×
27.10.2015
216.013.8aa3

Результат интеллектуальной деятельности: БЛОК СТАБИЛИЗАЦИИ ТЕМПЕРАТУРЫ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к системам регулирования температуры и может быть использовано в инерциальных микромеханических навигационных системах на основе датчиков ускорения и угловой скорости. Блок стабилизации температуры инерциальной навигационной системы содержит микромеханическую инерциальную навигационную систему, электровентилятор, электронагреватель блока стабилизации температуры теплоносителя, датчик температуры, автоматический регулятор температуры. Датчик температуры и осушитель воздуха помещены в герметичном кожухе, содержащем минимальный объем воздуха, который через переходную плиту жестко связан с негерметичным кожухом, оснащенным радиатором, и который в свою очередь соединен с шаговым двигателем калибровки, размещенным на корпусе самодвижущейся платформы робототехнического комплекса. Электронагреватель блока стабилизации температуры теплоносителя и электровентилятор установлены внутри негерметичного кожуха. Автоматический регулятор температуры выполнен в виде блока управления, который включает в себя микроконтроллер, выполняющий программу стабилизации температуры и управляющий работой подсистем калибровки и стабилизации температуры. Технический результат - повышение точности навигационных определений. 2 ил.
Основные результаты: Блок стабилизации температуры инерциальной навигационной системы, содержащий объект стабилизации температуры, электровентилятор, электронагреватель блока стабилизации температуры теплоносителя, датчик температуры, автоматический регулятор температуры, отличающийся тем, что объект стабилизации температуры - микромеханическая инерциальная навигационная система, выполненная на основе MEMS-датчиков ускорения и угловой скорости, датчик температуры и осушитель воздуха помещены в герметичном кожухе, содержащем минимальный объем воздуха, который через переходную плиту жестко связан с негерметичным кожухом, оснащенным радиатором, и который в свою очередь соединен с шаговым двигателем калибровки, размещенным на корпусе самодвижущейся платформы робототехнического комплекса, электронагреватель блока стабилизации температуры теплоносителя, в качестве которого используется термоэлектрический преобразователь в виде элемента Пельтье, и электровентилятор установлены внутри негерметичного кожуха, автоматический регулятор температуры выполнен в виде блока управления, который включает в себя микроконтроллер, выполняющий программу стабилизации температуры и управляющий работой подсистем калибровки и стабилизации температуры, микроконтроллер связан через устройство согласования интерфейса с бортовой ЭВМ робототехнического комплекса.

Изобретение относится к системам регулирования температуры и может быть использовано в инерциальных микромеханических навигационных системах на основе датчиков ускорения и угловой скорости.

Известен способ термостатирования гироскопа в проточном термостате. Система термостатирования, функционирующая по данному принципу (патент RU № 2282146 С1, МПК G01C 19/00, G05D 23/00, опубл. 20.08.2006. Бюл. № 23), принята за прототип. Изобретение относится к системам регулирования температуры и может быть использовано в гироскопическом приборостроении для повышения точности термостабилизации чувствительных элементов. Сущность изобретения: непрерывно подогревают термодатчик системы термостатирования теплоносителя постоянной мощностью, определяемой при настройке из условия, чтобы температура термодатчика изменялась при изменении расхода на такую же величину, что и температура чувствительного элемента. Ввиду подогрева температура термодатчика становится зависимой от интенсивности обдува, что позволяет системе термостабилизации за счет изменения температуры теплоносителя поддерживать температуру гироскопического чувствительного элемента постоянной при изменении расхода.

Система состоит из гироскопа, установленного в карданов подвес и выделяющего тепловую мощность, внутреннего кольца карданова подвеса с металлическими экранами, наружного кольца карданова подвеса с металлическими экранами, электроветилятора, электронагревателя системы термостабилизации теплоносителя, термодатчика системы термостабилизации с введенным в него постоянным подогревом, автоматического регулятора температуры.

Недостатками прототипа являются:

- недостаточная точность стабилизации температуры;

- необходимость проведения большого объема регулировочных работ и натурных испытаний;

- наличие достаточно высокого уровня конденсации влаги;

- неэффективная система управления системой термостабилизации;

- отсутствие возможности прямого отвода тепла или прямого обогрева прибора.

Предлагаемым изобретением решается задача по точности работы инерциальной навигационной системы в реальных условиях эксплуатации.

Технический результат, получаемый при осуществлении изобретения, заключается в создании блока стабилизации температуры инерциальной навигационной системы, устанавливаемого на самодвижущейся платформе робототехнического комплекса и обладающего высокой степенью стабильности поддержания температуры окружающей среды в рабочей зоне, что позволяет поддерживать высокую точность навигационных определений.

Указанный технический результат достигается тем, что в предлагаемом блоке стабилизации температуры инерциальной навигационной системы, содержащем объект стабилизации температуры, электровентилятор, электронагреватель блока стабилизации температуры теплоносителя, датчик температуры, автоматический регулятор температуры, новым является то, что объект стабилизации температуры - микромеханическая инерциальная навигационная система, выполненная на основе MEMS-датчиков ускорения и угловой скорости, датчик температуры и осушитель воздуха помещены в герметичном кожухе, содержащем минимальный объем воздуха, который через переходную плиту жестко связан с негерметичным кожухом, оснащенным радиатором, и который в свою очередь соединен с шаговым двигателем калибровки, размещенным на корпусе самодвижущейся платформы робототехнического комплекса, электронагреватель блока стабилизации температуры теплоносителя, в качестве которого используется термоэлектрический преобразователь в виде элемента Пельтье, и электровентилятор установлены внутри негерметичного кожуха, автоматический регулятор температуры выполнен в виде блока управления, который включает в себя микроконтроллер, выполняющий программу стабилизации температуры и управляющий работой подсистем калибровки и стабилизации температуры, микроконтроллер связан через устройство согласования интерфейса с бортовой ЭВМ робототехнического комплекса.

Размещение микромеханической инерциальной навигационной системы, датчика температуры и осушителя воздуха в герметичном кожухе, содержащем минимальный объем воздуха, позволяет с наименьшими затратами стабилизировать воздушный температурный режим.

Выполнение связи герметичного кожуха с негерметичным через переходную плиту позволяет осуществить тепловой обмен между блоком MEMS-датчиков и элементом Пельтье.

Оснащение негерметичного кожуха радиатором позволяет отводить тепловую энергию с элемента Пельтье в окружающую среду.

Соединение негерметичного кожуха с шаговым двигателем калибровки позволяет выполнять первичную калибровку MEMS-датчиков.

Размещение шагового двигателя на корпусе самодвижущейся платформы робототехнического комплекса позволяет:

- при размещении в наиболее удобном месте оптимизировать конструкцию в целом;

- использовать шаговый двигатель как базовый элемент для установки микромеханической инерциальной навигационной системы.

Использование в качестве электронагревателя блока стабилизации температуры теплоносителя элемента Пельтье позволяет:

- легко реализовать прямой отвод тепловой энергии или прямой обогрев системы без применения движущихся частей;

- обеспечить компактность и бесшумность работы электронагревателя;

- обеспечить как охлаждение, так и нагревание теплоносителя.

Установка электровентилятора внутри негерметичного кожуха позволяет обеспечить обдув радиатора потоком воздуха.

Выполнение автоматического регулятора температуры в виде блока управления на базе микроконтроллера позволяет:

- выполнить программу стабилизации температуры в зоне размещения блока MEMS-датчиков;

- управлять работой подсистемы калибровки;

- управлять работой подсистемы стабилизации температуры.

Реализация связи микроконтроллера через устройство согласования интерфейса с бортовой ЭВМ робототехнического комплекса позволяет:

- получать данные об уровне температуры теплоносителя;

- управлять работой микроконтроллера;

- передавать в бортовую ЭВМ данные о состоянии системы навигации.

Технические решения с признаками, отличающими заявляемое решение от прототипа, неизвестны и явным образом из уровня техники не следуют. Это позволяет считать, что заявляемое решение является новым и обладает изобретательским уровнем.

Сущность изобретения поясняется чертежами, где на фиг. 1 показана структурная схема блока стабилизации температуры инерциальной навигационной системы; на фиг. 2 - структурная схема блока управления.

Блок стабилизации температуры инерциальной навигационной системы содержит блок MEMS-датчиков 1, датчик температуры 2 и осушитель воздуха 3, которые помещены в герметичном кожухе 4, который через переходную плиту 5 жестко связан с негерметичным кожухом 6, оснащенным радиатором 7, и который в свою очередь соединен с шаговым двигателем калибровки 8, размещенным на корпусе 9 самодвижущейся платформы робототехнического комплекса. Внутри негерметичного кожуха установлены электронагреватель блока стабилизации температуры теплоносителя в виде элемента Пельтье 10 и электровентилятор 11. Блок управления 12 включает в себя микроконтроллер 13, который связан с подсистемами калибровки 14 и стабилизации температуры 15, датчиком температуры 2 и - через устройство согласования интерфейса 16 с бортовой ЭВМ 17 робототехнического комплекса. Микроконтроллер 13 связан с шаговым двигателем 8 через драйвер шагового двигателя 18, а с элементом Пельтье 10 и электроветилятором 11 - через схему контроля направления и величины тока 19.

Блок стабилизации температуры инерциальной навигационной системы функционирует следующим образом.

В робототехническом комплексе, размещенном на самодвижущейся платформе, используется микромеханическая инерциальная навигационная система на базе блока MEMS-датчиков 1. Данная система, будучи оснащенной собственным вычислительным модулем, позволяет решать задачу позиционирования робототехнического комплекса в пространстве, в том числе и в условиях ограничения или отсутствия сигналов навигационных систем GPS/Глонасс.

Но при вычислении углов Эйлера (крен, тангаж, курс) точность не всегда бывает удовлетворительной. Заявленная скорость ухода нуля блока MEMS-датчиков 1 инерциальной навигационной системы составляет 2,5 градуса в секунду и с ростом температуры увеличивается. Причем с изменением окружающей температуры меняется масштабный коэффициент выходного сигнала, т.е. появляется нелинейность показаний. Установление характера этой нелинейности требует большого объема регулировочных работ и натурных испытаний и является трудоемкой задачей.

Несмотря на то что заявленная рабочая температура находится в диапазоне от минус 40°С до +85°С, на практике система неработоспособна, так как не принято никаких мер для стабилизации ее температуры. Одной из мер повышения точности микромеханической инерциальной навигационной системы является стабилизация температуры и удержание ее постоянной с минимальными колебаниями. Практически следует считать целесообразным стабилизацию с точностью ±0,5°С температуры +20°С для летних условий и минус 5°С для зимних условий. Выбор температуры +20°С обусловлен тем, что данная температура является стандартной для производства MEMS-датчиков и при этой температуре их параметры наиболее стабильны. Выбор температуры минус 5°С обусловлен тем, что данная температура ниже точки росы при нормальном атмосферном давлении для сухого воздуха, что позволяет избежать конденсации влаги. Наличие двух точек стабилизации требует дополнительной калибровки системы.

Важным моментом является выбор электронагревателя блока стабилизации температуры. Наиболее рациональным является использование в качестве устройства нагрева/охлаждения элемента Пельтье 10, который является термоэлектрическим преобразователем, принцип действия которого базируется на эффекте Пельтье - возникновении разности температур при протекании электрического тока. Данные элементы позволяют легко реализовать прямой отвод тепла или прямой обогрев прибора. Они компактны и бесшумны в работе.

Блок MEMS-датчиков 1 помещен в герметичный объем, образованный герметичным кожухом 4, содержащим минимальный объем воздуха, осушаемый осушителем 3, содержащим технический силикагель, и переходной плитой 5, являющейся тепловым мостом между блоком MEMS-датчиков 1 и элементом Пельтье 10. Тепловая энергия с элемента Пельтье 10 отводится в окружающую среду путем теплопередачи конвекцией в результате обдува радиатора 7 потоком воздуха от электровентилятора 11.

Для проведения первичной калибровки блока MEMS-датчиков 1 путем поворота на фиксированный угол с известной величиной угла и заданной угловой скоростью служит шаговый двигатель 8, вращающий блок стабилизации температуры. Шаговый двигатель 8 является базовым элементом конструкции и служит для крепления к корпусу 9 самодвижущейся платформы робототехнического комплекса.

Блок управления 12 предназначен для обработки сигналов с датчика температуры 2 и формирования управляющих сигналов. Блок управления 12 включает в себя микроконтроллер 13, выполняющий программу стабилизации температуры и управляющий работой подсистемы калибровки 14 и подсистемы стабилизации температуры 15. Подсистема калибровки 14 включает в себя шаговый двигатель 8, управляемый драйвером шагового двигателя 18. Команды управления драйвером шагового двигателя 18 формируются микроконтроллером 13 в процессе выполнения цикла калибровки. Подсистема стабилизации температуры 15 включает в себя датчик температуры 2, размещаемый в герметичном кожухе 4 на переходной плите 5 в непосредственной близости от блока MEMS-датчиков 1, схему контроля направления и величины тока 19, управляющую током, подаваемым на элемент Пельтье 10, и электровентилятор 11, предназначенный для повышения эффективности теплоотвода. Для управления работой микроконтроллера 13, а также для передачи информации о состоянии системы в бортовую ЭВМ 17 робототехнического комплекса служит устройство согласования интерфейса 16.

Таким образом, в предлагаемом изобретении решена задача по достижению технического результата, заключающегося в создании блока стабилизации температуры инерциальной навигационной системы, устанавливаемого на самодвижущейся платформе робототехнического комплекса и обладающего высокой степенью стабильности поддержания температуры окружающей среды в рабочей зоне, что позволяет поддерживать высокую точность навигационных определений.

Блок стабилизации температуры инерциальной навигационной системы, содержащий объект стабилизации температуры, электровентилятор, электронагреватель блока стабилизации температуры теплоносителя, датчик температуры, автоматический регулятор температуры, отличающийся тем, что объект стабилизации температуры - микромеханическая инерциальная навигационная система, выполненная на основе MEMS-датчиков ускорения и угловой скорости, датчик температуры и осушитель воздуха помещены в герметичном кожухе, содержащем минимальный объем воздуха, который через переходную плиту жестко связан с негерметичным кожухом, оснащенным радиатором, и который в свою очередь соединен с шаговым двигателем калибровки, размещенным на корпусе самодвижущейся платформы робототехнического комплекса, электронагреватель блока стабилизации температуры теплоносителя, в качестве которого используется термоэлектрический преобразователь в виде элемента Пельтье, и электровентилятор установлены внутри негерметичного кожуха, автоматический регулятор температуры выполнен в виде блока управления, который включает в себя микроконтроллер, выполняющий программу стабилизации температуры и управляющий работой подсистем калибровки и стабилизации температуры, микроконтроллер связан через устройство согласования интерфейса с бортовой ЭВМ робототехнического комплекса.
БЛОК СТАБИЛИЗАЦИИ ТЕМПЕРАТУРЫ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ
БЛОК СТАБИЛИЗАЦИИ ТЕМПЕРАТУРЫ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ
Источник поступления информации: Роспатент

Показаны записи 151-160 из 314.
10.05.2016
№216.015.3b65

Самодвижущаяся платформа робототехнического комплекса

Изобретение относится к базовым шасси робототехнических комплексов, предназначенных для ведения дистанционной работы в боевых условиях. Самодвижущаяся платформа робототехнического комплекса содержит бронированный корпус, ходовую систему с электроприводом и стойками, силовую часть, автономный...
Тип: Изобретение
Номер охранного документа: 0002583254
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b90

Устройство для закрепления пустотелой детали

Устройство содержит корпус с центральным отверстием, с торцевой упорной поверхностью и двумя рядами радиальных отверстий, оси которых перпендикулярны оси центрального отверстия, тягу, размещенную в центральном отверстии с возможностью возвратно-поступательного перемещения вдоль оси корпуса, и...
Тип: Изобретение
Номер охранного документа: 0002583974
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cfd

Двуствольная автоматическая пушка

Изобретение относится к вооружению, а именно к двуствольным автоматическим пушкам. Двуствольная автоматическая пушка содержит приемник, агрегат стволов, левый и правый ползуны, соединительный рычаг с осью, серьги, газовые цилиндры, поршни и задние пробки. В приемнике установлены ограничители...
Тип: Изобретение
Номер охранного документа: 0002583256
Дата охранного документа: 10.05.2016
20.06.2016
№216.015.489c

Защитный кожух оптического прибора

Изобретение относится к военной технике и может быть использовано для защиты объектива оптического прибора от посторонних предметов. Защитный кожух оптического прибора содержит крышку, установленную с возможностью поворота, ручной привод, мини-редуктор с самотормозящейся передачей, кожух,...
Тип: Изобретение
Номер охранного документа: 0002587761
Дата охранного документа: 20.06.2016
20.08.2016
№216.015.4eb8

Автоматическое стрелковое оружие

Изобретение относится к вооружению, а именно к автоматическим стрелковым оружиям. Стрелковое оружие содержит ствол с каморой и газоотводным отверстием, газовый цилиндр с патрубком, поворотный газовый регулятор с регулировочными отверстиями и внутренним каналом для патрубка. На газовом...
Тип: Изобретение
Номер охранного документа: 0002595243
Дата охранного документа: 20.08.2016
12.01.2017
№217.015.57bb

Магазин стрелкового оружия большой ёмкости

Изобретение относится к военной технике, а именно к многорядным коробчатым магазинам с переменным числом рядов. Магазин включает в себя корпус, подаватель, пружину подавателя и крышку пружины. Корпус выполнен коробчатым с переменным сечением с разделяющими перегородками. Подаватель состоит из...
Тип: Изобретение
Номер охранного документа: 0002588558
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.58c4

Огнестрельное оружие с подвижным стволом

Изобретение относится к вооружению, а именно к огнестрельным оружиям с подвижными стволами. Огнестрельное оружие с подвижным стволом содержит ствольную коробку, муфту ствола, закрепленную в ствольной коробке, ствол. Ствол подвижно установлен в муфте ствола и ствольной коробке. На стволе с обеих...
Тип: Изобретение
Номер охранного документа: 0002588415
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5d1c

Топопривязчик

Изобретение относится к военной технике и может быть использовано в подвижных пунктах управления и информационно-технического обеспечения комплексов вооружений. Топопривязчик содержит размещенные в кабине (2) рабочие места (4, 5) механика-водителя и командира и в кузове-фургоне (1) два...
Тип: Изобретение
Номер охранного документа: 0002591113
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.60b1

Способ формирования опорной геодезической сети испытательной трассы

Изобретение относится к геодезии, в частности к способам топогеодезической подготовки опорных геодезических сетей, используемых при испытании навигационной аппаратуры наземных транспортных средств. Техническим результатом изобретения является расширение функциональных возможностей. Способ...
Тип: Изобретение
Номер охранного документа: 0002590532
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6498

Нутромер

Изобретение относится к измерительным устройствам и может быть использовано для замера диаметров по полям и нарезам канала стволов стрелкового оружия и глубоких отверстий. Технический результат, получаемый при осуществлении изобретения, заключается в возможности замера действительных размеров...
Тип: Изобретение
Номер охранного документа: 0002589470
Дата охранного документа: 10.07.2016
Показаны записи 151-160 из 265.
10.05.2016
№216.015.3b65

Самодвижущаяся платформа робототехнического комплекса

Изобретение относится к базовым шасси робототехнических комплексов, предназначенных для ведения дистанционной работы в боевых условиях. Самодвижущаяся платформа робототехнического комплекса содержит бронированный корпус, ходовую систему с электроприводом и стойками, силовую часть, автономный...
Тип: Изобретение
Номер охранного документа: 0002583254
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b90

Устройство для закрепления пустотелой детали

Устройство содержит корпус с центральным отверстием, с торцевой упорной поверхностью и двумя рядами радиальных отверстий, оси которых перпендикулярны оси центрального отверстия, тягу, размещенную в центральном отверстии с возможностью возвратно-поступательного перемещения вдоль оси корпуса, и...
Тип: Изобретение
Номер охранного документа: 0002583974
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cfd

Двуствольная автоматическая пушка

Изобретение относится к вооружению, а именно к двуствольным автоматическим пушкам. Двуствольная автоматическая пушка содержит приемник, агрегат стволов, левый и правый ползуны, соединительный рычаг с осью, серьги, газовые цилиндры, поршни и задние пробки. В приемнике установлены ограничители...
Тип: Изобретение
Номер охранного документа: 0002583256
Дата охранного документа: 10.05.2016
20.06.2016
№216.015.489c

Защитный кожух оптического прибора

Изобретение относится к военной технике и может быть использовано для защиты объектива оптического прибора от посторонних предметов. Защитный кожух оптического прибора содержит крышку, установленную с возможностью поворота, ручной привод, мини-редуктор с самотормозящейся передачей, кожух,...
Тип: Изобретение
Номер охранного документа: 0002587761
Дата охранного документа: 20.06.2016
20.08.2016
№216.015.4eb8

Автоматическое стрелковое оружие

Изобретение относится к вооружению, а именно к автоматическим стрелковым оружиям. Стрелковое оружие содержит ствол с каморой и газоотводным отверстием, газовый цилиндр с патрубком, поворотный газовый регулятор с регулировочными отверстиями и внутренним каналом для патрубка. На газовом...
Тип: Изобретение
Номер охранного документа: 0002595243
Дата охранного документа: 20.08.2016
12.01.2017
№217.015.57bb

Магазин стрелкового оружия большой ёмкости

Изобретение относится к военной технике, а именно к многорядным коробчатым магазинам с переменным числом рядов. Магазин включает в себя корпус, подаватель, пружину подавателя и крышку пружины. Корпус выполнен коробчатым с переменным сечением с разделяющими перегородками. Подаватель состоит из...
Тип: Изобретение
Номер охранного документа: 0002588558
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.58c4

Огнестрельное оружие с подвижным стволом

Изобретение относится к вооружению, а именно к огнестрельным оружиям с подвижными стволами. Огнестрельное оружие с подвижным стволом содержит ствольную коробку, муфту ствола, закрепленную в ствольной коробке, ствол. Ствол подвижно установлен в муфте ствола и ствольной коробке. На стволе с обеих...
Тип: Изобретение
Номер охранного документа: 0002588415
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5d1c

Топопривязчик

Изобретение относится к военной технике и может быть использовано в подвижных пунктах управления и информационно-технического обеспечения комплексов вооружений. Топопривязчик содержит размещенные в кабине (2) рабочие места (4, 5) механика-водителя и командира и в кузове-фургоне (1) два...
Тип: Изобретение
Номер охранного документа: 0002591113
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.60b1

Способ формирования опорной геодезической сети испытательной трассы

Изобретение относится к геодезии, в частности к способам топогеодезической подготовки опорных геодезических сетей, используемых при испытании навигационной аппаратуры наземных транспортных средств. Техническим результатом изобретения является расширение функциональных возможностей. Способ...
Тип: Изобретение
Номер охранного документа: 0002590532
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6498

Нутромер

Изобретение относится к измерительным устройствам и может быть использовано для замера диаметров по полям и нарезам канала стволов стрелкового оружия и глубоких отверстий. Технический результат, получаемый при осуществлении изобретения, заключается в возможности замера действительных размеров...
Тип: Изобретение
Номер охранного документа: 0002589470
Дата охранного документа: 10.07.2016
+ добавить свой РИД