×
10.11.2015
216.013.8ebf

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ДВИЖЕНИЯ ФРОНТАЛЬНОЙ ЧАСТИ ЛЕДНИКА С КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002568152
Дата охранного документа
10.11.2015
Аннотация: Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для определения скорости движения фронтальной части ледника. Сущность: определяют неподвижные характерные точки на склонах ледника. Осуществляют с космического аппарата съемку ледника и неподвижных характерных точек и получают изображение. Фиксируют контрольный створ в виде линии, проходящей через неподвижные характерные точки. В случае пересечения изображения ледника и контрольного створа измеряют по полученному изображению расстояние от контрольного створа до максимально удаленной крайней точки языка ледника. В случае если изображение ледника и контрольный створ не пересекаются, измеряют расстояние от контрольного створа до минимально удаленной крайней точки языка ледника. Повторяют съемку с космического аппарата при возникновении условий съемки. Определяют изменение расстояния от контрольного створа до крайней точки языка ледника. Рассчитывают скорость движения фронтальной части ледника. Технический результат: определение скорости движения ледника дистанционно, без присутствия специалистов на леднике или его склоне. 2 ил.
Основные результаты: Способ определения скорости движения фронтальной части ледника с космического аппарата, включающий определение перемещения ледника за заданный промежуток времени, отличающийся тем, что определяют неподвижные характерные точки на склонах ледника, осуществляют с космического аппарата съемку ледника и неподвижных характерных точек и получают изображение, фиксируют контрольный створ в виде линии, проходящей через неподвижные характерные точки, в случае пересечения изображения ледника и контрольного створа измеряют по полученному изображению расстояние L от контрольного створа до максимально удаленной крайней точки языка ледника, а в случае если изображение ледника и контрольный створ не пересекаются - расстояние до минимально удаленной крайней точки языка ледника, через промежуток времени ΔT, больший или равный n=3·Δ/0.2, где n - количество суток, Δ - геометрическое разрешение съемочной системы космического аппарата, повторяют съемку с космического аппарата при возникновении условий съемки, определяют изменение δL измеряемого расстояния от контрольного створа до крайней точки языка ледника и определяют скорость движения фронтальной части ледника по формуле δL/ΔT.

Изобретение относится к космической технике и может быть использовано при определении скорости движения ледника с космического аппарата.

Ледники играют важную роль в жизни нашей планеты. Движение - основной процесс, управляющий жизнедеятельностью ледника. Оно служит источником энергии для изменений структуры ледникового льда, влияет на его тепловое состояние, разгружает области аккумуляции от льда (С.В. Калесник. Очерки гляциологии. Государственное издательство географической литературы, Москва, 1963).

Бесконтрольное движение ледника может привести к катастрофическим последствиям (Л.В. Десинов. Снежный покров и ледники. М.: «Знание», 1988), (Л.В. Десинов. Агрессия горного ледника. «Земля и Вселенная», №1, 2003). Поэтому необходимо определять и контролировать скорость движения ледников.

Для быстрого определения скорости движения ледника пользуются своеобразными «ледниковыми часами» - криокинеметрами. Криокинеметр, приспособленный для непрерывной записи, называется криокинеграфом.

Сконструированный Швейцарской ледниковой комиссией Криокинеметр - это металлическая прямоугольная коробка (7×5×2,5 см), на двух узких сторонах которой два гнезда с нарезкой, отвечающей нарезке штатива обычного фотоаппарата. Одно гнездо помещается на короткой стороне, другое - на длинной, чтобы прибор можно было ставить как удобнее. Из одной крышки коробки выдается главная ось; на нее неподвижно насажен блок (диаметром около 16 мм) с плоским желобом. Вращение этого валика при помощи увеличительного механизма передается стрелкам двойного циферблата, который помещается за целлулоидным окошечком на противоположной стороне аппарата. Главный циферблат диаметром в 35 мм разделен на 100 равных частей, занумерованных через каждый десяток. Легко отсчитывается полделения. Малый циферблат суммирует десять оборотов главного (большого). Одно деление главного циферблата соответствует смещению обода блока на 0,1 мм.

Подставкой криокинеметра служит тренога фотоаппарата, теодолита и т.п. Передаточная нить (проволока) наматывается на один оборот на блок. На одном ее конце - бронзовый грузик весом в 200 г; он поддерживает нить, свисающую совершенно свободно, в натянутом положении. Грузику придана форма катушки, чтобы на нее можно было намотать излишек проволоки (или всю, когда прибор не работает). Другой конец проволоки связан с якорем - полным металлическим цилиндром высотой около 12 см (диаметром 3,5 см), несколько расширяющимся кверху. В этой расширенной части сделан венец из дырочек. Нить закрепляется в одной из них узлом.

Во льду высверливают отверстие (соответствующее диаметру цилиндра) и ставят в него вертикально цилиндр, наполненный охладительной смесью (2 части мелконакрошенного льда и 1 часть поваренной соли), предохраняющей лед от таяния, а яркость - от выпадения из гнезда.

Якорь укрепляют на каком-нибудь выступе конца ледника, а криокинеметр - на земле перед концом ледника. Схема действия прибора очень проста: ледник продвигается вперед, проволока, связывающая его с аппаратом, от этого ослабляется, но тотчас же через блок оттягивается грузиком книзу; вращение блока передается валику, а от последнего через механизм - стрелкам циферблата. Чувствительность прибора такова, что 1-2-х часов уже достаточно для получения заметного отсчета (Mercanton P. Le cryocinemetre de la Commission helvetigue des glaciers. «Ztschr. F. G.», XXII, 1935).

Криокинеметр (и криокинеграф) этой конструкции может мерить скорость движения ледника только по его краю, так при длине проволоки, превышающей 10 м, получаются крупные ошибки (длина проволоки под влиянием температурных колебаний изменяется).

Чтобы избежать подобного недостатка, Р. Гэлловей (Galloway R. W. Mechanical measurement of glacier motion. «Journ. Of Glaciology», №19, 1956) предложил несколько видоизменить схему криокинеграфа. Аппарат устанавливают на трубках, глубоко погруженных в лед и заполненных замораживающей смесью льда и соли. От горизонтального блока В прибора к двум точкам А и С склона долины протягивается длинная упругая проволока (например, струна длиною 500 м). Длины АВ и ВС равны, высоты точек А и С над В одинаковы - это обеспечивает одинаковое натяжение обеих половин проволоки, свободно висящей над поверхностью льда. Движение ледника увлекает аппарат с блоком В и заставляет блок вращаться в соответствии со скоростью движения ледника; блок (диаметр его 8 см) соединен с барабаном (диаметром 20 см), обернутым бумагой, на которой перо, связанное с часовым механизмом, чертит линию.

Если температура воздуха повышается, проволока просто больше провисает и это никак не влияет на отсчеты. Искажения могут получиться лишь тогда, когда вдоль АВ температура меняется иначе, чем вдоль ВС. Во избежание этого АВ и ВС располагаются как можно ближе друг к другу (однако так, чтобы угол между ними был не меньше 60), а прибор помещают на затененной стороне ледника.

По мере движения ледника сторона АВ укорачивается, ВС удлиняется, и тогда при данном повышении температуры ВС расширяется больше, чем АВ, что может внести ошибку в запись, если разница в длине АВ и ВС превысит 10 м. Чтобы избежать этого, блок В надо переставить (либо с самого начала сделать АВ на 10 м длиннее, чем ВС).

Причиной ошибок в показаниях прибора может быть и ветер, так как он меняет натяжение проволоки. Прибор успешно работает в тихую погоду или когда ветер дует параллельно оси ледника. Аппарат, конечно, не может учитывать движение льда вбок или вверх по течению ледника (это отразится только на регистрации им скорости движения вниз по течению: запись покажет уменьшенное значение скорости). Но этот недостаток пока непреодолим. Кроме того, использование приведенных способов-аналогов предполагает работу специалистов на ледниках.

Для определения скорости движения ледника чаще используют другой способ-прототип, основанный на определении перемещения ледника за заданный промежуток времени [1] С.В. Калесник. Очерки гляциологии, Государственное издательство географической литературы, Москва, 1963. В данном способе ставят две вехи, одну на языке ледника, другую - на склоне ледника, и с помощью угломерного прибора, размещаемого с наблюдателем на склоне ледника, измеряют перемещение ледника за заданный промежуток времени, и определяют скорость движения ледника. Для установки вех в леднике и его склоне бурят отверстия, в которые помещают, например, алюминиевые трубы. Данный способ также предполагает работу специалистов на леднике и его склоне, что не всегда выполнимо. При необходимости контроля движения нескольких ледников, эта задача становится просто не выполнимой.

Задачей, на решение которой направлено настоящее изобретение, является определение скорости движения фронтальной части ледника с КА.

Технический результат предлагаемого изобретений заключается в определении скорости движения ледника дистанционно с КА, т.е. без присутствия специалистов на леднике и его склоне.

Технический результат достигается тем, что в способе определения скорости движения фронтальной части ледника с космического аппарата, основанном на определении перемещения ледника за заданный промежуток времени, определяют неподвижные характерные точки на склонах ледника, осуществляют с космического аппарата съемку ледника и неподвижных характерных точек и получают изображение, фиксируют контрольный створ в виде линии, проходящей через неподвижные характерные точки, в случае пересечения изображения ледника и контрольного створа, измеряют по полученному изображению расстояние L от контрольного створа до максимально удаленной крайней точки языка ледника, а в случае если изображение ледника и контрольного створа не пересекаются - расстояние до минимально удаленной крайней точки языка ледника, через промежуток времени AT, больший или равный n=3·Δ/0.2, где n - количество суток, Δ - геометрическое разрешение съемочной системы космического аппарата, повторяют съемку с космического аппарата при возникновении условий съемки, определяют изменение δL измеряемого расстояния от контрольного створа до крайней точки языка ледника и определение скорости движения фронтальной части ледника осуществляют по формуле δL/ΔT. За счет выполнения предлагаемых действий определение скорости движения фронтальной части ледника осуществляется дистанционно, без присутствия специалистов на леднике и его склоне.

Суть предлагаемого изобретения поясняется на фиг. 1 и 2.

На фиг. 1 и 2 представлены схемы, иллюстрирующие определение скорости движения ледника в случае пересечения и непересечения ледника и контрольного створа.

На фиг. 1 введены обозначения:

А, В - неподвижные характерные точки на склонах ледника.

АВ - контрольный створ.

Lн, Lк - начальное и конечное расстояние от контрольного створа до максимально удаленной крайней точки языка ледника (до и после подвижки), так, что δL=Lк-Lн.

- линия, показывающая смещение ледника через n суток.

На фиг. 2 введены обозначения:

А, В - неподвижные характерные точки на склонах ледника.

АВ - контрольный створ.

Lн, Lк - начальное и конечное расстояние от контрольного створа до минимально удаленной крайней точки языка ледника (до и после подвижки), так, что δL=Lн-Lк.

- линия, показывающая смещение ледника через n суток.

Неподвижные характерные точки всегда могут быть найдены на склонах ледника. Ими могут являться кучи камней, отдельные крупные валуны и т.д. Фиксация контрольного створа в виде линии, проходящей через неподвижные характерные точки, с помощью современных оптических систем не представляет затруднений. Если контрольный створ пересекает изображение ледника, то определяется расстояние от контрольного створа до максимально удаленной крайней точки языка ледника. В случае отсутствия такого пересечения определяется расстояние от контрольного створа до минимально удаленной точки языка ледника.

Минимальная скорость движения ледников составляет 20 cм/cyтки. Поэтому для надежного определения перемещения ледника берется соотношение n=К·Δ/0.2, где Δ - геометрическое разрешение съемочной системы КА, n - количество суток до повторной съемки, К - коэффициент, выбираемый из условия надежности определения перемещения ледника (принимается К=3). Повторная съемка осуществляется через промежуток времени ΔT, не меньший n, при возникновении условий съемки. Условия съемки определяются известными соотношениями и зависят от взаимного положения трассы КА и объекта съемки на земной поверхности, угла возвышения Солнца и облачности [6]. Условия для съемки с КА типа МКС периодически возникают и съемки могут быть реализованы.

В настоящее время технически все готово для реализации предложенного способа на КА, например МКС. Для определения неподвижных характерных точек на склонах ледника и фиксации контрольного створа могут использоваться оптические приборы и визиры, применяемые на орбитальных станциях. Применяемые оптические приборы и визиры дают изображение характерных точек на склонах ледника. Это изображение отображается на компьютере, где может быть осуществлена фиксация контрольного створа. Для съемки и получения изображений ледника, характерных точек и контрольного створа могут использоваться съемочные системы орбитальной станции. Для определения по полученным снимкам измеряемых расстояний и определения скорости движения фронтальной части ледника по приведенной формуле могут использоваться вычислительные средства МКС.

Предлагаемый способ позволяет определять скорость движения фронтальной части ледника дистанционно, без присутствия специалистов на леднике и его склоне. Это является чрезвычайно полезным эффектом. Кроме того, в большом количестве случаев присутствие людей на леднике невозможно, а с учетом большого количества существующих ледников и необходимости контроля их перемещения предлагаемый способ является единственным способом решения данной задачи.

Литература

1. С.В. Калесник. Очерки гляциологии, Государственное издательство географической литературы, Москва, 1963.

2. Л.В. Десинов. Снежный покров и ледники. М.: «Знание», 1988.

3. Л.В. Десинов. Агрессия горного ледника. «Земля и Вселенная», №1, 2003.

4. Mercanton P. Le cryocinemetre de la Commission helvetigue des glaciers. «Ztschr. F.G.», XXII, 1935.

5. Galloway R.W. Mechanical measurement of glacier motion. «Journ. Of Glaciology», №19, 1956.

6. М.Ю. Беляев. Научные эксперименты на космических кораблях и орбитальных станциях, М.: «Машиностроение», 1984.

Способ определения скорости движения фронтальной части ледника с космического аппарата, включающий определение перемещения ледника за заданный промежуток времени, отличающийся тем, что определяют неподвижные характерные точки на склонах ледника, осуществляют с космического аппарата съемку ледника и неподвижных характерных точек и получают изображение, фиксируют контрольный створ в виде линии, проходящей через неподвижные характерные точки, в случае пересечения изображения ледника и контрольного створа измеряют по полученному изображению расстояние L от контрольного створа до максимально удаленной крайней точки языка ледника, а в случае если изображение ледника и контрольный створ не пересекаются - расстояние до минимально удаленной крайней точки языка ледника, через промежуток времени ΔT, больший или равный n=3·Δ/0.2, где n - количество суток, Δ - геометрическое разрешение съемочной системы космического аппарата, повторяют съемку с космического аппарата при возникновении условий съемки, определяют изменение δL измеряемого расстояния от контрольного створа до крайней точки языка ледника и определяют скорость движения фронтальной части ледника по формуле δL/ΔT.
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ДВИЖЕНИЯ ФРОНТАЛЬНОЙ ЧАСТИ ЛЕДНИКА С КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ДВИЖЕНИЯ ФРОНТАЛЬНОЙ ЧАСТИ ЛЕДНИКА С КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 51-60 из 376.
27.02.2014
№216.012.a708

Осевой вентилятор

Заявленный осевой вентилятор может быть использован в составе систем терморегулирования изделий космической техники. Осевой вентилятор содержит корпус, спрямляющий аппарат в виде втулки с лопатками, размещенную внутри втулки гильзу с закрепленным в ней электродвигателем и рабочим колесом, а...
Тип: Изобретение
Номер охранного документа: 0002508475
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a9f9

Модель стационарного плазменного двигателя

Изобретение относится к области электроракетных двигателей. В модели стационарного плазменного двигателя (СПД), содержащей кольцевую диэлектрическую разрядную камеру, с расположенным внутри нее кольцевым анодом-газораспределителем, магнитную систему и катод, внутри его разрядной камеры...
Тип: Изобретение
Номер охранного документа: 0002509228
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9fb

Диафрагменный насос

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования для космических летательных аппаратов. Насос включает мембранную головку с двумя полостями, образованными мембраной с корпусом и крышкой, между фланцами которых закреплен край мембраны, а также...
Тип: Изобретение
Номер охранного документа: 0002509230
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa15

Термокомпрессионное устройство

Изобретение относится к холодильной технике. Термокомпрессионное устройство содержит источник газа высокого давления с подключенными к нему баллонами-компрессорами, параллельно включенными в объединенную магистраль заправки баллонов-компрессоров и подачи газа потребителю на входе в...
Тип: Изобретение
Номер охранного документа: 0002509256
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa16

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств. Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль прокачки...
Тип: Изобретение
Номер охранного документа: 0002509257
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.abcc

Способ заправки рабочим телом гидравлической магистрали замкнутого жидкостного контура, снабженной гидропневматическим компенсатором объемного расширения рабочего тела, и устройство для его осуществления

Группа изобретений относится к системам терморегулирования (СТР), преимущественно, космических аппаратов, может быть использована при их подготовке к летной эксплуатации, а также в других областях. В предлагаемом способе перед заполнением отвакуумированной гидравлической магистрали рабочим...
Тип: Изобретение
Номер охранного документа: 0002509695
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b3f7

Дублированный электронасосный агрегат

Заявленный дублированный электронасосный агрегат относится к машиностроению и может быть использован в системах терморегулирования изделий авиационной и ракетной техники. Дублированный электронасосный агрегат содержит сборный корпус, установленные в корпусе с его противоположных концов два...
Тип: Изобретение
Номер охранного документа: 0002511788
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b44e

Жидкостно-газовый реактивный двигатель

Изобретение относится к ракетно-космической технике и может быть использовано в качестве корректирующей двигательной установки космического аппарата. Жидкостно-газовый реактивный двигатель (ЖГРД) содержит бак, заполненный жидким рабочим телом - водой, с выходным отверстием в крышке, камеру и...
Тип: Изобретение
Номер охранного документа: 0002511877
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.bce5

Способ измерения электрического сопротивления изоляции между группой объединенных контактов и отдельным контактом и устройство его реализации

Изобретение относится к области электроизмерительной техники, в частности к автоматизированным системам контроля электрического сопротивления и прочности изоляции, и может быть использовано при контроле сопротивления изоляции электрических цепей электро- и радиотехнических изделий. Способ...
Тип: Изобретение
Номер охранного документа: 0002514096
Дата охранного документа: 27.04.2014
27.04.2014
№216.012.bdd3

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств. Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль подачи газа...
Тип: Изобретение
Номер охранного документа: 0002514335
Дата охранного документа: 27.04.2014
Показаны записи 51-60 из 323.
20.01.2014
№216.012.993e

Плавильная печь установки для плазменно-дуговой плавки

Изобретение относится к области вакуумных установок для плазменной дуговой плавки металлов и сплавов в космосе и предназначено для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях...
Тип: Изобретение
Номер охранного документа: 0002504929
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9a8e

Механизм коленного шарнира

Изобретение относится к протезированию нижних конечностей. Механизм коленного шарнира содержит верхнюю опорную головку с креплением гильзы бедра, нижний опорный кронштейн с креплением трубки голени, переходное кинематическое звено, по меньшей мере две оси вращения, а также голенно-откидное...
Тип: Изобретение
Номер охранного документа: 0002505272
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9b4d

Космическое зубило (варианты)

Изобретение относится к космической технике, в частности к ручным инструментам, используемым космонавтом, снаряженным в скафандр, в условиях невесомости при выполнении технологических операций в процессе внекорабельной деятельности. Зубило для обработки материала в условиях космического...
Тип: Изобретение
Номер охранного документа: 0002505463
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f37

Узел крепления двух объектов

Изобретение относится к узлам крепления компонентов конструкции, преимущественно для крепления космических объектов при внекорабельной деятельности, и направлено на обеспечение исключения потерь крепежных элементов, а также обеспечение стопорения крепежного элемента при динамических нагрузках и...
Тип: Изобретение
Номер охранного документа: 0002506467
Дата охранного документа: 10.02.2014
27.02.2014
№216.012.a6d0

Установка для электролиза воды под давлением и способ ее эксплуатации

Изобретение относится к установке для электролиза воды под давлением, состоящей из электролизера с линией подачи воды, подключенного к блоку питания, который электрически связан с блоком управления, подключенных к электролизеру по линиям водорода и кислорода ресиверов для накопления водорода и...
Тип: Изобретение
Номер охранного документа: 0002508419
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a708

Осевой вентилятор

Заявленный осевой вентилятор может быть использован в составе систем терморегулирования изделий космической техники. Осевой вентилятор содержит корпус, спрямляющий аппарат в виде втулки с лопатками, размещенную внутри втулки гильзу с закрепленным в ней электродвигателем и рабочим колесом, а...
Тип: Изобретение
Номер охранного документа: 0002508475
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a71e

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств. Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, выполненным в виде теплоизолированной...
Тип: Изобретение
Номер охранного документа: 0002508497
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a9f9

Модель стационарного плазменного двигателя

Изобретение относится к области электроракетных двигателей. В модели стационарного плазменного двигателя (СПД), содержащей кольцевую диэлектрическую разрядную камеру, с расположенным внутри нее кольцевым анодом-газораспределителем, магнитную систему и катод, внутри его разрядной камеры...
Тип: Изобретение
Номер охранного документа: 0002509228
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9fb

Диафрагменный насос

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования для космических летательных аппаратов. Насос включает мембранную головку с двумя полостями, образованными мембраной с корпусом и крышкой, между фланцами которых закреплен край мембраны, а также...
Тип: Изобретение
Номер охранного документа: 0002509230
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa15

Термокомпрессионное устройство

Изобретение относится к холодильной технике. Термокомпрессионное устройство содержит источник газа высокого давления с подключенными к нему баллонами-компрессорами, параллельно включенными в объединенную магистраль заправки баллонов-компрессоров и подачи газа потребителю на входе в...
Тип: Изобретение
Номер охранного документа: 0002509256
Дата охранного документа: 10.03.2014
+ добавить свой РИД