×
10.11.2015
216.013.8e25

Результат интеллектуальной деятельности: СПОСОБ ЗОНДИРОВАНИЯ ВЕРХНЕЙ АТМОСФЕРЫ

Вид РИД

Изобретение

№ охранного документа
0002567998
Дата охранного документа
10.11.2015
Аннотация: Изобретение относится к космической технике и может быть использовано для зондирования верхней атмосферы. Способ зондирования верхней атмосферы основан на измерении и прогнозировании орбиты космического аппарата (КА) и измерении физических параметров атмосферы. Прогнозируется время существования КА. Определяется момент времени начала спусковых операций для спуска космического аппарата в заданную точку на Земле. Определяется момент времени начала зондирования, соответствующий заданной длительности зондирования и возможности спуска КА в заданную точку. К моменту начала зондирования выпускают капсулу с научной аппаратурой на тросе с КА и начинают измерение физических параметров атмосферы с контактом используемых исследовательских приборов и изучаемой среды. Зондирование прекращают в момент начала спусковых операций. Техническим результатом изобретения является обеспечение заданной длительности зондирования верхней атмосферы.
Основные результаты: Способ зондирования верхней атмосферы, включающий измерение и прогнозирование орбиты космического аппарата, а также измерение физических параметров атмосферы, отличающийся тем, что прогнозируют время существования космического аппарата, определяют по нему момент времени начала спусковых операций T для спуска космического аппарата в заданную точку на Земле, определяют момент времени начала зондирования T верхней атмосферы по формуле T=T-ΔT, соответствующий заданной длительности зондирования ΔT и возможности спуска космического аппарата в заданную точку, к моменту начала зондирования T выпускают капсулу с научной аппаратурой на тросе с космического аппарата и начинают измерение физических параметров атмосферы с контактом используемых исследовательских приборов и изучаемой среды, и прекращают зондирование в момент начала спусковых операций T космического аппарата.

Изобретение относится к космической технике и может быть использовано для зондирования верхней атмосферы.

Зондирование атмосферы - это определение вертикального или горизонтального распределения температуры, влажности, давления, ветра и других физических параметров атмосферы. Наибольшее значение имеет вертикальное зондирование атмосферы. Методов вертикального зондирования атмосферы существует много: зондирование с помощью радиозондов, оптическое - лучом лазера, акустическое (звуком), радиолокационное, ракетное и др. [1] Калиновский А.Б., Пинус Н.З. Аэрология, ч. 1, Л., 1961. При акустическом зондировании атмосферы определяется распределение температуры и ветра по измерениям времени и направления прихода звуковых волн от взрывов небольших гранат, сбрасываемых с ракеты.

Наиболее распространен метод вертикального зондирования атмосферы с помощью радиозондов - миниатюрных метеостанций, поднимаемых до высоты 30-40 км резиновыми или полиэтиленовыми шарами, наполненными водородом или гелием, температура измеряется термисторами (реже биметаллическими деформационными термометрами), давление - мембранными манометрами, влажность - пленочными или электрохимическими гигрометрами [1]. Радиозонд непрерывно передает по радио результаты измерений, регистрируемые в пункте выпуска. Скорость и направление ветра в слое, через который поднимается радиозонд, определяются с помощью радиолокаторов, ведущих непрерывное определение пространственных координат прибора. Выпуски радиозондов производятся ежедневно несколько раз в сутки в строго определенное время. Результаты зондирования атмосферы, проводимого более чем в 800 пунктах радиозондирования в разных географических районах, являются основными исходными материалами для составления прогноза погоды. Для научно-исследовательских целей наряду с массовыми радиозондами периодически поднимаются специальные радиозонды, измеряющие состав атмосферы, радиационные потоки и т.д.

Однако данный способ - аналог не позволяет исследовать атмосферу на больших высотах.

На больших высотах (до 100 км и выше) зондирование атмосферы проводится метеорологическими ракетами, в головной части которых помещаются приборы, опускающиеся на парашюте после достижения максимальной высоты. Измеряются плотность, температура, ветер, а при научно-исследовательских пусках - также и состав воздуха, интенсивность и спектр солнечной радиации и т.д. Часть измерений производится при подъеме ракеты, а часть - при спуске приборов на парашюте. Результаты измерений передаются по радио и обрабатываются на электронных вычислительных машинах. Температура определяется электротермометрами или по данным о плотности воздуха; на высотах, больших 80-90 км, она может вычисляться по скорости диффузии искусственных облаков, выпускаемых с ракеты. Для измерения ветра пользуются радиолокационным прослеживанием либо дрейфа головной части ракеты при ее опускании на парашюте, либо облаков из искусственных отражателей.

Использование ракет хотя и обеспечивает контакт используемых исследовательских приборов с изучаемой средой (верхней атмосферой), но позволяет изучать верхние слои атмосферы в течение очень короткого времени (несколько секунд).

Поскольку станции радиозондового и ракетного зондирования атмосферы дают лишь 20% информации, необходимой для прогноза погоды, оставляя почти неосвещенными обширные океанические, приполярные и горные районы, важнейшую роль играет зондирование атмосферы с помощью искусственных спутников Земли, движущихся по известным за счет измерений орбитам и дающих возможность сбора метеорологической информации над всеми районами земного шара. Ветер в свободной атмосфере определяют, анализируя данные о виде облаков и их дрейфе, получаемые с помощью фотографий, сделанных со спутников в дневном или инфракрасном свете. Вертикальный профиль температуры можно рассчитать по результатам измерений спектрального распределения уходящего теплового излучения системы Земля - атмосфера, поскольку его интенсивность зависит от температуры вполне определенным образом. Измерения ведутся на узких участках спектра, соответствующих полосам поглощения газов, чьи вертикальные распределения в атмосфере стабильны и хорошо изучены. Для этого пользуются полосами поглощения 002 (4,3 и 15 мкм) и 02(5 мм). Вертикальные профили водяного пара, озона и др. переменных частей газового состава атмосферы при известном распределении температуры могут быть рассчитаны по данным измерений уходящего излучения в полосах поглощения этих газов.

Описанный способ зондирования, взятый авторами за прототип, включает измерение и прогнозирование орбиты космического аппарата (КА) и измерение физических параметров атмосферы [2] Кондратьев К.Я., Тимофеев Ю.М. Термическое зондирование атмосферы со спутника, Л., 1970.

Данный способ позволяет осуществлять изучение атмосферы с помощью дистанционного зондирования с КА. В некоторых случаях, однако, желательно иметь контакт используемых исследовательских приборов с изучаемой средой, т.е. с верхними слоями атмосферы.

В настоящее время отсутствуют возможности проведения измерений в течение более одного витка на высотах 100-150 км.

Техническим результатом предлагаемого способа является обеспечение заданной длительности зондирования верхней атмосферы.

Технический результат достигается тем, что в предлагаемом способе зондирования верхней атмосферы, основанном на измерении и прогнозировании орбиты КА и измерении физических параметров атмосферы, прогнозируют время существования КА, определяют по нему момент времени начала спусковых операций Tнс для спуска космического аппарата в заданную точку на Земле, определяют момент времени начала зондирования Tнз верхней атмосферы по формуле Tиз-Tнс-ΔT, соответствующий заданной длительности зондирования ΔT и возможности спуска КА в заданную точку, к моменту начала зондирования Tиз выпускают капсулу с научной аппаратурой на тросе с КА и начинают измерение физических параметров атмосферы с контактом используемых исследовательских приборов и изучаемой среды, и прекращают зондирование в момент начала спусковых операций Tнс КА.

В настоящее время технически существует возможность изучения верхних слоев атмосферы с помощью тросовой системы, состоящей из транспортного грузового корабля (ТГК) "Прогресс" и опускаемого с него на длинном тросе атмосферного зонда. Научная аппаратура для этого эксперимента размещается и доставляется на Международную космическую станцию в грузовом отсеке корабля "Прогресс". Эта аппаратура включает в себя: атмосферный зонд с устройством его выталкивания; трос длиной до 100 км с устройством его управляемого выпуска; измерительные и диагностические приборы. В качестве атмосферного зонда предполагается использовать при необходимости дорабатываемую возвращаемую баллистическую капсула типа "Радуга" массой 350 кг, а в качестве устройства ее выталкивания из грузового отсека корабля - пружинные толкатели. Капсула может быть снабжена аппаратурой для передачи данных зондирования атмосферы.

При выборе длины, сечения, материала и структуры троса учитывались заданный профиль высот полета корабля и капсулы, габаритные и массовые ограничения грузового отсека, необходимая прочность и теплостойкость троса. Для принятой схемы проведения эксперимента длина троса может достигать 100 км, при этом для уменьшения площади лобового сопротивления диаметр троса должен быть по возможности минимальным. В качестве материала троса рассматривались металлические проволоки из вольфрама, титана, стали, алюминия и волокна на основе углерода, бора, кварца, стекла, кевлара, дакрона и найлона. По совокупности критериев наилучшим вариантом был принят трос из кварцевого волокна, при длине 100 км имеющий необходимый диаметр 0,62 мм и массу 60 кг.

В качестве устройства управляемого выпуска троса при развертывании системы рассматривались безынерционные катушки с фрикционным тормозом и лебедки с автоматизированным электроприводом. В результате анализа был предложен комбинированный вариант: использовать лебедку с электромеханическим тормозом, состоящую из безынерционной катушки с уложенным начальным участком троса и вращающегося барабана с намотанной основной частью троса, редуктора, многофазного электродвигателя и реостата. Ось барабана через редуктор связана с ротором электродвигателя, выполненным в виде постоянного магнита, а фазы обмоток статора электродвигателя замкнуты через резисторы реостата. При развертывании тросовой системы трос вытягивается из этого устройства внешними силами, а электродвигатель создает на барабане тормозной момент, пропорциональный скорости вращения барабана. Таким образом, осуществляется автоматическое регулирование силы натяжения выпускаемого троса в зависимости от длины его выпущенной части и скорости выпуска. При необходимости можно сделать управление выпуском троса более гибким, используя в лебедке систему управления, осуществляющую подключение и отключение фаз обмоток к резисторам в зависимости от текущей длины и скорости выпуска троса по заданному алгоритму.

Измерительные приборы предназначены для исследования динамики развертывания и орбитального полета тросовой системы и могут включать в себя, в частности, элементы навигационной аппаратуры. Диагностические приборы предназначены для изучения взаимодействия зонда с набегающим потоком воздуха и могут включать в себя датчики температуры, давления и т.п.

После доставки на станцию непосредственно перед началом эксперимента экипаж переводит научную аппаратуру в рабочее положение, не выходя в открытый космос. Эксперимент начинается после отстыковки корабля от станции и его перевода на низшую орбиту высотой 250-300 км. Перед развертыванием тросовой системы корабль ориентируется продольной осью по местной вертикали так, чтобы выталкивание капсулы из грузового отсека произошло в направлении вниз, к Земле. Капсула выталкивается пружинными толкателями и отходит от корабля, сначала вытягивая за собой из безынерционной катушки начальный участок троса с небольшим сопротивлением, а затем начинается регулируемый выпуск основной части троса с барабана лебедки. По окончании развертывания тросовая система должна занять на орбите положение, близкое к устойчивому вертикальному с некоторыми остаточными маятниковыми и продольными колебаниями допустимой амплитуды.

Развернутая тросовая система будет совершать орбитальный полет, постепенно снижая свою орбиту под действием сопротивления атмосферы, причем желательно, чтобы зонд летел как можно дольше на возможно меньшей высоте. При этом будут исследоваться темп снижения орбиты, маятниковые, поперечные и продольные колебания троса, взаимодействие капсулы с набегающим потоком воздуха и другие физические явления. При достижении кораблем высоты около 200 км тросовая система будет разделена путем отрезания троса от корабля, после чего капсула, возможно, спустится на Землю на парашюте, а корабль будет затоплен в заданном районе океана. При необходимости капсула может быть отделена от троса.

При развертывании тросовой системы при длине троса 100 км развертывание тросовой системы при разных длинах троса длится 16 часов, остаточный угол отклонения троса от вертикали не более 1°, а остаточная скорость выпуска троса не более 1 м/с обеспечивает отсутствие разрыва или ослабления троса при рывке в конце развертывания.

Для длины троса 100 км полет тросовой системы в процессе снижения зонда со 150 до 100 км длится чуть больше 6 витков, при этом отклонения троса от вертикали резко возрастают с приближением высоты полета зонда к 100 км.

Предлагаемый способ позволяет обеспечить зондирование верхней атмосферы длительное время с контактом исследовательской аппаратуры и изучаемой среды.

Список литературы

1. Калиновский А.Б., Пинус Н.З. Аэрология, ч. 1, Л., 1961.

2. Кондратьев К.Я., Тимофеев Ю.М. Термическое зондирование атмосферы со спутника, Л., 1970.

3. Кмито А.А. Методы исследования атмосферы с использованием ракет и спутников, Л., 1966.

Способ зондирования верхней атмосферы, включающий измерение и прогнозирование орбиты космического аппарата, а также измерение физических параметров атмосферы, отличающийся тем, что прогнозируют время существования космического аппарата, определяют по нему момент времени начала спусковых операций T для спуска космического аппарата в заданную точку на Земле, определяют момент времени начала зондирования T верхней атмосферы по формуле T=T-ΔT, соответствующий заданной длительности зондирования ΔT и возможности спуска космического аппарата в заданную точку, к моменту начала зондирования T выпускают капсулу с научной аппаратурой на тросе с космического аппарата и начинают измерение физических параметров атмосферы с контактом используемых исследовательских приборов и изучаемой среды, и прекращают зондирование в момент начала спусковых операций T космического аппарата.
Источник поступления информации: Роспатент

Показаны записи 101-110 из 377.
10.12.2014
№216.013.0f63

Устройство для отведения ядерной энергетической установки от приборно-агрегатного отсека космического аппарата

Изобретение относится к космическим аппаратам (КА), может быть использовано для обеспечения отведения на заданное расстояние ядерной энергетической установки (ЯЭУ) от приборно-агрегатного отсека КА. Устройство для отведения ЯЭУ представляет собой трансформируемую пространственную ферменную...
Тип: Изобретение
Номер охранного документа: 0002535356
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.100b

Коммутатор измерительного прибора для контроля качества цепей питания электротехнических систем изделия при их сборке

Изобретение относится к области технологических устройств и может быть использовано в составе автоматизированной измерительной системы совместно с измерительными приборами при контроле цепей питания электротехнической системы изделия в процессе. Коммутатор содержит три входные цепи, четыре...
Тип: Изобретение
Номер охранного документа: 0002535524
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1127

Устройство для соединения трубопроводов двух объектов

Изобретение относится к устройству для соединения трубопроводов двух объектов и предназначено для соединения пневмогидравлических систем терморегулирования или заправки орбитальных космических станций для соединения узлов и объектов за пределами корабельной деятельности. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002535814
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.11b8

Побудитель циркуляции жидких теплоносителей, преимущественно для системы терморегулирования космического объекта

Изобретение относится преимущественно к системам терморегулирования космических объектов. Побудитель циркуляции содержит электронасосные агрегаты (ЭНА) и соединительные трубопроводы с гидроразъемами (ГР). ГР стыкуются через трубчатые перемычки с внешней гидравлической сетью. Каждый ГР выполнен...
Тип: Изобретение
Номер охранного документа: 0002535959
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.11bc

Способ управления орбитальным космическим аппаратом

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ...
Тип: Изобретение
Номер охранного документа: 0002535963
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.14ca

Устройство для отбора проб космонавтом с внешней поверхности космического объекта

Изобретение относится преимущественно к инструментам, используемым космонавтом в открытом космосе. Устройство содержит корпус из химически, термически, механически устойчивого и γ-проницаемого материала. В корпусе выполнены одна или более глухих полостей с резьбой и конической поверхностью на...
Тип: Изобретение
Номер охранного документа: 0002536746
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.14dd

Способ управления орбитальным космическим аппаратом

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ...
Тип: Изобретение
Номер охранного документа: 0002536765
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.19d0

Коммутатор измерительного прибора для контроля качества цепей питания электротехнических систем изделия при их сборке

Изобретение относится к области технологических устройств и может быть использовано при контроле цепей питания электротехнической системы. Технический результат: увеличение производительности, исключение влияния помех и ошибок подключения измерительного прибора на надежность собираемой...
Тип: Изобретение
Номер охранного документа: 0002538036
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dd4

Двигательная установка космического летательного аппарата

Изобретение относится к ракетно-космической технике и может быть использовано в двигательных установках (ДУ) космических летательных аппаратов (КЛА). ДУ КЛА содержит криогенный бак с экранно-вакуумной теплоизоляцией и каналом с теплообменником, расходный клапан, бустерный насос, заборное...
Тип: Изобретение
Номер охранного документа: 0002539064
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dd8

Способ управления ориентацией космического транспортного грузового корабля с неподвижными панелями солнечных батарей при проведении работ в условиях вращательного движения

Изобретение относится к управлению ориентацией космического, в частности транспортного грузового корабля (ТГК) с неподвижными панелями солнечных батарей (СБ). Способ включает закрутку ТГК вокруг нормали к рабочей поверхности СБ, направленной на Солнце, с угловой скоростью не менее 1,5 град/сек....
Тип: Изобретение
Номер охранного документа: 0002539068
Дата охранного документа: 10.01.2015
Показаны записи 101-110 из 323.
20.11.2014
№216.013.06ca

Способ получения цветного декоративного покрытия на технической ткани для эксплуатации в условиях космического пространства

Изобретение относится к области материаловедения, а именно к получению цветных декоративных покрытий на технических тканях с помощью кремнийорганических эмалей, и может быть использовано для изображения надписей и рисунков, эксплуатируемых в условиях космического пространства. В способе...
Тип: Изобретение
Номер охранного документа: 0002533139
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0896

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к термокомпрессорам. В термокомпрессионном устройстве, содержащем источник газа высокого давления с подключенными к нему баллонами-компрессорами, источник холода и объединенную магистраль заправки баллонов-компрессоров, снабженную первым...
Тип: Изобретение
Номер охранного документа: 0002533599
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.089c

Центробежное рабочее колесо

Изобретение может быть использовано в составе электронасосных агрегатов систем терморегулирования изделий ракетно-космической техники, а также в химической промышленности. Центробежное рабочее колесо содержит единый со ступицей ведущий диск, покрывной диск с центральным входным отверстием и...
Тип: Изобретение
Номер охранного документа: 0002533605
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.089e

Электронасосный агрегат

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования изделий космической техники. Электронасосный агрегат содержит металлический корпус, установленный на корпусе бесконтактный электродвигатель постоянного тока с выполненным заодно с ним электронным...
Тип: Изобретение
Номер охранного документа: 0002533607
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.09a8

Способ формирования управляющих воздействий на космический аппарат

Изобретение относится к управлению движением космических аппаратов (КА) с использованием сил давления солнечного излучения, распределенных по рабочим зонам КА. Последние формируют в виде плоских параллельных оптически прозрачных капельных потоков. Расстояние между каплями радиусом R в каждом...
Тип: Изобретение
Номер охранного документа: 0002533873
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0f63

Устройство для отведения ядерной энергетической установки от приборно-агрегатного отсека космического аппарата

Изобретение относится к космическим аппаратам (КА), может быть использовано для обеспечения отведения на заданное расстояние ядерной энергетической установки (ЯЭУ) от приборно-агрегатного отсека КА. Устройство для отведения ЯЭУ представляет собой трансформируемую пространственную ферменную...
Тип: Изобретение
Номер охранного документа: 0002535356
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.100b

Коммутатор измерительного прибора для контроля качества цепей питания электротехнических систем изделия при их сборке

Изобретение относится к области технологических устройств и может быть использовано в составе автоматизированной измерительной системы совместно с измерительными приборами при контроле цепей питания электротехнической системы изделия в процессе. Коммутатор содержит три входные цепи, четыре...
Тип: Изобретение
Номер охранного документа: 0002535524
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1127

Устройство для соединения трубопроводов двух объектов

Изобретение относится к устройству для соединения трубопроводов двух объектов и предназначено для соединения пневмогидравлических систем терморегулирования или заправки орбитальных космических станций для соединения узлов и объектов за пределами корабельной деятельности. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002535814
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.11b8

Побудитель циркуляции жидких теплоносителей, преимущественно для системы терморегулирования космического объекта

Изобретение относится преимущественно к системам терморегулирования космических объектов. Побудитель циркуляции содержит электронасосные агрегаты (ЭНА) и соединительные трубопроводы с гидроразъемами (ГР). ГР стыкуются через трубчатые перемычки с внешней гидравлической сетью. Каждый ГР выполнен...
Тип: Изобретение
Номер охранного документа: 0002535959
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.11bc

Способ управления орбитальным космическим аппаратом

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ...
Тип: Изобретение
Номер охранного документа: 0002535963
Дата охранного документа: 20.12.2014
+ добавить свой РИД