×
27.10.2015
216.013.894a

Результат интеллектуальной деятельности: КОЖУХОТРУБНЫЙ РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ АНГИДРИДА МАЛЕИНОВОЙ КИСЛОТЫ

Вид РИД

Изобретение

№ охранного документа
0002566749
Дата охранного документа
27.10.2015
Аннотация: Изобретение относится к установке для получения ангидрида малеиновой кислоты путем гетерогенно-каталитического газофазного окисления исходного потока, содержащего углеводороды, по меньшей мере, с 4 углеродными атомами на молекулу, включающей реактор с пучком реакционных труб, в которых размещен твердофазный катализатор, на котором происходит экзотермическое взаимодействие исходного потока с кислородсодержащим газовым потоком, один или несколько насосов и один или несколько установленных вне реактора теплообменников, через которые протекает теплоноситель, представляющий собой солевой расплав, который протекает через промежуточное пространство между реакционными трубами, воспринимая теплоту реакции, причем температура солевого расплава лежит в диапазоне между 350 и 480°C. А реакционные трубы выполнены из легированной термостойкой стали, содержащей, по меньшей мере, 0,25 вес. % молибдена или, по меньшей мере, 0,5 вес. % хрома и, по меньшей мере, 0,25 вес. % молибдена. Установка отличается повышенной устойчивостью. 4 з.п. ф-лы, 4 пр.

Изобретение относится к установке, включающей кожухотрубный реактор для получения ангидрида малеиновой кислоты (далее АМК) путем гетерогенно-каталитического газофазного окисления углеводородов, по меньшей мере, с четырьмя атомами углерода с использованием содержащих кислород газов в присутствии летучего фосфорного соединения на катализаторе, содержащем ванадий, фосфор и кислород.

АМК используют прежде всего при получении ненасыщенных полиэфирных смол, которые используют в качестве многослойных материалов в строительной и автомобильной промышленности. Кроме того, АМК представляет собой важный промежуточный продукт при синтезе гамма-бутиролактона, тетрагидрофурана и 1,4-бутан-диола, которые со своей стороны используются в качестве растворителей или подвергаются дальнейшей переработке в полимеры, такие как политетрагидрофуран или поливинилпирролидон.

Получение АМК путем гетерогенно-каталитического газофазного окисления углеводородов, по меньшей мере, с четырьмя углеродными атомами с использованием кислорода в кожухотрубном реакторе на твердофазном катализаторе в общем известно и описано, например, в публикации "Ullmann's Encyclopedia of Industrial Chemistry" ["Энциклопедия Ульманна по промышленной химии"], 6-е издание, 1999 г., электронная публикация, глава "MALEIC AND FUMARIC ACID - Maleic Anhydride" ["Малеиновая и фумаровая кислоты - ангидрид малеиновой кислоты"]. В общем для этого используют бензол или С4-углеводороды, такие как 1,3-бутадиен, н-бутены или н-бутан.

Предпочтительно используют твердофазные катализаторы, которые в качестве активной массы содержат ванадий, фосфор и кислород.

Содержащие ванадий, фосфор и кислород катализаторы, которые в дальнейшем обозначаются как "катализаторы ВФК", используют в непромотированном или в промотированном виде.

Реакция углеводородов с получением АМК на таких катализаторах ВФК проходит сильно экзотермически.

Обычно такие газофазные реакции осуществляют при температуре реакции между 390 и 500°С.

Реакторы, пригодные для осуществления таких сильноэкзотермических гетерогенно-каталитических газофазных реакций в технических масштабах, описаны, например, в документе ЕР 1882518 А2.

Они представляют собой кожухотрубные реакторы, в которых заполненные катализатором ВФК реакционные трубы расположены вертикально друг к другу, и наружные стороны реакционных труб омываются теплоносителем.

Для регулирования температуры сильно экзотермической газофазной реакции в реакционных трубах используют теплоносители, представляющие собой, например, жидкие солевые расплавы. Особенно пригодными оказались смеси нитратов и нитритов щелочных металлов, предпочтительно эвтектического состава, например, нитрата калия, нитрита натрия и нитрата натрия.

Несмотря на то, что возможно применение таких солевых расплавов при температурах до 620°С, температуру солевого расплава ограничивают на примерно 450-480°С. Это обеспечивает термическую стабильность солевой смеси и удовлетворяет специфические требования относительно осуществления реакции газофазного окисления углеводородов для получения АМК.

Ввиду необходимости обеспечения в процессах получения АМК постоянной температуры солевого расплава в диапазоне 350-480°С имеются особые требования к материалам, используемым для конструкции кожухотрубного реактора и его периферийных аппаратов, таких как теплообменники и насосы.

До сих пор реакционные трубы кожухотрубных реакторов, используемые для получения АМК, изготавливают из термостойких нелегированных сталей, т.е. из сталей, содержащих лишь железо и углерод и, кроме того, обычные компоненты из процесса получения стали, в частности, фосфор, серу и кремний, однако не содержащих специально добавленных легирующих элементов. В качестве материала для реакционных труб кожухотрубных реакторов для получения АМК часто используют термостойкие нелегированные стали №St 35.8 или St 37.8, согласно стандартам EN 10216-2 и EN 10217-2, допущенные для рабочих температур до 480°С. Таким образом, можно исходить из того, что данные материалы можно без проблем и без ухудшения их механических характеристик использовать при обычных температурах солевых расплавов в реакторах для получения АМК, находящихся в диапазоне примерно 350-480°С, предпочтительно примерно 380-440°С, особенно предпочтительно примерно 390-430°С.

Однако при эксплуатации реакторов для получения АМК реакционные трубы которых изготовлены из вышеприведенных термостойких нелегированных сталей, наблюдались зависимые от температуры и времени повреждения, приводящие к существенному ухудшению значений стойкости, в частности, предела ползучести, которые не могут быть связаны с повреждениями от усталости от срока службы.

Таким образом, задача изобретения заключается в разработке установки для получения АМК, включающей кожухотрубный реактор, не обладающей вышеприведенными недостатками и характеризующейся, в частности, повышенной устойчивостью.

Указанная задача решается в установке для получения АМК путем газофазного окисления исходного потока, содержащего углеводороды, по меньшей мере, с 4 атомами углерода на молекулу, включающей реактор с группой реакционных труб, в которых размещен твердофазный катализатор, на котором происходит экзотермическое взаимодействие исходного потока с содержащим кислород газовым потоком, один или несколько насосов и один или несколько установленных вне реактора теплообменников, по которым теплоноситель, представляющий собой солевой расплав, протекает по промежуточному пространству между реакционными трубами, воспринимая теплоту реакции, причем температура солевого расплава лежит в диапазоне между 350 и 480°С, которая отличается тем, что реакционные трубы изготовлены из термостойкой легированной стали, содержащей, по меньшей мере, 0,5 вес.% хрома, или, по меньшей мере, 0,25 вес.% молибдена, или, по меньшей мере, 0,5 вес.% хрома и, по меньшей мере, 0,25 вес.% молибдена.

В отношении указанного температурного диапазона между 350 и 480°С было обнаружено, что благодаря добавлению хрома как легирующего элемента в количестве, по меньшей мере, 0,5 вес.%, т.е. в количестве 0,5 вес.% или больше, и/или благодаря добавлению молибдена как легирующего элемента в количестве, по меньшей мере, 0,25 вес.%, т.е. в количестве 0,25 вес.% или больше, может быть предотвращено наблюдаемое существенное, зависимое от времени и температуры ухудшение механических характеристик, в частности, предела ползучести.

Если реакционные трубы выполнены из легированной термостойкой стали, по меньшей мере, с 0,5 вес.% хрома и/или, по меньшей мере, 0,25 вес.% молибдена, как правило, обеспечен достаточный срок службы установки, в частности, тогда, если остальные конструктивные элементы установки, приходящие в контакт с теплоносителем, состоящим из солевого расплава, предпочтительно содержащего нитраты и нитриты щелочных металлов, в частности, тарелки реакционных труб, на которых закреплены, в частности, к которым приварены, контактные трубы, а также один или несколько установленных вне реактора теплообменников, выполнены из термостойкой стали, содержащей, по меньшей мере, 0,25 вес.% молибдена. Пригодным является, например, материал 16 Мо3.

Согласно предпочтительной форме выполнения дополнительно к реакционным трубам и все остальные конструктивные элементы установки, приходящие в контакт с теплоносителем, представляющим собой солевой расплав, изготовлены из легированной термостойкой стали, содержащей, по меньшей мере, 0,5 вес.% хрома, или, по меньшей мере, 0,25 вес.% молибдена, или, по меньшей мере, 0,5 вес.% хрома и, по меньшей мере, 0,25 вес.% молибдена.

Температура солевого расплава, протекающего через промежуточное пространство между реакционными трубами реактора и воспринимающего теплоту реакции, лежит в диапазоне между 350 и 480°С, предпочтительно между 380 и 440°С, особенно предпочтительно между 390 и 430°С.

Размещенный в реакционных трубах твердофазный катализатор, на котором происходит гетерогенно-каталитическое газофазное окисление исходного потока, содержащего углеводороды, по меньшей мере, с 4 атомами углерода на молекулу, путем его взаимодействия с кислородсодержащим газовым потоком, предпочтительно содержит в качестве активной массы ванадий, фосфор и кислород (так называемый катализатор ВФК). В случае применения катализатора ВФК исходный поток содержит, как правило, летучее фосфорное соединение.

В качестве солевого расплава, который в качестве теплоносителя пропускается через промежуточное пространство между реакционными трубами, предпочтительно используют солевой расплав, содержащий нитраты или нитриты щелочных металлов. Особенно предпочтительно используют солевой расплав с эвтектическим составом, содержащий, например, 53 вес.% нитрата калия, 40 вес.% нитрита натрия и дополнительно 7 вес.% нитрата натрия.

Предлагаемая установка может включать, в частности, прочные на гидравлический удар реакторы без предохранительных дисков.

Несмотря на то, что механизм возникновения повреждений подробно не известен, было установлено, что использование легированной термостойкой стали, которая должна содержать, по меньшей мере, 0,5 вес.% хрома, или, по меньшей мере, 0,25 вес.% молибдена, или, по меньшей мере, 0,5 вес.% хрома и, по меньшей мере, 0,25 вес.% молибдена, позволяет предотвратить наблюдаемое существенное ухудшение механических характеристик реакционных труб, приводящее к необходимости преждевременной замены используемых для получения АМК кожухотрубных реакторов.

Изобретение не ограничено относительно конкретного выполнения установки для получения АМК, а его можно применять для любых установок для получения АМК, в которых АМК получают в кожухотрубном реакторе с группой реакционных труб, причем в реакционных трубах размещен твердофазный катализатор, предпочтительно катализатор ВФК, по которому направляется исходный поток, содержащий углеводороды, по меньшей мере, с 4 атомами углерода на молекулу и предпочтительно летучее фосфорное соединение и содержащий молекулярный кислород газовый поток, или прямотоком, или противотоком по отношению к направлению потока солевого расплава.

По окружному пространству, т.е. промежуточному пространству между реакционными трубами, для отвода теплоты сильно экзотермической реакции подается теплоноситель, представляющий собой солевой расплав. Особенно пригодными оказались в этой связи смеси нитратов и нитритов щелочных металлов.

Солевой расплав подается по окружному пространству кожухотрубного реактора и по одному или нескольким установленным вне реактора теплообменникам, в частности, охладителю с соляной ванной, пароперегревателю и электронагревателю, с помощью одного или несколько насосов.

В предлагаемой установке предпочтительно все ее конструктивные элементы, которые приходят в контакт с солевым расплавом, в частности, реакционные трубы, кожух реактора, тарелки реактора, к которым приварены реакционные трубы, а также один или несколько насосов, которые перекачивают солевой расплав, и один или несколько установленных вне реактора теплообменников, по которым подается солевой расплав, в частности, охладители с соляной ванной, пароперегреватели и электронагреватели, выполнены из материала, который содержит, по меньшей мере, 0,5 вес.% хрома, или, по меньшей мере, 0,25 вес.% молибдена, или, по меньшей мере, 0,5 вес.% хрома и, по меньшей мере, 0,25 вес.% молибдена.

Предпочтительно можно использовать легированную термостойкую сталь, дополнительно содержащую, по меньшей мере, 0,5 вес.% хрома, или, по меньшей мере, 0,25 вес.% молибдена, или, по меньшей мере, 0,5 вес.% хрома и, по меньшей мере, 0,25 вес.% молибдена и один или нескольких других элементов из группы, включающей титан, ниобий и ванадий, в качестве легирующих элементов.

Данные стали предпочтительно представляют собой, например, материалы, в соответствии с нормой EN 10217-2 для сварных труб из термостойкой стали, соответственно с нормой EN 10216-2 для бесшовных труб из термостойкой стали, обозначаемые сокращенными наименованиями 16Мо3, 13СrМо4-5, 10СrМо9-10 или X6CrNiTi18-10 и соответствующими номерами EN 1.5415, 1.7335, 1.7380 соответственно 1.4541.

Установка предпочтительно включает реактор, выход которого по объему и времени оптимизирован в результате многозонной конструкции, т.е. реактор с двумя или более размещенными последовательно реакционными зонами с катализаторами разной активности и/или разными температурами состоящего из солевого расплава теплоносителя.

Подобная установка известна, например, из документа DE-A 100 11 309. Она включает кожухотрубный реакторный узел, по меньшей мере, с двумя последовательно размещенными охлажденными реакционными зонами, причем температура в первой реакционной зоне составляет от 350 до 450°С, а температура во второй и, в случае необходимости, еще дальнейших реакционных зонах составляет от 350 до 480°С, и причем разница температур между самой теплой и самой холодной зонами составляет, по меньшей мере, 2°С.

При этом под кожухотрубным реакторным узлом следует понимать узел, состоящий, по меньшей мере, из одного кожухотрубного реактора.

Под понятием "реакционная зона" следует понимать зону внутри кожухотрубного реактора, которая содержит катализатор и внутри которой температура удерживается на единой величине. Если температура не является точно одинаковой на всех сторонах, то понятие относится к среднечисленному значению температуры по длине реакционной зоны. Под понятием "первая", "вторая", соответственно "дальнейшая" зона реакции понимается первая, вторая, соответственно дальнейшая реакционная зона по направлению пропускания газа.

Как принято в способе получения АМК, в качестве углеводородов используют алифатические и ароматические, насыщенные и ненасыщенные углеводороды, по меньшей мере, с четырьмя атомами углерода, например, 1,3-бутадиен, 1-бутен, 2-циз-бутен, 2-транс-бутен, н-бутан, смесь углеводородов с 4 атомами углерода, 1,3-пентадиен, 1,4-пентадиен, 1-пентен, 2-циз-пентен, 2-транс-пентен, н-пентан, циклопентадиен, дициклопентадиен, циклопентен, циклопентан, смесь углеводородов с 5 атомами углерода, гексен, гексан, циклогексан и бензол. Предпочтительно используют 1-бутен, 2-циз-бутен, 2-транс-бутен, н-бутан, бензол или их смеси. Особенно предпочтительным является использование н-бутана, например, в виде чистого н-бутана или в виде компонента в содержащих н-бутан газах и жидкостях. Используемый н-бутан может происходить, например, от природного газа, из установки парового крекинга или установки флюид-каталитического крекинга.

В качестве окислительного средства используют содержащие молекулярный кислород газы, как, например, воздух, синтетический воздух, насыщенный кислородом газ или так называемый "чистый" кислород, т.е., например, кислород, происходящий от разложения воздуха.

Для обеспечения продолжительного срока службы катализатора и дальнейшего повышения конверсии, избирательности, выхода, нагрузки катализатора и выхода по объему и времени к реакционному газу добавляют обычно отрегулированное количество летучего фосфорного соединения. Предпочтительно используют три-(С14-алкил)-фосфаты. Требуемое количество фосфорного соединения зависит от разных параметров, например, от вида и количества катализатора или, например, от температуры в установке, и его необходимо приспосабливать к конкретной системе. Предпочтительно его количество составляет от 0,2 до 20 объемн. млн. частей, особенно предпочтительно от 0,5 до 5 объемн. млн. частей.

В качестве катализаторов в предлагаемом способе предпочтительно используют катализаторы, активная масса которых включает ванадий, фосфор и кислород. Можно использовать, например, катализаторы, которые не содержат промоторов, описанные, например, в документах US 5275996, US 5641722, US 5137860, US 5095125, US 4933312 или EP-A-0 056 901.

В отношении использования катализатора в способе согласно изобретению возможны разные варианты. В самом простом случае все реакционные зоны узла кожухотрубного реактора заполняют одним и тем же каталитическим материалом. Под "каталитическим материалом" следует понимать материал, на объемную единицу в среднем обладающий одинаковыми составом и активностью. Каталитический материал может состоять из профильных элементов одного и того же катализатора, из профильных элементов из смеси разных катализаторов или из профильных элементов (одного единственного катализатора или смеси разных катализаторов), которые смешаны с инертным материалом, т.е. "разбавлены" инертным материалом. Согласно другому варианту в разных реакционных зонах используют различные каталитические материалы. Таким образом, в случае необходимости является предпочтительным использование в первой зоне или в одной или нескольких из передних реакционных зон менее активного каталитического материала, причем в одной или нескольких из задних реакционных зон используют более активный каталитический материал. Далее, возможно также использование внутри одной и той же реакционной зоны разных каталитических материалов. И согласно этому варианту может быть предпочтительным использование менее активного каталитического материала вблизи входа реактора и более активного каталитического материала после этого по направлению прохода.

Отдельные реакционные зоны могут быть реализованы или в одном кожухотрубном реакторе, выполненном в данном случае в качестве так называемого многозонного кожухотрубного реактора, или же в нескольких последовательно подключенных кожухотрубных реакторах, которые со своей стороны могут содержать одну или несколько реакционных зон. Под понятием "многозонный кожухотрубный реактор" следует понимать кожухотрубный реактор, который содержит, по меньшей мере, два контура для теплоносителя и позволяет нацеленную регулировку различных температур в отдельных реакционных зонах.

Изобретение более подробно поясняется ниже с помощью примеров его выполнения.

Примеры:

Пример Срок службы [ч] Рабочая температура (соляной ванны) [°С] Материал реакционной трубы Нижние пределы механических показателей по стандарту DIN Состояние конструкции
А(сравнение) примерно 76.000 400-435 St 37.8 достигнуты повреждение
Б(согласно изобретению) примерно 50.000 400-435 16Мо3 достигнуты без повреждений
В(сравнение) примерно 47.000 400-435 St 37.8 не достигнуты повреждение
Г(согласно изобретению) примерно 68.000 400-435 1.4541 достигнуты без повреждений

Описание примеров

При дежурном исследовании труб из материала St 37.8 из реактора для получения АМК, который находится в эксплуатации около 76.000 часов, было установлено, что механические показатели, измеренные посредством испытания на растяжение, находились ниже требуемого нормой нижнего предела. Исследования структуры показывают, что причиной такой потери устойчивости являлось связанное с температурой микроструктурное изменение материала, которое не является повреждением от усталости в связи со сроком службы. Ввиду этого из различных мест реактора извлекли трубы, которые исследовали тем же методом. Описанное изменение материала установили во всех исследованных трубах.

Ввиду данных результатов исследование распространили на трубы других реакторов, эксплуатируемых в том же температурном диапазоне, имеющих, однако, другой срок эксплуатации. Далее исследовали пилотные реакторы, работающие в указанном температурном диапазоне, в которых трубы выполнены из других материалов. При этом можно было установить, с одной стороны, что описанное изменение материала зависит не только от температуры, но и от времени и что из этого следует далее прогрессирующее по времени повреждение материала St 37.8. С другой стороны, можно было установить, что описанное отрицательное изменение материала имеет место в указанном температурном диапазоне лишь в случае нелегированных сталей, однако не в случае сталей, содержащих, по меньшей мере, 0,5 вес.% хрома и/или, по меньшей мере, 0,25 вес.% молибдена. Исходя из результатов исследований можно констатировать, что нелегированные стали не пригодны для применения в реакторах для получения АМК, при обычно имеющихся в них рабочих температурах выше 400°С. Пригодными являются, однако, легированные стали, содержащие, по меньшей мере, 0,5% хрома и/или, по меньшей мере, 0,25% молибдена.

Источник поступления информации: Роспатент

Показаны записи 481-490 из 657.
29.01.2019
№219.016.b50d

Простые полиэфирамины на основе 1,3-диспиртов

Изобретение относится к новой смеси простых полиэфираминов на основе 1,3-диспиртов, содержащей по меньшей мере 90 мас.%, на основе общей массы смеси простых эфираминов, амина формулы (I) и (II), и к способу ее получения. Смесь простых эфираминов может найти применение в качестве добавки к...
Тип: Изобретение
Номер охранного документа: 0002678325
Дата охранного документа: 28.01.2019
02.02.2019
№219.016.b65b

Способ и устройство для нанесения покрытия на рулонный материал

Изобретение относится к технологии нанесения покрытий на рулонные материалы и касается способа непрерывного получения многослойных композитных изделий в форме рулонного материала и производственной установки, используемой для осуществления способа. Способ включает следующие стадии: a) получение...
Тип: Изобретение
Номер охранного документа: 0002678679
Дата охранного документа: 30.01.2019
02.02.2019
№219.016.b66a

Производные 3-фенилбензофуран-2-она, содержащие фосфор в качестве стабилизатора

Изобретение относится к композиции, содержащей органический материал, подверженный окислительной, термической или индуцированной светом деструкции, и соединение формулы I-P, I-O или I-M Дополнительными вариантами выполнения являются соединение формулы I-P, I-О или I-M, способ защиты...
Тип: Изобретение
Номер охранного документа: 0002678660
Дата охранного документа: 30.01.2019
02.02.2019
№219.016.b680

Цеолитные материалы типа сна и способы их получения с использованием комбинаций циклоалкил- и тетраалкиламмониевых соединений

Настоящее изобретение относится к способу получения цеолитов. Предложен способ получения цеолитного материала, обладающего каркасной структурой типа СНА, который включает следующие стадии: (1) предоставление смеси, содержащей один или более источников SiO, один или более источников AlO, одно...
Тип: Изобретение
Номер охранного документа: 0002678676
Дата охранного документа: 30.01.2019
02.02.2019
№219.016.b697

Применение алкоксилированного политетрагидрофурана в качестве присадки для топлива

Применение алкоксилированного политетрагидрофурана общей формулы (I), в которой m представляет собой целое число в интервале от ≥1 до ≤20, m' представляет собой целое число в интервале от ≥1 до ≤20, (m+m') представляет собой целое число в интервале от ≥3 до ≤40, n представляет собой целое число...
Тип: Изобретение
Номер охранного документа: 0002678702
Дата охранного документа: 31.01.2019
03.02.2019
№219.016.b6b2

Порошок и гранула, способ получения такого порошка и гранулы и их применение

Настоящее изобретение относится к способу получения порошка или гранулы, содержащих (A) в интервале от 80 до 99 мас.% по меньшей мере одного хелатирующего агента, выбранного из метилглициндиуксусной кислоты (MGDA) и ее соответствующих солей щелочных металлов, (B) в интервале от 1 до 20 мас.% по...
Тип: Изобретение
Номер охранного документа: 0002678773
Дата охранного документа: 01.02.2019
05.02.2019
№219.016.b6d4

Применение гелеобразной полимерной композиции, полученной с помощью полимеризации содержащего кислотные группы мономера в присутствии соединения простого полиэфира, в композициях для машинного мытья посуды

Настоящее изобретение касается применения гелеобразной полимерной композиции в композициях для машинного мытья посуды. Предложено применение гелеобразной полимерной композиции, получаемой способом, при котором: a) предоставляют мономерную композицию, которая состоит из акриловой кислоты или...
Тип: Изобретение
Номер охранного документа: 0002678838
Дата охранного документа: 04.02.2019
05.02.2019
№219.016.b6e3

Катализатор для синтеза ненасыщенной карбоновой кислоты путем газофазного окисления ненасыщенного альдегида

Описан катализатор для получения α,β-ненасыщенной карбоновой кислоты путем газофазного окисления α,β-ненасыщенного альдегида, причем катализатор включает формованное изделие-носитель с нанесенной на него активной массой, отличающейся тем, что степень покрытия активной массой q, где, составляет...
Тип: Изобретение
Номер охранного документа: 0002678847
Дата охранного документа: 04.02.2019
05.02.2019
№219.016.b6f4

Стабилизированный пластификатор для термопластичного полиуретана

Изобретение относится к термопластичному полиуретану и способу его получения, к применению композиции Z(W) в качестве пластификатора для термопластичных полиуретанов, а также к формованному изделию. Способ получения термопластичного полиуретана заключается в том, что композицию Z(W), содержащую...
Тип: Изобретение
Номер охранного документа: 0002678842
Дата охранного документа: 04.02.2019
05.02.2019
№219.016.b710

Способ получения пропиленоксида

Изобретение относится к непрерывному способу получения пропиленоксида. Предложенный способ включает: (i) предоставление жидкого потока поступающего материала, содержащего пропен, перекись водорода, ацетонитрил, воду, необязательно пропан и, по меньшей мере, одну растворенную калиевую соль...
Тип: Изобретение
Номер охранного документа: 0002678844
Дата охранного документа: 04.02.2019
Показаны записи 391-392 из 392.
31.05.2020
№220.018.22e8

Модульные каталитические монолиты

Изобретение относится к реактору для осуществления химических реакций, применению реактора в способе получения оксидов азота, способу получения оксидов азота в реакторе и способу получения азотной кислоты в реакторе. Реактор содержит устройство, которое включает проницаемое для газа и/или...
Тип: Изобретение
Номер охранного документа: 0002722375
Дата охранного документа: 29.05.2020
24.07.2020
№220.018.3673

Реактор для осуществления гетерогенно катализируемых газофазных реакций и его применение

В заявке описан реактор (варианты) для осуществления гетерогенно катализируемых газофазных реакций с одним встроенным элементом или несколькими встроенными элементами, последовательно расположенными в направлении течения газовой смеси гетерогенно катализируемой газофазной реакции через реактор,...
Тип: Изобретение
Номер охранного документа: 0002727172
Дата охранного документа: 21.07.2020
+ добавить свой РИД