×
10.11.2015
216.013.8e41

Результат интеллектуальной деятельности: СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, в тепловой электрической станции используют теплообменник-охладитель сетевой воды, который устанавливают на обратном трубопроводе сетевой воды, а также конденсационную установку, имеющую конденсатор второй паровой турбины, и дополнительно осуществляют утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в первой турбине пара, утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. В качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения. В качестве низкокипящего рабочего тела используют сжиженный пропан СН. Изобретение позволяет утилизировать тепло и осуществить дополнительную выработку электрической энергии. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора.

Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, последовательно нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а затем направляют потребителям, охлаждение отработавшего пара производят циркуляционной водой, которую используют в качестве источника низкопотенциальной теплоты для испарителя теплонасосной установки, при этом весь поток сетевой воды после нижнего сетевого подогревателя дополнительно подогревают в конденсаторе теплонасосной установки (патент RU №2269656, МПК F01K 17/02, 10.02.2006).

Прототипом является способ работы тепловой электрической станции, содержащей подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, при этом конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей (патент RU №2268372, МПК F01K 17/02, 20.01.2006).

В известном способе сетевую воду, поступающую от потребителей по обратному трубопроводу сетевой воды, с помощью сетевого насоса подают в сетевые подогреватели, где нагревают паром отопительных отборов турбины. Отработавший в турбине пар охлаждают в конденсаторе, для чего подают в него по напорному трубопроводу и отводят по сливному трубопроводу циркуляционную воду. Нагретую в сетевых подогревателях сетевую воду перед подачей потребителям дополнительно нагревают в конденсаторе теплонасосной установки, в качестве низкопотенциального источника теплоты в испарителе теплонасосной установки используют циркуляционную воду из сливного трубопровода.

Таким образом, в известном способе работы тепловой электрической станции пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости.

Основным недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины, обусловленную наличием вторичного контура (теплонасосной установки), а также отсутствия утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электроэнергии.

Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель нарушается его экосистема.

Задачей изобретения является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.

Технический результат достигается тем, что в способе работы тепловой электрической станции, по которому пар отопительных параметров из отборов первой паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, согласно настоящему изобретению в тепловой электрической станции используют теплообменник-охладитель сетевой воды, который устанавливают на обратном трубопроводе сетевой воды, а также конденсационную установку, имеющую конденсатор второй паровой турбины, и дополнительно осуществляют утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в первой турбине пара, утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в конденсаторе первой паровой турбины, нагревают в теплообменнике-охладителе сетевой воды, нагревают и испаряют в конденсаторе второй паровой турбины, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.

В качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.

Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара из второй паровой турбины, которые осуществляют путем последовательного нагрева соответственно в конденсаторе первой паровой турбины, теплообменнике-охладителе сетевой воды и конденсаторе второй паровой турбины низкокипящего рабочего тела (сжиженного пропана С3Н8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором, теплообменником-рекуператором, теплообменник-охладитель и конденсационную установку.

На чертеже цифрами обозначены:

1 - первая паровая турбина,

2 - конденсатор паровой турбины,

3 - конденсатный насос конденсатора паровой турбины,

4 - основной электрогенератор,

5 - тепловой двигатель с замкнутым контуром циркуляции,

6 - турбодетандер,

7 - электрогенератор,

8 - теплообменник-конденсатор,

9 - конденсатный насос,

10 - верхний сетевой подогреватель,

11 - нижний сетевой подогреватель,

12 - подающий трубопровод сетевой воды,

13 - обратный трубопровод сетевой воды,

14 - теплообменник-охладитель сетевой воды,

15 - конденсационная установка,

16 - вторая паровая турбина,

17 - электрогенератор второй паровой турбины,

18 - конденсатор второй паровой турбины,

19 - конденсатный насос конденсатора второй паровой турбины,

20 - теплообменник-рекуператор.

Тепловая электрическая станция включает последовательно соединенные первую паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, включенными по нагреваемой среде между подающим 12 и обратным 13 трубопроводами сетевой воды.

В тепловую электрическую станцию введены теплообменник-охладитель 14 сетевой воды, конденсационная установка 15 и тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.

Вход теплообменника-охладителя 14 сетевой воды по нагреваемой среде соединен с обратным трубопроводом 13 сетевой воды. Выход теплообменника-охладителя 14 по нагреваемой среде соединен с нижним сетевым подогревателем 11.

Конденсационная установка 15 содержит последовательно соединенные вторую паровую турбину 16, имеющую электрогенератор 17, конденсатор 18 второй паровой турбины и конденсатный насос 19 конденсатора второй паровой турбины.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 20, теплообменник-конденсатор 8, конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 20, который соединен по нагреваемой среде с входом конденсатора 2 первой паровой турбины, выход которого соединен по нагреваемой среде с входом теплообменника-охладителя 14 сетевой воды, выход теплообменника-охладителя 14 по нагреваемой среде соединен с входом конденсатора 18 второй паровой турбины, выход конденсатора 18 второй паровой турбины соединен по нагреваемой среде с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 20, выход теплообменника-рекуператора 20 соединен по греющей среде с теплообменником-конденсатором 8, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.

Способ работы тепловой электрической станции осуществляют следующим образом.

Пар отопительных параметров из отборов паровой турбины 1 поступает в паровое пространство нижнего 11 и верхнего 10 сетевых подогревателей. Сетевая вода поступает от потребителей по обратному трубопроводу 13 сетевой воды в нижний сетевой подогреватель 11 и верхний сетевой подогреватель 10. Далее сетевую воду направляют в подающий трубопровод 12 сетевой воды.

Отработавший пар поступает из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара при помощи охлаждающей жидкости.

В тепловой электрической станции используют теплообменник-охладитель 14 сетевой воды, который устанавливают на обратном трубопроводе 13 сетевой воды, а также конденсационную установку 15, имеющую конденсатор 18 второй паровой турбины, и дополнительно осуществляют утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в первой турбине 1 пара, утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины осуществляют при помощи теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе 9 теплового двигателя, нагревают в теплообменнике-рекуператоре 20 теплового двигателя, нагревают в конденсаторе 2 первой паровой турбины, нагревают в теплообменнике-охладителе 14 сетевой воды, нагревают и испаряют в конденсаторе 18 второй паровой турбины, расширяют в турбодетандере 6 теплового двигателя, снижают его температуру в теплообменнике-рекуператоре 20 теплового двигателя и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.

В качестве теплообменника-конденсатора 8 теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.

Пример конкретного выполнения.

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан С3Н8). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.

Преобразование сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара, а также избыточной низкопотенциальной тепловой энергии обратной сетевой воды и высокопотенциальной тепловой энергии пара второй паровой турбины 16 в механическую и далее в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.

Таким образом, утилизацию сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) отработавшего в турбине 1 пара, утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты из паровой турбины 16 осуществляют путем последовательного нагрева соответственно в конденсаторе 2 паровой турбины, теплообменнике-охладителе 14 сетевой воды и конденсаторе 18 второй паровой турбины низкокипящего рабочего тела (сжиженного пропана С3Н8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана С3Н8, который последовательно направляют на нагрев в теплообменник-рекуператор 20, куда поступает перегретый газообразный пропан С3Н8 из турбодетандера 6, а затем в конденсатор 2 первой паровой турбины, куда поступает отработавший в турбине 1 пар, и в теплообменник-охладитель 14 сетевой воды, куда поступает обратная сетевая вода из обратного трубопровода 13. Температура обратной сетевой воды может варьироваться в интервале от 313,15 К до 343,15 К.

В процессе теплообмена перегретого газообразного пропана С3Н8 с сжиженным пропаном С3Н8 в теплообменнике-рекуператоре 20, а также в процессе конденсации отработавшего в турбине 1 пара в конденсаторе 2 паровой турбины и в процессе теплообмена обратной сетевой воды с сжиженным пропаном С3Н8 в теплообменнике-охладителе 14 сетевой воды происходит нагрев сжиженного пропана С3Н8 в пределах критической температуры в интервале от 300 К до 338,15 К при сверхкритическом давлении от 4,2512 МПа до 8 МПа, и далее его направляют на нагрев и испарение в конденсатор 18 второй паровой турбины, куда поступает из второй паровой турбины 16 при температуре около 573 К.

Пар, поступающий из второй паровой турбины 16 в паровое пространство конденсатора 18, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан С3Н8). Мощность паровой турбины 16 передается соединенному на одном валу основному электрогенератору 17.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 19 конденсатора второй паровой турбины направляют в систему регенерации.

В процессе конденсации пара в конденсаторе 18 второй паровой турбины происходит нагрев сжиженного пропана С3Н8 до критической температуры 369,89 К с последующим его испарением и перегревом до сверхкритической температуры от 369,89 К до 420 К при сверхкритическом давлении от 4,2512 МПа до 8 МПа, который направляют в турбодетандер 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана С3Н8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан С3Н8, имеющий температуру перегретого газа около 288 К, направляют в теплообменник-рекуператор 20 для снижения температуры.

В теплообменнике-рекуператоре 20 в процессе отвода теплоты на нагрев сжиженного пропана С3Н8 снижается нагрузка на теплообменник-конденсатор 8 и затраты мощности на привод вентиляторов воздушного охлаждения.

Далее при снижении температуры газообразного пропана С3Н8 происходит его сжижение в теплообменнике-конденсаторе 8, выполненного, например, в виде конденсатора воздушного охлаждения, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.

После теплообменника-конденсатора 8 в сжиженном состоянии пропан С3Н8 направляют для сжатия в конденсатный насос 9 теплового двигателя.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.

Использование в работе тепловой электрической станции конденсационной установки 15 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6.

Использование способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты отработавшего пара, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара второй паровой турбины для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду.


СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 164.
20.08.2015
№216.013.7172

Способ работы тепловой электрической станции

Изобретение относится к области энергетики к утилизации теплоты тепловой электрической станции (ТЭС). Осуществляют подачу пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от потребителей по обратному...
Тип: Изобретение
Номер охранного документа: 0002560612
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7173

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано для утилизации теплоты тепловой электрической станции (ТЭС). Осуществляют подачу пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от...
Тип: Изобретение
Номер охранного документа: 0002560613
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7174

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано для утилизации теплоты тепловой электрической станции (ТЭС). Осуществляют подачу пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от...
Тип: Изобретение
Номер охранного документа: 0002560614
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7175

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки...
Тип: Изобретение
Номер охранного документа: 0002560615
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7177

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Проводят утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и системы маслоснабжения подшипников...
Тип: Изобретение
Номер охранного документа: 0002560617
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.717b

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и системы маслоснабжения подшипников...
Тип: Изобретение
Номер охранного документа: 0002560621
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.717c

Способ утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии. Осуществляют подачу отработавшего пара...
Тип: Изобретение
Номер охранного документа: 0002560622
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.717e

Способ утилизации теплоты тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации ее теплоты для дополнительной выработки электрической энергии. Осуществляют подачу отработавшего пара из паровой турбины в паровое пространство конденсатора, в котором...
Тип: Изобретение
Номер охранного документа: 0002560624
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.78c5

Способ работы тепловой электрической станции

Предлагаемое изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС в зимний период времени. Способ работы тепловой электрической станции, по которому...
Тип: Изобретение
Номер охранного документа: 0002562506
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.797f

Способ определения частоты трехфазного напряжения

Изобретение относится к области информационно-измерительной и вычислительной техники и может быть использовано в электроэнергетике для контроля усредненных значений частоты в промышленных трехфазных электрических сетях. Согласно способу для определения частоты F используют цифровые сигналы всех...
Тип: Изобретение
Номер охранного документа: 0002562692
Дата охранного документа: 10.09.2015
Показаны записи 91-100 из 179.
20.08.2015
№216.013.7104

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002560502
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7105

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной и избыточной теплоты. Способ утилизации тепловой энергии, вырабатываемой ТЭС, включает направление пара отопительных параметров из отборов паровой турбины в...
Тип: Изобретение
Номер охранного документа: 0002560503
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7106

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002560504
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7107

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и избыточной...
Тип: Изобретение
Номер охранного документа: 0002560505
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7109

Способ работы тепловой электрической станции

Изобретение относится к способу утилизации тепловой энергии, вырабатываемой электрической станцией. Используют систему маслоснабжения подшипников паровой турбины, состоящую из охладителя, бака и насоса, теплообменник-охладитель сетевой воды, который устанавливают на обратном трубопроводе...
Тип: Изобретение
Номер охранного документа: 0002560507
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.710b

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и...
Тип: Изобретение
Номер охранного документа: 0002560509
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.710c

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию...
Тип: Изобретение
Номер охранного документа: 0002560510
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.710e

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002560512
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.710f

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002560513
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7110

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002560514
Дата охранного документа: 20.08.2015
+ добавить свой РИД