поступает значение ИБП r1=0, r2=0, r3=1, r4=0, за исключением того, что единичное напряжение формируется на втором (3.2) и четвертом (3.4) выходе первого дешифратора (3). В результате чего инвертированное косинусоидальное колебание с фазовращателя (11), поступившее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание фазовращателя (13), поступившее на вход (2.1.4) первого БК (2), подлючается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка А14).

При поступлении на информационные входы устройства значений ИБП r1=0, r2=0, r3=0, r4=0 на выходе (3.1) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.5) первого БК (2). В результате с выхода (1.1) ЗГ (1) не инвертированное косинусоидальное колебание, поступающее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей cos(30+α), поступившего на его вход (6.1.2) с выхода (4.1.2) БФККС (4), а затем сформированное в результате этого КС поступает на выход (6.1.11) первого БП (6). Одновременно на выходе (9.1.2) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.10) второго БК (8). В результате чего поступившая с выхода (6.1.11) первого БП (6) на вход (8.1.2) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется единичное напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате, не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей sin(30+α), поступившего на его вход (7.1.2) с выхода (5.1.2) БФКСС (5), и затем сформированное в результате этого СС поступает на выход (7.1.11) второго БП (7). Одновременно на выходе (9.1.10) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.10) третьего БК (10). В результате чего поступившая с выхода (7.1.11) второго БП (7) на вход (10.1.2) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка A4).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=1, r3=0, r4=0 устройство работает аналогичным образом, как и в случае, если на информационные входы устройства поступает значение ИБП r1=0, r2=0, r3=0, r4=0, за исключением того, что единичное напряжение формируется на втором (3.2) и четвертом (3.4) выходе первого дешифратора (3). В результате чего инвертированное косинусоидальное колебание с фазовращателя (11), поступившее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание фазовращателя (13), поступившее на вход (2.1.4) первого БК (2), подключается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка А13).

При поступлении на информационные входы устройства значений ИБП r1=0, r2=0, r3=0, r4=1 на выходе (3.1) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.5) первого БК (2). В результате с выхода (1.1) ЗГ (1) не инвертированное косинусоидальное колебание, поступающее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей cos(α), поступившего на его вход (6.1.3) с выхода (4.1.3) БФККС (4), а затем сформированное в результате этого КС поступает на выход (6.1.12) первого БП (6). Одновременно на выходе (9.1.3) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.11) второго БК (8). В результате чего поступившая с выхода (6.1.12) первого БП (6) на вход (8.1.3) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей sin(α), поступившего на его вход (7.1.3) с выхода (5.1.3) БФКСС (5), и затем сформированное в результате этого СС поступает на выход (7.1.12) второго БП (7). Одновременно на выходе (9.1.11) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.11) третьего БК (10). В результате чего поступившая с выхода (7.1.12) второго БП (7) на вход (10.1.3) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка A8).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=1, r3=0, r4=1 устройство работает аналогичным образом, как и в случае если на информационные входы устройства поступает значение ИБП r1=0, r2=0, r3=0, r4=1, за исключением того, что единичное напряжение формируется на втором (3.2) и четвертом (3.4) выходе первого дешифратора (3). В результате чего инвертированное косинусоидальное колебание с фазовращателя (11), поступившее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание фазовращателя (13), поступившее на вход (2.1.4) первого БК (2), подключается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка A9).

При поступлении на информационные входы устройства значений ИБП r1=0, r2=0, r3=1, r4=1 на выходе (3.1) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.5) первого БК (2). В результате с выхода (1.1) ЗГ (1) не инвертированное косинусоидальное колебание, поступающее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей β×cos(30+α), поступившего на его вход (6.1.4) с выхода (4.1.4) БФККС (4), а затем сформированное в результате этого КС поступает на выход (6.1.13) первого БП (6). Одновременно на выходе (9.1.4) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.12) второго БК (8). В результате чего поступившая с выхода (6.1.13) первого БП (6) на вход (8.1.4) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей β×sin(30+α), поступившего на его вход (7.1.4) с выхода (5.1.4) БФКСС (5), и затем сформированное в результате этого СС поступает на выход (7.1.13) второго БП (7). Одновременно на выходе (9.1.12) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.12) третьего БК (10). В результате чего поступившая с выхода (7.1.13) второго БП (7) на вход (10.1.4) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка А7).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=1, r3=1, r4=1 устройство работает аналогичным образом, как и в случае, если на информационные входы устройства поступает значение ИБП r1=0, r2=0, r3=1, r4=1, за исключением того, что единичное напряжение формируется на втором (3.2) и четвертом (3.4) выходе первого дешифратора (3). В результате чего инвертированное косинусоидальное колебание с фазовращателя (11), поступившее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание с фазовращателя (13), поступившее на вход (2.1.4) первого БК (2), подключается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка А10).

При поступлении на информационные входы устройства значений ИБП r1=0, r2=1, r3=1, r4=0 на выходе (3.2) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.6) первого БК (2). В результате с выхода (1.2) ЗГ (1) через фазовращатель (11) инвертированное косинусоидальное колебание, поступающее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей cos(90-α), поступившего на его вход (6.1.5) с выхода (4.1.5) БФККС (4), а затем сформированное в результате этого КС поступает на выход (6.1.14) первого БП (6). Одновременно на выходе (9.1.5) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.13) второго БК (8). В результате чего поступившая с выхода (6.1.14) первого БП (6) на вход (8.1.5) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей sin(90-α), поступившего на его вход (7.1.5) с выхода (5.1.5) БФКСС (5), и затем сформированное в результате этого СС поступает на выход (7.1.14) второго БП (7). Одновременно на выходе (9.1.13) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.13) третьего БК (10). В результате чего поступившая с выхода (7.1.14) второго БП (7) на вход (10.1.5) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка А2).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=0, r3=1, r4=0 устройство работает аналогичным образом, как и в случае, если на информационные входы устройства поступает значение ИБП r1=0, r2=1, r3=1, r4=0, за исключением того, что единичное напряжение формируется на втором (3.1) и четвертом (3.4) выходе первого дешифратора (3). В результате чего не инвертированное косинусоидальное колебание, поступившее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание, поступившее на вход (2.1.4) первого БК (2), подключается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка A15).

При поступлении на информационные входы устройства значений ИБП r1=0, r2=1, r3=0, r4=0 на выходе (3.2) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.6) первого БК (2). В результате с выхода (1.2) ЗГ (1) через фазовращатель (11) инвертированное косинусоидальное колебание, поступающее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей cos(60-α), поступившего на его вход (6.1.6) с выхода (4.1.6) БФККС (4), а затем сформированное в результате этого КС поступает на выход (6.1.15) первого БП (6). Одновременно на выходе (9.1.6) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.14) второго БК (8). В результате чего поступившая с выхода (6.1.15) первого БП (6) на вход (8.1.5) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей sin(60-α), поступившего на его вход (7.1.6) с выхода (5.1.6) БФКСС (5), и затем сформированное в результате этого СС поступает на выход (7.1.15) второго БП (7). Одновременно на выходе (9.1.14) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.14) третьего БК (10). В результате чего поступившая с выхода (7.1.15) второго БП (7) на вход (10.1.6) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка A1).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=0, r3=0, r4=0 устройство работает аналогичным образом, как и в случае, если на информационные входы устройства поступает значение ИБП r1=0, r2=1, r3=1, r4=0, за исключением того, что единичное напряжение формируется на втором (3.1) и четвертом (3.4) выходе первого дешифратора (3). В результате чего не инвертированное косинусоидальное колебание, поступившее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание, поступившее на вход (2.1.4) первого БК (2), подключается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка А16).

При поступлении на информационные входы устройства значений ИБП r1=0, r2=1, r3=0, r4=1 на выходе (3.2) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.6) первого БК (2). В результате с выхода (1.2) ЗГ (1) через фазовращатель (11) инвертированное косинусоидальное колебание, поступающее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей cos(30-α), поступившего на его вход (6.1.7) с выхода (4.1.7) БФККС (4), а затем сформированное в результате этого КС поступает на выход (6.1.16) первого БП (6). Одновременно на выходе (9.1.7) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.15) второго БК (8). В результате чего поступившая с выхода (6.1.16) первого БП (6) на вход (8.1.6) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей sin(30-α), поступившего на его вход (7.1.7) с выхода (5.1.7) БФКСС (5), и затем сформированное в результате этого СС поступает на выход (7.1.16) второго БП (7). Одновременно на выходе (9.1.15) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.15) третьего БК (10). В результате чего поступившая с выхода (7.1.16) второго БП (7) на вход (10.1.7) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка A5).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=0, r3=0, r4=1 устройство работает аналогичным образом, как и в случае, если на информационные входы устройства поступает значение ИБП r1=0, r2=1, r3=0, r4=1, за исключением того, что единичное напряжение формируется на втором (3.1) и четвертом (3.4) выходе первого дешифратора (3). В результате чего не инвертированное косинусоидальное колебание, поступившее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание, поступившее на вход (2.1.4) первого БК (2), подключается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка А12).

При поступлении на информационные входы устройства значений ИБП r1=0, r2=1, r3=1, r4=1 на выходе (3.2) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.6) первого БК (2). В результате с выхода (1.2) ЗГ (1) через фазовращатель (11) инвертированное косинусоидальное колебание, поступающее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей β×cos(60-α), поступившего на его вход (6.1.8) с выхода (4.1.8) БФККС (4), а затем сформированное в результате этого КС поступает на выход (6.1.17) первого БП (6). Одновременно на выходе (9.1.8) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.16) второго БК (8). В результате чего поступившая с выхода (6.1.17) первого БП (6) на вход (8.1.8) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей β×sin(60-α), поступившего на его вход (7.1.8) с выхода (5.1.8) БФКСС (5), и затем сформированное в результате этого СС поступает на выход (7.1.17) второго БП (7). Одновременно на выходе (9.1.16) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.16) третьего БК (10). В результате чего поступившая с выхода (7.1.17) второго БП (7) на вход (10.1.8) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка A6).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=0, r3=1, r4=1 устройство работает аналогичным образом, как и в случа, если на информационные входы устройства поступает значение ИБП r1=0, r2=1, r3=1, r4=1, за исключением того, что единичное напряжение формируется на втором (3.1) и четвертом (3.4) выходе первого дешифратора (3). В результате чего не инвертированное косинусоидальное колебание, поступившее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание, поступившее на вход (2.1.4) первого БК (2) подключается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка А11).

Первый БК (2) работает следующим образом.

Когда на управляющий вход (2.1.5) подается управляющее напряжение, то ЭК (2.1) соединяет информационный вход (2.1.1) с информационным выходом (2.1.9) первого БК (2). Когда на управляющий вход (2.1.6) подается управляющее напряжение, то ЭК (2.2) соединяет информационный вход (2.1.2) с информационным выходом (2.1.9) первого БК (2). Когда на управляющий вход (2.1.7) подается управляющее напряжение, то ЭК (2.3) соединяет информационный вход (2.1.3) с информационным выходом (2.1.10) первого БК (2). Когда на управляющий вход (2.1.8) подается управляющее напряжение, то ЭК (2.4) соединяет информационный вход (2.1.4) с информационным выходом (2.1.10) первого БК (2).

Первый дешифратор (3) работает следующим образом.

При поступлении на его информационные входы значение ИБП r1=0, r2=0 управляющие напряжение формируется на его выходах (3.1) и (3.3). При поступлении на его информационные входы значение ИБП r1=0, r2=1 управляющие напряжение формируется на его выходах (3.2) и (3.3). При поступлении на его информационные входы значение ИБП r1=1, r2=0 управляющие напряжение формируется на его выходах (3.1) и (3.4). При поступлении на его информационные входы значение ИБП r1=1, r2=1 управляющие напряжение формируется на его выходах (3.2) и (3.4).

БФККС (4) работает следующим образом.

ФККС (4.1) формирует напряжение коэффициента квадратурной составляющей cos(60+α), которое подается на выход (4.1.1) БФККС (4). ФККС (4.2) формирует напряжение коэффициента квадратурной составляющей cos(30+α), которое подается на выход (4.1.2) БФККС (4). ФККС (4.3) формирует напряжение коэффициента квадратурной составляющей cos α, которое подается на выход (4.1.3) БФККС (4). ФККС (4.4) формирует напряжение коэффициента квадратурной составляющей β×cos(30+α), которое подается на выход (4.1.4) БФККС (4). ФККС (4.5) формирует напряжение коэффициента квадратурной составляющей cos(90-α), которое подается на выход (4.1.5) БФККС (4). ФККС (4.6) формирует напряжение коэффициента квадратурной составляющей cos(60-α), которое подается на выход (4.1.6) БФККС (4). ФККС (4.7) формирует напряжение коэффициента квадратурной составляющей cos(30-α), которое подается на выход (4.1.7) БФККС (4). ФККС (4.8) формирует напряжение коэффициента квадратурной составляющей β×cos(60-α), которое подается на выход (4.1.8) БФККС (4). Параметр α целесообразно изменять в пределах от 0° до 30° (выбирается изготовителем), а коэффициент β необходимо выбирать равным (1-2sin15°) (приложение 1).

БФКСС (5) работает следующим образом.

ФКСС (5.1) формирует напряжение коэффициента синфазной составляющей sin(60+α), которое подается на выход (5.1.1) БФКСС (4). ФКСС (5.2) формирует напряжение коэффициента синфазной составляющей sin(30+α), которое подается на выход (5.1.2) БФКСС (5). ФКСС (5.3) формирует напряжение коэффициента синфазной составляющей sin α, которое подается на выход (5.1.3) БФКСС (5). ФКСС (5.4) формирует напряжение коэффициента синфазной составляющей β×sin(30+α), которое подается на выход (5.1.4) БФКСС (5). ФКСС (5.5) формирует напряжение коэффициента синфазной составляющей sin(90-α), которое подается на выход (5.1.5) БФКСС (5). ФКСС (5.6) формирует напряжение коэффициента синфазной составляющей sin(60-α), которое подается на выход (5.1.6) БФКСС (5). ФКСС (5.7) формирует напряжение коэффициента синфазной составляющей sin(30-α), которое подается на выход (5.1.7) БФКСС (5). ФКСС (5.8) формирует напряжение коэффициента синфазной составляющей β×sin(60-α), которое подается на выход (5.1.8) БФКСС (5). Параметр α целесообразно изменять в пределах от 0° до 30° (выбирается изготовителем), а коэффициент β необходимо выбирать равным (1-2sin15°) (приложение 1).

Первый БП (6) работает следующим образом. Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается на второй вход перемножителя (6.1) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.1) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.1) поступает на выход (6.1.10) первого БП (6). Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается также на второй вход перемножителя (6.2) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.2) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.1.1) поступает на выход (6.1.11) первого БП (6). Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается на второй вход перемножителя (6.3) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.3) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.3) поступает на выход (6.1.12) первого БП (6). Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается на второй вход перемножителя (6.4) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.4) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.1) поступает на выход (6.1.13) первого БП (6). Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается на второй вход перемножителя (6.5) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.5) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.5) поступает на выход (6.1.14) первого БП (6). Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается на второй вход перемножителя (6.6) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.6) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.6) поступает на выход (6.1.15) первого БП (6). Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается на второй вход перемножителя (6.7) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.7) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.7) поступает на выход (6.1.16) первого БП (6). Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается на второй вход перемножителя (6.8) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.8) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.8) поступает на выход (6.1.17) первого БП (6).

Второй БП (7) работает точно так же, как первый БП (6).

Второй БК (8) работает следующим образом.

Когда на управляющий вход (8.1.9) подается управляющее напряжение, то ЭК (8.1) соединяет информационный вход (8.1.1) с информационным выходом (8.1.17) второго БК (8). Когда на управляющий вход (8.1.10) подается управляющее напряжение, то ЭК (8.2) соединяет информационный вход (8.1.2) с информационным выходом (8.1.17) второго БК (8). Когда на управляющий вход (8.1.11) подается управляющее напряжение, то ЭК (8.3) соединяет информационный вход (8.1.3) с информационным выходом (8.1.17) второго БК (8). Когда на управляющий вход (8.1.12) подается управляющее напряжение, то ЭК (8.4) соединяет информационный вход (8.1.4) с информационным выходом (8.1.17) второго БК (8). Когда на управляющий вход (8.1.13) подается управляющее напряжение, то ЭК (8.5) соединяет информационный вход (8.1.5) с информационным выходом (8.1.17) второго БК (8). Когда на управляющий вход (8.1.14) подается управляющее напряжение, то ЭК (8.6) соединяет, информационный вход (8.1.6) с информационным выходом (8.1.17) второго БК (8). Когда на убавляющий вход (8.1.16) подается управляющее напряжение, то ЭК (8.8) соединяет информационный вход (8.1.8) с информационным выходом (8.1.17) второго БК (8).

Второй дешифратор (9) работает следующим образом.

При поступлении на его информационные входы значение ИБП r1=0, r2=0, r3=1, r4=0, управляющие напряжение формируется на его выходах (9.1.1) и (9.1.9). При поступлении на его информационные входы значение ИБП r1=0, r2=0, r3=0, r4=0 управляющие напряжение формируется на его выходах (9.1.2) и (9.1.10). При поступлении на его информационные входы значение ИБП r1=0, r2=0, r3=0, r4=1 управляющие напряжение формируется на его выходах (9.1.3) и (9.1.11). При поступлении на его информационные входы значение ИБП r1=0, r2=0, r3=1, r4=1 управляющие напряжение формируется на его выходах (9.1.4) и (9.1.12). При поступлении на его информационные входы значение ИБП r1=0, r2=1, r3=1, r4=0 управляющие напряжение формируется на его выходах (9.1.5) и (9.1.13). При поступлении на его информационные входы значение ИБП r1=0, r2=1, r3=0, r4=0 управляющие напряжение формируется на его выходах (9.1.6) и (9.1.14). При поступлении на его информационные входы значение ИБП r1=0, r2=1, r3=1, r4=1 управляющие напряжение формируется на его выходах (9.1.7) и (9.1.15). При поступлении на его информационные входы значение ИБП r1=0, r2=1, r3=1, r4=1 управляющие напряжение формируется на его выходах (9.1.8) и (9.1.16).

Третий БК (10) работает точно так же, как второй БК (8).

Результатом работы заявленного устройства является формирование сигнальной конструкции КАМ, представленной на фиг. 7. Благодаря достигнутому результату каждая точка сигнальной конструкции определяется различными и неповторяющимися значениями синфазной и квадратурной составляющих. Это обуславливает повышение помехоустойчивости формирования сигналов КАМ по сравнению с устройством-прототипом.

Выбор коэффициентов трансформации и выигрыш в средней энергии сформированных сигналов КАМ по сравнению с устройством-прототипом приведен в приложении 1.

Приложение 1

ОЦЕНКА УРОВНЯ СРЕДНЕЙ МОЩНОСТИ И ПИК-ФАКТОРА СИГНАЛЬНОЙ КОНСТРУКЦИИ ПРИ ИЗМЕНЕНИИ АМПЛИТУДНЫХ ЗНАЧЕНИЙ ВЕКТОРА СИГНАЛЬНОГО СОЗВЕЗДИЯ В ЗАЯВЛЯЕМОМ УСТРОЙСТВЕ

Поскольку в сигнальной конструкции (СК) КАМ значения точек векторов сигнального созвездия (ВСС) в каждом из квадрантов имеют одинаковые энергетические значения, то все расчеты проведем только для второго (правого верхнего) квадранта (см. фиг. 7).

Средняя амплитуда и пиковая амплитуда СК КАМ в устройстве-прототипе имеют следующие значения , где U - результат сложения манипулированных значений напряжений СС и . Соответственно, , где (см. стр. 17 формула 20, 24 и 26, патент РФ №2439819 С1, опубл. бюл. №1 от 10.01.2012 г.).

Пиковая амплитуда СК в заявленном устройстве равна |OA8|, т.к. у формируемой СК КАМ одинаковые значения у следующих ВСС |OA3|=|OA4|=|OA8|. При этом , а значение |OA7|=β|OA4|=(1-2sin15°)U≈0,48U.

Средняя амплитуда СК КАМ в заявленном устройстве равна

Таким образом, среднее значение мощности в заявленном устройстве в 1,4 раза меньше по отношению к устройству-прототипу. Это указывает на достижение цели заявляемого технического решения, направленной на снижение величины средней мощности.

Выбор значения β=(1-2sin15°) обусловлен следующими соображениями. В заявленном устройстве значение евклидова расстояния d для ВСС |OA3|, |OA4|, |OA8| будет определяться, как у сигналов двенадцати позиционной фазовой манипуляции d=2Usin15°. В тоже время ВСС |OA7| лежит на одной прямой с ВСС |OA4| и связаны между собой соотношением |OA7|=β|OA4|, следовательно, для обеспечения такого же значения d между |OA7| и |OA4| необходимо определить множитель β=(1-2sin15°). В этом случае минимальное евклидово расстояние для СК КАМ в заявленном устройстве будет равно dmin=2Usin15°≈0,52U.

При этом среднее значение мощности в заявленном устройстве в 1,4 раза меньше по отношению к устройству-прототипу. Это указывает на достижение цели заявляемого технического решения, направленной на снижение величины средней мощности и значения пик-фактора формируемой СК КАМ, и как следствие повышение помехоустойчивости.


УСТРОЙСТВО ФОРМИРОВАНИЯ СИГНАЛОВ КВАДРАТУРНОЙ АМПЛИТУДНОЙ МАНИПУЛЯЦИИ
УСТРОЙСТВО ФОРМИРОВАНИЯ СИГНАЛОВ КВАДРАТУРНОЙ АМПЛИТУДНОЙ МАНИПУЛЯЦИИ
УСТРОЙСТВО ФОРМИРОВАНИЯ СИГНАЛОВ КВАДРАТУРНОЙ АМПЛИТУДНОЙ МАНИПУЛЯЦИИ
УСТРОЙСТВО ФОРМИРОВАНИЯ СИГНАЛОВ КВАДРАТУРНОЙ АМПЛИТУДНОЙ МАНИПУЛЯЦИИ
УСТРОЙСТВО ФОРМИРОВАНИЯ СИГНАЛОВ КВАДРАТУРНОЙ АМПЛИТУДНОЙ МАНИПУЛЯЦИИ
УСТРОЙСТВО ФОРМИРОВАНИЯ СИГНАЛОВ КВАДРАТУРНОЙ АМПЛИТУДНОЙ МАНИПУЛЯЦИИ
УСТРОЙСТВО ФОРМИРОВАНИЯ СИГНАЛОВ КВАДРАТУРНОЙ АМПЛИТУДНОЙ МАНИПУЛЯЦИИ
Источник поступления информации: Роспатент

Показаны записи 51-53 из 53.
20.01.2018
№218.016.1d2f

Способ выбора скорости передачи элементов сигнала в радиомодемах

Изобретение относится к области радиотехники и может быть использовано для оперативного измерения эффективной ширины спектра частот узкополосных радиосигналов и определения скорости передачи элементов сигналов в радиомодемах. Сущность заявленного технического решения заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002640431
Дата охранного документа: 09.01.2018
04.04.2018
№218.016.2f23

Способ определения координат источника радиоизлучения с использованием летательного аппарата

Изобретение относится к радиотехнике, а именно к способам определения местоположения источника радиоизлучения (ИРИ), и может быть использовано в навигационных, пеленгационных, локационных средствах для определения местоположения ИРИ с летательного аппарата (ЛА), в частности с беспилотного ЛА....
Тип: Изобретение
Номер охранного документа: 0002644580
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.370a

Широкополосное приемопередающее устройство с программной перестройкой фазы сигнала

Изобретение относится к области беспроводной связи, в частности к цифровой радиосвязи, и предназначено для использования в системах передачи информации посредством помехозащищенных сигналов с многофазной манипуляцией. Технический результат заключается в повышении помехозащищенности формируемого...
Тип: Изобретение
Номер охранного документа: 0002646602
Дата охранного документа: 06.03.2018
Показаны записи 61-70 из 71.
07.06.2020
№220.018.2546

Устройство формирования структурно-скрытых сигналов с двухпозиционной манипуляцией

Заявленное устройство относится к электросвязи. Техническим результатом заявляемого устройства является повышение помехоустойчивости формируемого сигнала на основе его структурной скрытности при воздействии имитационных помех. Для достижения технического результата предлагается устройство,...
Тип: Изобретение
Номер охранного документа: 0002722926
Дата охранного документа: 04.06.2020
12.04.2023
№223.018.4782

Способ выбора скорости передачи в радиолиниях

Изобретение относится к области радиотехники и может быть использовано для адаптивного выбора скорости передачи в радиолинии по результатам измерения текущего значения отношения мощности сигнала к мощности шума в полосе приема сигнала (ОСШ). Технический результат заключается в адаптивном...
Тип: Изобретение
Номер охранного документа: 0002744037
Дата охранного документа: 02.03.2021
20.04.2023
№223.018.4aad

Способ помехозащищенной передачи и приема информации на основе частотно-манипулированных сигналов

Изобретение относится к области радиотехники и может использоваться для применения в помехозащищенных радиоэлектронных системах (РЭС), в том числе в системах радиосвязи. Техническим результатом является повышение помехозащищенности передачи и приема сигналов в условиях воздействия...
Тип: Изобретение
Номер охранного документа: 0002784378
Дата охранного документа: 24.11.2022
23.04.2023
№223.018.51bf

Способ формирования фазоманипулированных сигналов посредством последовательной конкатенации радиоимпульсов

Изобретение относится к области радиотехники и может быть использовано для повышения символьной скорости в частотно ограниченных радиоканалах. Техническим результатом заявляемого способа является формирование манипулированных сигналов на основе вейвлет Гаусса первого порядка (ВГПП),...
Тип: Изобретение
Номер охранного документа: 0002731881
Дата охранного документа: 08.09.2020
10.05.2023
№223.018.534d

Способ обнаружения мультипликативных помех

Изобретение относится к области радиотехники и предназначено для применения в системах радиосвязи (СРС). Техническим результатом изобретения является повышение достоверности обнаружения воздействия мультипликативных помех на частотах работы широкополосных СРС. Технический результат изобретения...
Тип: Изобретение
Номер охранного документа: 0002795278
Дата охранного документа: 02.05.2023
15.05.2023
№223.018.5956

Способ передачи и приема сигналов в режиме псевдослучайной перестройки рабочей частоты

Изобретение относится к области радиотехники и может быть использовано в помехозащищенных системах радиосвязи с псевдослучайной перестройкой рабочей частоты (ППРЧ). Техническим результатом является повышение помехозащищенности приема сигналов в режиме ППРЧ в условиях воздействия помех от РЭС,...
Тип: Изобретение
Номер охранного документа: 0002762376
Дата охранного документа: 20.12.2021
16.05.2023
№223.018.6276

Демодулятор сигналов амплитудной манипуляции

Изобретение относится к радиосвязи и может быть использовано при демодуляции сигналов амплитудной манипуляции (АМ). Технический результат заключается в обеспечении возможности приема и демодуляции сигналов АМ в каналах с замираниями. Результат достигается за счет совокупности существенных...
Тип: Изобретение
Номер охранного документа: 0002781271
Дата охранного документа: 11.10.2022
23.05.2023
№223.018.6cd8

Способ передачи дискретных сигналов в режиме программной перестройки рабочей частоты с изменяемыми параметрами модуляции

Изобретение относится к области радиотехники и предназначено для применения в помехозащищенных системах радиосвязи для передачи дискретных сигналов. Техническим результатом изобретения является повышение помехозащищенности радиосигнала путем совмещения свойств сигналов, полученных в...
Тип: Изобретение
Номер охранного документа: 0002770417
Дата охранного документа: 18.04.2022
23.05.2023
№223.018.6db5

Способ формирования сигнала с программной перестройкой рабочей частоты с изменяемыми параметрами

Изобретение относится к области радиотехники и предназначено для применения в системах радиосвязи (СРС) с программной перестройкой рабочей частоты (ППРЧ), использующих помехозащищенные радиосигналы. Техническим результатом изобретения является повышение помехозащищенности сигнала. Способ...
Тип: Изобретение
Номер охранного документа: 0002765862
Дата охранного документа: 03.02.2022
05.06.2023
№223.018.771d

Радиолокационная станция с непрерывным излучением широкополосного линейно-частотно-модулированного сигнала при широкоугольном электронном сканировании диаграммы направленности антенны

Изобретение относится к радиолокационной технике и может быть использовано при проектировании и создании цифровых радиолокационных станций (РЛС) с широкополосным непрерывным линейно-частотно-модулированным сигналом и с широкоугольным электронным сканированием диаграммы направленности антенны....
Тип: Изобретение
Номер охранного документа: 0002774156
Дата охранного документа: 15.06.2022
+ добавить свой РИД