×
27.10.2015
216.013.8aa3

Результат интеллектуальной деятельности: БЛОК СТАБИЛИЗАЦИИ ТЕМПЕРАТУРЫ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к системам регулирования температуры и может быть использовано в инерциальных микромеханических навигационных системах на основе датчиков ускорения и угловой скорости. Блок стабилизации температуры инерциальной навигационной системы содержит микромеханическую инерциальную навигационную систему, электровентилятор, электронагреватель блока стабилизации температуры теплоносителя, датчик температуры, автоматический регулятор температуры. Датчик температуры и осушитель воздуха помещены в герметичном кожухе, содержащем минимальный объем воздуха, который через переходную плиту жестко связан с негерметичным кожухом, оснащенным радиатором, и который в свою очередь соединен с шаговым двигателем калибровки, размещенным на корпусе самодвижущейся платформы робототехнического комплекса. Электронагреватель блока стабилизации температуры теплоносителя и электровентилятор установлены внутри негерметичного кожуха. Автоматический регулятор температуры выполнен в виде блока управления, который включает в себя микроконтроллер, выполняющий программу стабилизации температуры и управляющий работой подсистем калибровки и стабилизации температуры. Технический результат - повышение точности навигационных определений. 2 ил.
Основные результаты: Блок стабилизации температуры инерциальной навигационной системы, содержащий объект стабилизации температуры, электровентилятор, электронагреватель блока стабилизации температуры теплоносителя, датчик температуры, автоматический регулятор температуры, отличающийся тем, что объект стабилизации температуры - микромеханическая инерциальная навигационная система, выполненная на основе MEMS-датчиков ускорения и угловой скорости, датчик температуры и осушитель воздуха помещены в герметичном кожухе, содержащем минимальный объем воздуха, который через переходную плиту жестко связан с негерметичным кожухом, оснащенным радиатором, и который в свою очередь соединен с шаговым двигателем калибровки, размещенным на корпусе самодвижущейся платформы робототехнического комплекса, электронагреватель блока стабилизации температуры теплоносителя, в качестве которого используется термоэлектрический преобразователь в виде элемента Пельтье, и электровентилятор установлены внутри негерметичного кожуха, автоматический регулятор температуры выполнен в виде блока управления, который включает в себя микроконтроллер, выполняющий программу стабилизации температуры и управляющий работой подсистем калибровки и стабилизации температуры, микроконтроллер связан через устройство согласования интерфейса с бортовой ЭВМ робототехнического комплекса.

Изобретение относится к системам регулирования температуры и может быть использовано в инерциальных микромеханических навигационных системах на основе датчиков ускорения и угловой скорости.

Известен способ термостатирования гироскопа в проточном термостате. Система термостатирования, функционирующая по данному принципу (патент RU № 2282146 С1, МПК G01C 19/00, G05D 23/00, опубл. 20.08.2006. Бюл. № 23), принята за прототип. Изобретение относится к системам регулирования температуры и может быть использовано в гироскопическом приборостроении для повышения точности термостабилизации чувствительных элементов. Сущность изобретения: непрерывно подогревают термодатчик системы термостатирования теплоносителя постоянной мощностью, определяемой при настройке из условия, чтобы температура термодатчика изменялась при изменении расхода на такую же величину, что и температура чувствительного элемента. Ввиду подогрева температура термодатчика становится зависимой от интенсивности обдува, что позволяет системе термостабилизации за счет изменения температуры теплоносителя поддерживать температуру гироскопического чувствительного элемента постоянной при изменении расхода.

Система состоит из гироскопа, установленного в карданов подвес и выделяющего тепловую мощность, внутреннего кольца карданова подвеса с металлическими экранами, наружного кольца карданова подвеса с металлическими экранами, электроветилятора, электронагревателя системы термостабилизации теплоносителя, термодатчика системы термостабилизации с введенным в него постоянным подогревом, автоматического регулятора температуры.

Недостатками прототипа являются:

- недостаточная точность стабилизации температуры;

- необходимость проведения большого объема регулировочных работ и натурных испытаний;

- наличие достаточно высокого уровня конденсации влаги;

- неэффективная система управления системой термостабилизации;

- отсутствие возможности прямого отвода тепла или прямого обогрева прибора.

Предлагаемым изобретением решается задача по точности работы инерциальной навигационной системы в реальных условиях эксплуатации.

Технический результат, получаемый при осуществлении изобретения, заключается в создании блока стабилизации температуры инерциальной навигационной системы, устанавливаемого на самодвижущейся платформе робототехнического комплекса и обладающего высокой степенью стабильности поддержания температуры окружающей среды в рабочей зоне, что позволяет поддерживать высокую точность навигационных определений.

Указанный технический результат достигается тем, что в предлагаемом блоке стабилизации температуры инерциальной навигационной системы, содержащем объект стабилизации температуры, электровентилятор, электронагреватель блока стабилизации температуры теплоносителя, датчик температуры, автоматический регулятор температуры, новым является то, что объект стабилизации температуры - микромеханическая инерциальная навигационная система, выполненная на основе MEMS-датчиков ускорения и угловой скорости, датчик температуры и осушитель воздуха помещены в герметичном кожухе, содержащем минимальный объем воздуха, который через переходную плиту жестко связан с негерметичным кожухом, оснащенным радиатором, и который в свою очередь соединен с шаговым двигателем калибровки, размещенным на корпусе самодвижущейся платформы робототехнического комплекса, электронагреватель блока стабилизации температуры теплоносителя, в качестве которого используется термоэлектрический преобразователь в виде элемента Пельтье, и электровентилятор установлены внутри негерметичного кожуха, автоматический регулятор температуры выполнен в виде блока управления, который включает в себя микроконтроллер, выполняющий программу стабилизации температуры и управляющий работой подсистем калибровки и стабилизации температуры, микроконтроллер связан через устройство согласования интерфейса с бортовой ЭВМ робототехнического комплекса.

Размещение микромеханической инерциальной навигационной системы, датчика температуры и осушителя воздуха в герметичном кожухе, содержащем минимальный объем воздуха, позволяет с наименьшими затратами стабилизировать воздушный температурный режим.

Выполнение связи герметичного кожуха с негерметичным через переходную плиту позволяет осуществить тепловой обмен между блоком MEMS-датчиков и элементом Пельтье.

Оснащение негерметичного кожуха радиатором позволяет отводить тепловую энергию с элемента Пельтье в окружающую среду.

Соединение негерметичного кожуха с шаговым двигателем калибровки позволяет выполнять первичную калибровку MEMS-датчиков.

Размещение шагового двигателя на корпусе самодвижущейся платформы робототехнического комплекса позволяет:

- при размещении в наиболее удобном месте оптимизировать конструкцию в целом;

- использовать шаговый двигатель как базовый элемент для установки микромеханической инерциальной навигационной системы.

Использование в качестве электронагревателя блока стабилизации температуры теплоносителя элемента Пельтье позволяет:

- легко реализовать прямой отвод тепловой энергии или прямой обогрев системы без применения движущихся частей;

- обеспечить компактность и бесшумность работы электронагревателя;

- обеспечить как охлаждение, так и нагревание теплоносителя.

Установка электровентилятора внутри негерметичного кожуха позволяет обеспечить обдув радиатора потоком воздуха.

Выполнение автоматического регулятора температуры в виде блока управления на базе микроконтроллера позволяет:

- выполнить программу стабилизации температуры в зоне размещения блока MEMS-датчиков;

- управлять работой подсистемы калибровки;

- управлять работой подсистемы стабилизации температуры.

Реализация связи микроконтроллера через устройство согласования интерфейса с бортовой ЭВМ робототехнического комплекса позволяет:

- получать данные об уровне температуры теплоносителя;

- управлять работой микроконтроллера;

- передавать в бортовую ЭВМ данные о состоянии системы навигации.

Технические решения с признаками, отличающими заявляемое решение от прототипа, неизвестны и явным образом из уровня техники не следуют. Это позволяет считать, что заявляемое решение является новым и обладает изобретательским уровнем.

Сущность изобретения поясняется чертежами, где на фиг. 1 показана структурная схема блока стабилизации температуры инерциальной навигационной системы; на фиг. 2 - структурная схема блока управления.

Блок стабилизации температуры инерциальной навигационной системы содержит блок MEMS-датчиков 1, датчик температуры 2 и осушитель воздуха 3, которые помещены в герметичном кожухе 4, который через переходную плиту 5 жестко связан с негерметичным кожухом 6, оснащенным радиатором 7, и который в свою очередь соединен с шаговым двигателем калибровки 8, размещенным на корпусе 9 самодвижущейся платформы робототехнического комплекса. Внутри негерметичного кожуха установлены электронагреватель блока стабилизации температуры теплоносителя в виде элемента Пельтье 10 и электровентилятор 11. Блок управления 12 включает в себя микроконтроллер 13, который связан с подсистемами калибровки 14 и стабилизации температуры 15, датчиком температуры 2 и - через устройство согласования интерфейса 16 с бортовой ЭВМ 17 робототехнического комплекса. Микроконтроллер 13 связан с шаговым двигателем 8 через драйвер шагового двигателя 18, а с элементом Пельтье 10 и электроветилятором 11 - через схему контроля направления и величины тока 19.

Блок стабилизации температуры инерциальной навигационной системы функционирует следующим образом.

В робототехническом комплексе, размещенном на самодвижущейся платформе, используется микромеханическая инерциальная навигационная система на базе блока MEMS-датчиков 1. Данная система, будучи оснащенной собственным вычислительным модулем, позволяет решать задачу позиционирования робототехнического комплекса в пространстве, в том числе и в условиях ограничения или отсутствия сигналов навигационных систем GPS/Глонасс.

Но при вычислении углов Эйлера (крен, тангаж, курс) точность не всегда бывает удовлетворительной. Заявленная скорость ухода нуля блока MEMS-датчиков 1 инерциальной навигационной системы составляет 2,5 градуса в секунду и с ростом температуры увеличивается. Причем с изменением окружающей температуры меняется масштабный коэффициент выходного сигнала, т.е. появляется нелинейность показаний. Установление характера этой нелинейности требует большого объема регулировочных работ и натурных испытаний и является трудоемкой задачей.

Несмотря на то что заявленная рабочая температура находится в диапазоне от минус 40°С до +85°С, на практике система неработоспособна, так как не принято никаких мер для стабилизации ее температуры. Одной из мер повышения точности микромеханической инерциальной навигационной системы является стабилизация температуры и удержание ее постоянной с минимальными колебаниями. Практически следует считать целесообразным стабилизацию с точностью ±0,5°С температуры +20°С для летних условий и минус 5°С для зимних условий. Выбор температуры +20°С обусловлен тем, что данная температура является стандартной для производства MEMS-датчиков и при этой температуре их параметры наиболее стабильны. Выбор температуры минус 5°С обусловлен тем, что данная температура ниже точки росы при нормальном атмосферном давлении для сухого воздуха, что позволяет избежать конденсации влаги. Наличие двух точек стабилизации требует дополнительной калибровки системы.

Важным моментом является выбор электронагревателя блока стабилизации температуры. Наиболее рациональным является использование в качестве устройства нагрева/охлаждения элемента Пельтье 10, который является термоэлектрическим преобразователем, принцип действия которого базируется на эффекте Пельтье - возникновении разности температур при протекании электрического тока. Данные элементы позволяют легко реализовать прямой отвод тепла или прямой обогрев прибора. Они компактны и бесшумны в работе.

Блок MEMS-датчиков 1 помещен в герметичный объем, образованный герметичным кожухом 4, содержащим минимальный объем воздуха, осушаемый осушителем 3, содержащим технический силикагель, и переходной плитой 5, являющейся тепловым мостом между блоком MEMS-датчиков 1 и элементом Пельтье 10. Тепловая энергия с элемента Пельтье 10 отводится в окружающую среду путем теплопередачи конвекцией в результате обдува радиатора 7 потоком воздуха от электровентилятора 11.

Для проведения первичной калибровки блока MEMS-датчиков 1 путем поворота на фиксированный угол с известной величиной угла и заданной угловой скоростью служит шаговый двигатель 8, вращающий блок стабилизации температуры. Шаговый двигатель 8 является базовым элементом конструкции и служит для крепления к корпусу 9 самодвижущейся платформы робототехнического комплекса.

Блок управления 12 предназначен для обработки сигналов с датчика температуры 2 и формирования управляющих сигналов. Блок управления 12 включает в себя микроконтроллер 13, выполняющий программу стабилизации температуры и управляющий работой подсистемы калибровки 14 и подсистемы стабилизации температуры 15. Подсистема калибровки 14 включает в себя шаговый двигатель 8, управляемый драйвером шагового двигателя 18. Команды управления драйвером шагового двигателя 18 формируются микроконтроллером 13 в процессе выполнения цикла калибровки. Подсистема стабилизации температуры 15 включает в себя датчик температуры 2, размещаемый в герметичном кожухе 4 на переходной плите 5 в непосредственной близости от блока MEMS-датчиков 1, схему контроля направления и величины тока 19, управляющую током, подаваемым на элемент Пельтье 10, и электровентилятор 11, предназначенный для повышения эффективности теплоотвода. Для управления работой микроконтроллера 13, а также для передачи информации о состоянии системы в бортовую ЭВМ 17 робототехнического комплекса служит устройство согласования интерфейса 16.

Таким образом, в предлагаемом изобретении решена задача по достижению технического результата, заключающегося в создании блока стабилизации температуры инерциальной навигационной системы, устанавливаемого на самодвижущейся платформе робототехнического комплекса и обладающего высокой степенью стабильности поддержания температуры окружающей среды в рабочей зоне, что позволяет поддерживать высокую точность навигационных определений.

Блок стабилизации температуры инерциальной навигационной системы, содержащий объект стабилизации температуры, электровентилятор, электронагреватель блока стабилизации температуры теплоносителя, датчик температуры, автоматический регулятор температуры, отличающийся тем, что объект стабилизации температуры - микромеханическая инерциальная навигационная система, выполненная на основе MEMS-датчиков ускорения и угловой скорости, датчик температуры и осушитель воздуха помещены в герметичном кожухе, содержащем минимальный объем воздуха, который через переходную плиту жестко связан с негерметичным кожухом, оснащенным радиатором, и который в свою очередь соединен с шаговым двигателем калибровки, размещенным на корпусе самодвижущейся платформы робототехнического комплекса, электронагреватель блока стабилизации температуры теплоносителя, в качестве которого используется термоэлектрический преобразователь в виде элемента Пельтье, и электровентилятор установлены внутри негерметичного кожуха, автоматический регулятор температуры выполнен в виде блока управления, который включает в себя микроконтроллер, выполняющий программу стабилизации температуры и управляющий работой подсистем калибровки и стабилизации температуры, микроконтроллер связан через устройство согласования интерфейса с бортовой ЭВМ робототехнического комплекса.
БЛОК СТАБИЛИЗАЦИИ ТЕМПЕРАТУРЫ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ
БЛОК СТАБИЛИЗАЦИИ ТЕМПЕРАТУРЫ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ
Источник поступления информации: Роспатент

Показаны записи 211-220 из 314.
17.08.2018
№218.016.7bbb

Способ функционирования боевого дистанционно управляемого модуля в различных режимах применения

Изобретение относится к области военной техники, а именно к способам применения мобильного автоматизированного вооружения с дистанционным управлением. Способ функционирования боевого дистанционно управляемого модуля в различных режимах применения включает в себя доставку дистанционно...
Тип: Изобретение
Номер охранного документа: 0002664105
Дата охранного документа: 15.08.2018
01.09.2018
№218.016.8232

Стенд для проверки коэффициента зеркального отражения

Изобретение относится к области проверки и измерений оптических параметров и предназначено для измерения коэффициента зеркального отражения сферических, параболических и плоских зеркальных поверхностей. Стенд для проверки коэффициента зеркального отражения, включающий направляющую со...
Тип: Изобретение
Номер охранного документа: 0002665594
Дата охранного документа: 31.08.2018
11.09.2018
№218.016.85db

Модульная установка предъявления появляющейся цели

Изобретение относится к полигонному оборудованию, в частности к дистанционно-управляемым мишеням, предназначенным для приобретения практических навыков в прицельной стрельбе из стрелкового оружия, в т.ч. в составе автоматизированных мишенных комплексов. Модульная установка предъявления...
Тип: Изобретение
Номер охранного документа: 0002666465
Дата охранного документа: 07.09.2018
16.09.2018
№218.016.8829

Роботизированный модульный комплекс автономного полигонного оборудования

Изобретение относится к комплексам автономного полигонного оборудования для оснащения учебных объектов тактической и огневой подготовки воинских частей и центров подготовки, а также для оперативного развертывания на местности при проведении боевого слаживания подразделений. Роботизированный...
Тип: Изобретение
Номер охранного документа: 0002667132
Дата охранного документа: 14.09.2018
11.10.2018
№218.016.8fd0

Пулемет

Изобретение относится к прицельным приспособлениям для стрелкового оружия. Приспособление состоит из неподвижной и отклоняемой частей и устанавливается на штатном месте оружия. Кнопка с фиксатором и подпружиненный гнеток на отклоняемой части прицельного приспособления позволяют упростить...
Тип: Изобретение
Номер охранного документа: 0002669247
Дата охранного документа: 09.10.2018
25.10.2018
№218.016.959a

Модуль управления полигонным оборудованием

Изобретение относится к средствам решения задач информационного обмена и управления и может быть использовано в комплексах дистанционно-управляемого полигонного оборудования. Модуль управления полигонным оборудованием - МУПО содержит пункт управления ПУ (1), систему автоматического управления...
Тип: Изобретение
Номер охранного документа: 0002670395
Дата охранного документа: 22.10.2018
12.12.2018
№218.016.a572

Способ проверки зенитных ракет и пусковых установок

Изобретение относится к оборонной технике и, в частности, к комплексным средствам контроля электрических параметров управляемых зенитных ракет и пусковых устройств. Способ проверки заключается в том, что перед контролем электрических параметров блоки устройства для проверки соединяются по...
Тип: Изобретение
Номер охранного документа: 0002674453
Дата охранного документа: 10.12.2018
13.12.2018
№218.016.a674

Механическое прицельное приспособление

Изобретение относится к оборонной технике и направлено на совершенствование стрелкового оружия. Механическое прицельное приспособление содержит мушку, установленную в резьбе и прицельную планку, закрепленную в колодке прицела. Прицельная планка имеет прилив со сквозным отверстием. На конце...
Тип: Изобретение
Номер охранного документа: 0002674699
Дата охранного документа: 12.12.2018
14.12.2018
№218.016.a6b9

Универсальный способ обмена навигационно-временной информацией в образцах военной техники сухопутных войск

Изобретение относится к военной технике. Технический результат заключается в формировании универсального способа обмена навигационно-временной информацией в образцах военной техники Сухопутных войск, обеспечивающего сопряжение управляющего бортового вычислителя объекта военной техники с...
Тип: Изобретение
Номер охранного документа: 0002674937
Дата охранного документа: 13.12.2018
13.01.2019
№219.016.aedc

Способ изготовления ствола

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении стволов со ступенчатой наружной поверхностью. После термообработки исходной заготовки на заданный уровень прочности из нее резанием изготавливают трубную заготовку с заходной, деформируемой и...
Тип: Изобретение
Номер охранного документа: 0002676936
Дата охранного документа: 11.01.2019
Показаны записи 211-220 из 265.
16.09.2018
№218.016.8829

Роботизированный модульный комплекс автономного полигонного оборудования

Изобретение относится к комплексам автономного полигонного оборудования для оснащения учебных объектов тактической и огневой подготовки воинских частей и центров подготовки, а также для оперативного развертывания на местности при проведении боевого слаживания подразделений. Роботизированный...
Тип: Изобретение
Номер охранного документа: 0002667132
Дата охранного документа: 14.09.2018
11.10.2018
№218.016.8fd0

Пулемет

Изобретение относится к прицельным приспособлениям для стрелкового оружия. Приспособление состоит из неподвижной и отклоняемой частей и устанавливается на штатном месте оружия. Кнопка с фиксатором и подпружиненный гнеток на отклоняемой части прицельного приспособления позволяют упростить...
Тип: Изобретение
Номер охранного документа: 0002669247
Дата охранного документа: 09.10.2018
25.10.2018
№218.016.959a

Модуль управления полигонным оборудованием

Изобретение относится к средствам решения задач информационного обмена и управления и может быть использовано в комплексах дистанционно-управляемого полигонного оборудования. Модуль управления полигонным оборудованием - МУПО содержит пункт управления ПУ (1), систему автоматического управления...
Тип: Изобретение
Номер охранного документа: 0002670395
Дата охранного документа: 22.10.2018
12.12.2018
№218.016.a572

Способ проверки зенитных ракет и пусковых установок

Изобретение относится к оборонной технике и, в частности, к комплексным средствам контроля электрических параметров управляемых зенитных ракет и пусковых устройств. Способ проверки заключается в том, что перед контролем электрических параметров блоки устройства для проверки соединяются по...
Тип: Изобретение
Номер охранного документа: 0002674453
Дата охранного документа: 10.12.2018
13.12.2018
№218.016.a674

Механическое прицельное приспособление

Изобретение относится к оборонной технике и направлено на совершенствование стрелкового оружия. Механическое прицельное приспособление содержит мушку, установленную в резьбе и прицельную планку, закрепленную в колодке прицела. Прицельная планка имеет прилив со сквозным отверстием. На конце...
Тип: Изобретение
Номер охранного документа: 0002674699
Дата охранного документа: 12.12.2018
14.12.2018
№218.016.a6b9

Универсальный способ обмена навигационно-временной информацией в образцах военной техники сухопутных войск

Изобретение относится к военной технике. Технический результат заключается в формировании универсального способа обмена навигационно-временной информацией в образцах военной техники Сухопутных войск, обеспечивающего сопряжение управляющего бортового вычислителя объекта военной техники с...
Тип: Изобретение
Номер охранного документа: 0002674937
Дата охранного документа: 13.12.2018
05.02.2019
№219.016.b6ef

Приемник имитатора боевых средств переносного зенитного ракетного комплекса

Изобретение относится к техническим средствам обучения и тренировки стрелков-зенитчиков переносных зенитных ракетных комплексов (ПЗРК). Приемник имитатора боевых средств ПЗРК содержит объектив (1), установленный перед приемником с матрицей чувствительных элементов (2), последовательно...
Тип: Изобретение
Номер охранного документа: 0002678875
Дата охранного документа: 04.02.2019
20.02.2019
№219.016.c223

Бесступенчатая импульсная передача

Изобретение относится к области машиностроения и может найти применение, в частности, в коробке передач транспортного средства. Бесступенчатая импульсная передача состоит из ведущего вала с импульсным механизмом, промежуточного вала, выходного вала с маховиком и блока управления. На...
Тип: Изобретение
Номер охранного документа: 0002453750
Дата охранного документа: 20.06.2012
20.02.2019
№219.016.c250

Автоматическое стрелковое оружие с ленточной и магазинной подачей патронов

Изобретение относится к военной технике и может быть использовано в автоматическом стрелковом оружии со сменным типом питания. Автоматическое стрелковое оружие содержит ствол (1), ствольную коробку (2), затвор (3), затворную раму (4), казенник (5), механизм подачи ленты (6), отъемный магазин...
Тип: Изобретение
Номер охранного документа: 0002458304
Дата охранного документа: 10.08.2012
23.02.2019
№219.016.c61a

Датчик контроля горизонта

Изобретение относится к измерительной технике и может быть использовано в системах автоматического горизонтирования платформ. Датчик контроля горизонта содержит основание 1, датчик угла наклона 2, ампулу 3, частично заполненную магнитной жидкостью 4, на ампуле размещены первичная обмотка 5 и...
Тип: Изобретение
Номер охранного документа: 0002680433
Дата охранного документа: 21.02.2019
+ добавить свой РИД