×
10.11.2015
216.013.8dc0

АВТОНОМНЫЙ СОЛНЕЧНЫЙ ОПРЕСНИТЕЛЬ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002567895
Дата охранного документа
10.11.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технике опреснения морских, соленых и минерализованных вод и может быть использовано для получения опресненной воды без затрат дополнительной энергии. Автономный солнечный опреснитель содержит прямоугольный корпус с установленным в нем испарителем с бортиками 5, снабженным распределителем и покрытым снизу слоем гидротеплоизоляции, делящий полость корпуса на испарительную 7 и конденсационную 8 камеры. Нижняя часть корпуса, в которой расположена конденсационная камера 8 под испарителем, погружена в водоем с морской (минерализованной, соленой) водой. Корпус выполнен из материала с высокой теплопроводностью. Крыша 2 корпуса покрыта сверху фотоэлементами, соединенными с накопительным блоком 4. Испаритель выполнен в виде наклонного испарительного лотка с бортиками 5. Испарительная камера 7 и конденсационная камера 8 сообщаются между собой у бортов корпуса через вертикальные щели. Внутренняя поверхность торцов бортов и днища 10 в конденсационной камере 8 корпуса покрыты решеткой из полос пористого материала. В верхнем торце лотка 5 у правого торца корпуса расположен распределитель, представляющий собой заглушенную на торцах горизонтальную перфорированную трубу, соединенную трубопроводом 13 с погружным питательным насосом 14, помещенным в водоеме 15. Нижний торец лотка 5 соединен с выпускной горизонтальной щелью, устроенной в левом торце корпуса. Днище 10 корпуса в центре соединено с емкостью для сбора конденсата 17, в которой помещен конденсатный насос 18. Питательный 14 и конденсатный 18 насосы снабжаются электроэнергией из накопительного блока фотоэлементов 4. Изобретение позволяет повысить эффективность автономного солнечного опреснителя. 6 ил.
Основные результаты: Автономный солнечный опреснитель, содержащий корпус с установленным в нем испарителем с бортиками, снабженным распределителем и покрытым снизу слоем гидротеплоизоляции, делящим полость корпуса на испарительную и конденсационную камеры, размещенные в верхней и нижней частях корпуса, причем нижняя часть корпуса, в которой расположена конденсационная камера под испарителем, погружена в водоем с морской (минерализованной, соленой) водой, отличающийся тем, что корпус выполнен прямоугольным из материала с высокой теплопроводностью, крыша корпуса покрыта сверху фотоэлементами, соединенными с накопительным блоком, испаритель выполнен в виде наклонного испарительного лотка с бортиками, испарительная камера и конденсационная камера сообщаются между собой у бортов корпуса через вертикальные щели, внутренняя поверхность торцов, бортов и днища в конденсационной камере корпуса покрыты решеткой из полос пористого материала, в верхнем торце лотка у правого торца корпуса расположен распределитель, представляющий собой заглушенную на торцах горизонтальную перфорированную трубу, перфорация которой выполнена в направлении движения питательной нагреваемой воды и соединенную трубопроводом с погружным питательным насосом, помещенным в водоеме, нижний торец лотка соединен с выпускной горизонтальной щелью, устроенной в левом торце корпуса, днище корпуса в центре соединено с емкостью для сбора конденсата, в которой помещен конденсатный насос, при этом питательный и конденсатный насосы снабжаются электроэнергией из накопительного блока фотоэлементов, а уклон лотка направлен в сторону выпуска питательной воды с уклоном, равным углу естественного откоса воды.
Реферат Свернуть Развернуть

Изобретение относится к технике опреснения морских и соленых (минерализованных) вод и может быть использовано для получения опресненной воды без затраты дополнительной энергии.

Известен солнечный опреснитель, содержащий корпус со светопропускающей поверхностью, емкость с минерализованной водой и емкость для сбора конденсата, в котором емкость с минерализованной водой установлена с зазором к боковым стенкам и днищу корпуса опреснителя, на внешнюю поверхность корпуса опреснителя нанесено селективное покрытие с малым коэффициентом поглощения солнечного излучения и большой степенью черноты, на внутреннюю, обращенную к солнечному излучению поверхность емкости с минерализованной водой, нанесено селективное покрытие с большим коэффициентом поглощения солнечного излучения и малой степенью черноты, а на внутреннюю поверхность корпуса, расположенную выше уровня емкости с минерализованной водой, нанесено зеркальное покрытие [патент РФ №2126770, МПК C02 F1/14, 1999].

Основными недостатками известного солнечного опреснителя являются сложность и ненадежность его конструкции, обусловленные тем, что все внутренне покрытия покрываются солевыми отложениями и прекращают нормально функционировать, невозможность использования его конструкции для получения опресненной воды в больших количествах, необходимость его снабжения энергией для подачи морской (минерализованной, соленой) воды на испарение и удаления полученного опресненного конденсата, что снижает его надежность и эффективность.

Более близким к предлагаемому изобретению является гелиодистиллятор, содержащий корпус с прозрачным покрытием, дефлектор, установленную в корпусе испарительную тарелку с бортиками (испаритель), снабженную питательным патрубком (распределителем) и покрытую снизу слоем гидротеплоизоляции, конденсатор (конденсационная камера), размещенный в нижней части корпуса под тарелкой, погруженный в воду бассейна [авт. св. СССР №1554290, МПК С02F 1/14, 1989].

Основными недостатками известного гелиодистиллятора являются невозможность использования его конструкции для масштабного получения опресненной воды, необходимость периодической очистки поверхности тарелки от солевых отложений и рассола, для чего процесс дистилляции необходимо часто прерывать, необходимость наличия постороннего энергетического источника для насоса откачки полученного дистиллята, что снижает его эффективность.

Технической задачей предлагаемого изобретения является повышение эффективности автономного солнечного опреснителя. Техническая задача реализуется автономным солнечным опреснителем, который содержит прямоугольный корпус, выполненный из материала с высокой теплопроводностью, крыша которого покрыта сверху фотоэлементами, соединенными с накопительным блоком, внутри корпуса размещен наклонный испарительный лоток с бортиками, днище которого снизу покрыто слоем гидротеплоизоляции, делящий полость корпуса на верхнюю испарительную камеру и нижнюю конденсационную камеру, сообщающиеся между собой у бортов корпуса через вертикальные щели, при этом внутренняя поверхность торцов, бортов и днища в нижней конденсационной камере корпуса покрыты решеткой из полос пористого материала, в верхнем торце лотка у правого торца корпуса расположен впускной коллектор, представляющий собой заглушенную на торцах горизонтальную перфорированную трубу, перфорация которой выполнена в направлении движения питательной нагреваемой воды и соединенную трубопроводом с погружным питательным насосом, помещенным в водоеме с морской (минерализованной, соленой) водой, нижний торец лотка соединен с выпускной горизонтальной щелью, устроенной в левом торце корпуса, днище корпуса в центре соединено с емкостью для сбора конденсата, в которой помещен конденсатный насос, при этом большая часть корпуса, в которой расположена конденсационная камера, погружена в водоем, питательный и конденсатный насосы снабжаются электроэнергией из накопительного блока фотоэлементов, а уклон лотка направлен в сторону выпуска питательной воды с уклоном, равным углу естественного откоса воды.

Предлагаемый автономный солнечный опреснитель изображен на фиг. 1-6 (на фиг. 1 показан общий вид, на фиг. 2-6 - основные узлы и их разрезы).

Автономный солнечный опреснитель содержит прямоугольный корпус 1, выполненный из материала с высокой теплопроводностью, крыша 2 которого покрыта сверху фотоэлементами 3, соединенными с накопительным блоком 4 (соединительные электропровода на фиг. 1-5 не показаны), внутри корпуса 1 размещен наклонный испарительный лоток с бортиками 5, днище которого снизу покрыто слоем гидротеплоизоляции 6, делящий полость корпуса 1 на верхнюю испарительную камеру 7 и нижнюю конденсационную камеру 8, сообщающиеся между собой у бортов корпуса 1 через вертикальные щели 9, при этом внутренняя поверхность торцов, бортов и днища 10 в нижней конденсационной камере 8 корпуса 1 покрыты решеткой из полос пористого материала 11, в верхнем торце лотка 5 у правого торца корпуса 1 расположен впускной коллектор 12, представляющий собой заглушенную на торцах горизонтальную перфорированную трубу, перфорация которой выполнена в направлении движения питательной воды, соединенную трубопроводом 13 с погружным питательным насосом 14, помещенным в водоеме с морской (минерализованной, соленой) водой 15, нижний торец лотка 5 соединен с выпускной горизонтальной щелью 16, устроенной в левом торце корпуса 1, днище 10 корпуса 1 в центре соединено с емкостью для сбора конденсата 17, в которой помещен конденсатный насос 18, при этом большая часть корпуса 1, в которой расположена конденсационная камера 8, погружена в водоем 15, питательный и конденсатный насосы 14 и 18 снабжаются электроэнергией из накопительного блока 4 фотоэлементов 3 (соединительные электропровода на фиг. 1-5 не показаны), а уклон лотка 5 направлен в сторону выпуска питательной воды с уклоном, равным углу естественного откоса воды.

В основу работы предлагаемого автономного солнечного опреснителя положено свойство фотоэлементов 3 при воздействии на них солнечных лучей преобразовывать воспринятую солнечную энергию в электрическую и тепловую энергии [авт. св. СССР №1603152, МПК F24 J2/32, 1990].

Автономный солнечный опреснитель работает следующим образом. Корпус 1 погружается в водоем с морской (минерализованной, соленой) водой 14 таким образом, чтобы большая часть конденсационной камеры 8 корпуса 1 была погружена в водоем 15, выпускная горизонтальная щель 16 находилась над уровнем воды в водоеме 15, а крышка 2 была горизонтальной (для обеспечения равномерного приема солнечных лучей в течение светового дня). Такое положение корпуса 1 обеспечивается или соотношением между его весом и центром тяжести, или установкой его на якоря. Далее к распределителю 12 через трубопровод 13 присоединяют погружной питательный насос 14, глубину погружения которого Н выбирают из условий отсутствия в воде механических загрязнений, и включают его в работу (насос 14 снабжается электроэнергией от аккумулятора (на фиг. 1-6 не показан)) в накопительном блоке 4). При падении солнечных лучей на поверхность фотоэлементов 3 в них осуществляется преобразование воспринятой солнечной энергии в электрическую и тепловую энергии. При этом, полученное в фотоэлементах 3 электричество, направляется в накопительный блок 4, где осуществляется трансформация напряжения, силы тока и накопление электрической энергии, которая затем расходуется на привод насосов 14 и 18, а в случае избытка может быть направлено посторонним потребителям. Устойчивая и эффективная работа фотоэлементов 3 обеспечивается непрерывным отводом тепла от них, который осуществляется тем, что полученная в фотоэлементах 3 в результате трансформации солнечной энергии тепловая энергия непрерывно отводится через стенку крыши 2, выполненную из материала с высокой теплопроводностью, в испарительную камеру 7. В испарительной камере 7 поступившее тепло расходуется на нагрев минерализованной питательной воды, движущейся по наклонному испарительному лотку с бортиками 5 в сторону его нижнего торца самотеком за счет его уклона. Последняя подается в лоток 5 питательным насосом 14 через распределитель 12, представляющий собой заглушенную на торцах горизонтальную перфорированную трубу, перфорация которой выполнена в направлении движения питательной нагреваемой воды, что обеспечивает ее равномерное распределение по ширине полотна лотка 5. В процессе нагрева минерализованной воды, которая нагревается до температуры большей, чем температура воды в водоеме 15, часть ее испаряется, а неиспарившаяся часть самотеком перемещается по полотну до нижнего торца лотка 5 и через горизонтальную выпускную щель 16 сливается в водоем 15. Полученный в процессе нагрева питательной воды водяной пар через вертикальные щели 9 поступает в нижнюю конденсационную камеру 8 и конденсируется там, в результате чего при выходе на стационарный режим работы опреснителя давление в конденсационной камере 9 всегда меньше, чем в испарительной камере 8. Конденсация водяного пара, полученного в испарительной камере 8, в конденсационной камере 9 осуществляется в результате процесса теплопередачи от пара через стенки днища 5, выполненного из материала с высокой теплопроводностью, и части боковых стенок корпуса 1 с массивом более холодной воды в водоеме 14, причем пористый материал решетки 3 всасывает образовавшийся конденсат, предотвращая образование жидкостной пленки на внутренней поверхности стенки конденсационной камеры 9 и, таким образом, интенсифицирует процесс конденсации [Тепловые трубы и теплообменники: от науки к практике. Сборник научн. тр. - М.: 1990, с. 22]. Полученный конденсат по полосам пористого материала решетки 11 за счет капиллярных сил движется со всех сторон днища 10 в емкость для сбора конденсата 17, расположенную в центре днища 10, стекает туда за счет силы тяжести, накапливается там и насосом 18 подается потребителю.

Высота бортиков ∆1 лотка 6, ширина вертикальных щелей 10 ∆2 выбираются из условия недопущения перелива питательной воды и свободного прохода пара при максимальной нагрузке опреснителя. Ширина горизонтальной выпускной щели ∆3 должна обеспечивать свободный слив нагретой питательной воды в водоем 14, но в то же время ее сопротивление по воздуху должно быть значительно больше, чем сопротивление вертикальных щелей по водяному пару, что проверяется аэродинамическим и гидравлическим расчетами. Длина лотка 5 выбирается из условия минимального отложения солей на его поверхности, ширина принимается исходя из условий обеспечения равномерного распределения питательной воды на поверхности по ширине и длине лотка 5. Производительность предлагаемого солнечного опреснителя можно увеличить путем размещения параллельно нескольких лотков 5 в одном корпусе 1.

Таким образом, конструкция предлагаемого автономного солнечного опреснителя позволяет проводить масштабный процесс опреснения морской или минерализованной (соленой) воды непосредственно в самом водоеме и транспортировку ее потребителю с использованием только солнечной энергии, что повышает его эффективность.

Автономный солнечный опреснитель, содержащий корпус с установленным в нем испарителем с бортиками, снабженным распределителем и покрытым снизу слоем гидротеплоизоляции, делящим полость корпуса на испарительную и конденсационную камеры, размещенные в верхней и нижней частях корпуса, причем нижняя часть корпуса, в которой расположена конденсационная камера под испарителем, погружена в водоем с морской (минерализованной, соленой) водой, отличающийся тем, что корпус выполнен прямоугольным из материала с высокой теплопроводностью, крыша корпуса покрыта сверху фотоэлементами, соединенными с накопительным блоком, испаритель выполнен в виде наклонного испарительного лотка с бортиками, испарительная камера и конденсационная камера сообщаются между собой у бортов корпуса через вертикальные щели, внутренняя поверхность торцов, бортов и днища в конденсационной камере корпуса покрыты решеткой из полос пористого материала, в верхнем торце лотка у правого торца корпуса расположен распределитель, представляющий собой заглушенную на торцах горизонтальную перфорированную трубу, перфорация которой выполнена в направлении движения питательной нагреваемой воды и соединенную трубопроводом с погружным питательным насосом, помещенным в водоеме, нижний торец лотка соединен с выпускной горизонтальной щелью, устроенной в левом торце корпуса, днище корпуса в центре соединено с емкостью для сбора конденсата, в которой помещен конденсатный насос, при этом питательный и конденсатный насосы снабжаются электроэнергией из накопительного блока фотоэлементов, а уклон лотка направлен в сторону выпуска питательной воды с уклоном, равным углу естественного откоса воды.
АВТОНОМНЫЙ СОЛНЕЧНЫЙ ОПРЕСНИТЕЛЬ
АВТОНОМНЫЙ СОЛНЕЧНЫЙ ОПРЕСНИТЕЛЬ
АВТОНОМНЫЙ СОЛНЕЧНЫЙ ОПРЕСНИТЕЛЬ
АВТОНОМНЫЙ СОЛНЕЧНЫЙ ОПРЕСНИТЕЛЬ
АВТОНОМНЫЙ СОЛНЕЧНЫЙ ОПРЕСНИТЕЛЬ
АВТОНОМНЫЙ СОЛНЕЧНЫЙ ОПРЕСНИТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 81-85 из 85.
04.04.2018
№218.016.2fca

Способ и устройство для комплексной очистки выхлопных газов судового двигателя

Изобретение относится к устройствам для очистки и шумоглушения выхлопных газов судовых двигателей. Предложены способ комплексной очистки выхлопных газов судового двигателя и устройство для его осуществления. Способ включает смешение выхлопных газов с озоном без примесей оксидов азота в...
Тип: Изобретение
Номер охранного документа: 0002644601
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.351b

Термоэлектрическое зарядное устройство для гаджетов

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для трансформации тепловой энергии в электрическую, а именно для подзарядки различных гаджетов и других устройств при отсутствии источников электроснабжения. Сущность завяленного решения заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002645872
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.35f7

Экологичное дорожное ограждение

Изобретение относится к ограждениям автомобильных дорог и городских улиц и может использоваться в качестве барьерных ограждений, служащих для повышения безопасности при движении автомобильного транспорта, очистки уличного воздуха от вредных компонентов выхлопных газов. Экологичное дорожное...
Тип: Изобретение
Номер охранного документа: 0002646293
Дата охранного документа: 02.03.2018
01.07.2018
№218.016.69b4

Термоэлектрическая инжекционная горелка

Предлагаемое изобретение относится к энергетике и может быть использовано в инжекционных горелках бытовых отопительных приборов (газовых плитах и т.п.) для совместной генерации тепла и электрической энергии. Термоэлектрическая инжекционная горелка включает опорное кольцо, выполненное из...
Тип: Изобретение
Номер охранного документа: 0002659309
Дата охранного документа: 29.06.2018
17.10.2019
№219.017.d6da

Способ использования исходной воды при охлаждении хладоагента гту и пластинчатый теплообменник для его осуществления

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для нагрева и охлаждения газов и жидкостей в различных отраслях народного хозяйства, а именно, для интенсификации процесса теплопередачи и снижения скорости образования накипи в теплообменниках ГТУ. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002703117
Дата охранного документа: 15.10.2019
Показаны записи 91-100 из 128.
22.06.2019
№219.017.8e9d

Устройство для подогрева питательной воды вторичным паром

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано на теплоэлектростанциях при эксплуатации теплофикационных турбин для утилизации вторичного пара после турбины. Технический результат достигается устройством для подогрева питательной воды вторичным паром, включающим...
Тип: Изобретение
Номер охранного документа: 0002692170
Дата охранного документа: 21.06.2019
03.09.2019
№219.017.c68b

Переносной термоэлектрогенератор

Изобретение относится к преобразованию тепловой энергии в электрическую. Технический результат: повышение эффективности термоэлектрогенератора. Сущность: термоэлектрогенератор содержит перфорированный с бортов корпус и крышку, выполненные из материала–диэлектрика с высокой теплопроводностью,...
Тип: Изобретение
Номер охранного документа: 0002698937
Дата охранного документа: 02.09.2019
12.09.2019
№219.017.c9f5

Пластинчатый теплообменник с естественным воздушным охлаждением

Изобретение относится к теплотехнике, а именно к теплообменному оборудованию, и может быть использовано при воздушном охлаждении газов и жидкостей вне помещений без принудительной подачи охлаждающего воздуха. В пластинчатом теплообменнике с естественным воздушным охлаждением, включающем...
Тип: Изобретение
Номер охранного документа: 0002699858
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.ca80

Термоэлектрическое устройство для предпускового обогрева стационарного двс

Изобретение относится к машиностроению, а именно к системам подогрева двигателей внутреннего сгорания в зимнее время для дистанционного запуска. Устройство для предпускового обогрева стационарного ДВС включает первую термоэлектрическую секцию, состоящую из термоэмиссионных преобразователей,...
Тип: Изобретение
Номер охранного документа: 0002699853
Дата охранного документа: 11.09.2019
02.10.2019
№219.017.cae0

Способ и устройство для обезвреживания и утилизации массива коммунальных отходов

Предлагаемое изобретение относится к охране окружающей среды и может быть использовано для обезвреживания и утилизации городских (коммунальных) твердых отходов органического происхождения. Способ для обезвреживания и утилизации массива коммунальных отходов включает бурение скважин в толще...
Тип: Изобретение
Номер охранного документа: 0002701678
Дата охранного документа: 30.09.2019
02.10.2019
№219.017.cf5d

Теплотрубная матрешка

Изобретение относится к энергомашиностроению и может быть использовано для транспортировки тепловой энергии по тепловым трубам. Теплотрубная матрешка включает в себя n тепловых труб, вставленных друг в друга, каждая из которых состоит из цилиндрического корпуса, заглушенного с одного торца...
Тип: Изобретение
Номер охранного документа: 0002700811
Дата охранного документа: 23.09.2019
02.10.2019
№219.017.d154

Способ утилизации полимерных компонентов коммунальных и промышленных отходов и устройство для его осуществления

Изобретение относится к охране окружающей среды и может быть использовано для переработки и утилизации полимерных компонентов коммунальных и промышленных отходов, а именно производства элементов строительных конструкций. Техническим результатом является повышение надежности и эффективности...
Тип: Изобретение
Номер охранного документа: 0002700862
Дата охранного документа: 23.09.2019
04.10.2019
№219.017.d271

Слоевой пластинчатый термоэлектрогенератор

Изобретение относится к области теплоэнергетики. Изобретение представляет собой слоевой пластинчатый термоэлектрогенератор, содержащий термоэлектрическую секцию, состоящую из термоэлектрических преобразователей, выполненных из соединенных между собой у кромок пластин металлов М1 и М2, крайние...
Тип: Изобретение
Номер охранного документа: 0002701883
Дата охранного документа: 02.10.2019
05.10.2019
№219.017.d298

Санитарная приставка для теплогенераторов систем автономного теплоснабжения

Изобретение относится к теплоэнергетике и может быть использовано для очистки дымовых газов теплогенераторов крышных котельных и систем квартирного отопления от вредных примесей. Технический результат: повышение надежности и эффективности санитарной приставки. Санитарная приставка для...
Тип: Изобретение
Номер охранного документа: 0002702043
Дата охранного документа: 03.10.2019
17.10.2019
№219.017.d6da

Способ использования исходной воды при охлаждении хладоагента гту и пластинчатый теплообменник для его осуществления

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для нагрева и охлаждения газов и жидкостей в различных отраслях народного хозяйства, а именно, для интенсификации процесса теплопередачи и снижения скорости образования накипи в теплообменниках ГТУ. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002703117
Дата охранного документа: 15.10.2019
+ добавить свой РИД