×
27.10.2015
216.013.88f8

Результат интеллектуальной деятельности: СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ

Вид РИД

Изобретение

Аннотация: Использование: в области электроэнергетики. Технический результат - повышение точности определения момента включения выключателя и автоматический контроль идентичности чередования фаз двух электроэнергетических систем. Процесс точной синхронизации двух трехфазных электроэнергетических систем производится в цифровом виде, используя выходные цифровые сигналы АЦП всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt≤≤T. Использование всех трех фаз напряжения (Ua, Ub, Uc) двух электроэнергетических систем (вместо использования одной фазы напряжения) приводит к значительному улучшению параметров синхронизации двух трехфазных электроэнергетических систем. Большее число сигналов (напряжения трех фаз) приводит к увеличению точности определения момента включения выключателя. Использование вращающихся полей U1(ti), U2(ti), создаваемых тремя фазами Ua1(ti), Ub1(ti), Uc1(ti) и Ua2(ti), Ub2(ti), Uc2(ti) промышленного трехфазного напряжения, позволяет учитывать разность фаз между всеми тремя парами фаз напряжений (Ua1 и Ua2, Ub1 и Ub2, Uc1 и Uc2), в результате включение выключателя происходит с наименьшим суммарным по всем трем фазам толчком тока. 3 ил.
Основные результаты: Способ синхронизации двух трехфазных электроэнергетических систем, в котором измеряют разность фаз между двумя трехфазными электроэнергетическими системами, для определения момента подачи команды включения выключателя, который соединяет две трехфазные электроэнергетические системы при разности частот двух систем меньше, чем заданное значение максимальной разности частот dωmax, и при разности амплитуд напряжений двух систем меньше, чем заданное значение максимальной разности амплитуд dU, и заданном значении времени включения выключателя Твкл используют цифровые сигналы всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt<

Предлагаемое изобретение относится к электроэнергетике и может быть использовано для определения момента подачи команды включения выключателя, который соединяет две трехфазные электроэнергетические системы.

Известен способ синхронизации возбужденной синхронной машины с сетью (Константинов В.Н. Синхронизация судовых синхронных генераторов. - Л.: «Судостроение», 1965. - с. 256-267), заключающийся в том, что регулируют частоту возбужденной синхронной машины до совпадения частот машины и сети, ожидают момент совпадения фаз машины и сети и включают машину в сеть в момент совпадения фаз.

Недостатком известного способа является большая длительность синхронизации синхронной машины из-за длительности подготовки частоты и большого периода между моментами возникновения условий, допускающих включение возбужденной машины в сеть.

Известен способ синхронизации возбужденной синхронной машины с сетью (а.с. СССР 598179, H02J 3/42, 1967), заключающийся в том, что при развороте синхронной машины от нулевой частоты вращения путем фиксации действительного скольжения сравнивают его с заданным значением и, в зависимости от величины и знака полученной разности, воздействуют на изменение частоты вращения, причем заданное значение скольжения выбирают большим зоны нечувствительности регулятора скорости и меньшим половины допустимого значения скольжения по условию успешной синхронизации.

Недостатками известного способа являются трудность задания значения скольжения и большая длительность синхронизации синхронной машины из-за длительности подгонки частоты вращения синхронной машины.

Известен способ синхронизации возбужденной синхронной машины с сетью (патент РФ 2190917, МПК 7, H02J 3/42, опубл. 10.10.2002), выбранный в качестве прототипа, заключающийся в том, что регулируют частоту напряжения возбужденной синхронной машины в направлении сближения с частотой сети, измеряют разность фаз и включают возбужденную синхронную машину в сеть в момент совпадения фаз. При этом при частоте напряжения возбужденной синхронной машины ниже частоты сети увеличивают частоту возбужденной машины до уровня, большего, чем частота сети, а измерение разности фаз начинают, когда частота напряжения возбужденной синхронной машины станет больше частоты сети.

Основным недостатком известного способа является исключение операции точной подгонки частоты машины, а также необходимость ожидания момента совпадения фаз. При этом для синхронизации используется напряжение одной фазы трехфазного напряжения, что приводит к неконтролируемым толчкам тока по оставшимся двум фазам при включении выключателя, который соединяет две трехфазные электроэнергетические системы.

Технической задачей, решаемой изобретением, является улучшение параметров синхронизации двух трехфазных электроэнергетических систем увеличение, а именно повышение точности определения момента включения выключателя, включение выключателя с наименьшим суммарным по всем трем фазам толчком тока и автоматический контроль идентичности чередования фаз двух электроэнергетических систем.

Технический результат, заключающийся в повышении точности определения момента включения выключателя, достигается благодаря тому, что в способе синхронизации двух трехфазных электроэнергетических систем, в котором измеряют разность фаз между двумя трехфазными электроэнергетическими системами, для определения момента подачи команды включения выключателя, который соединяет две трехфазные электроэнергетические системы при разности частот двух систем меньше, чем заданное значение максимальной разности частот dωmax, и при разности амплитуд напряжений двух систем меньше, чем заданное значение максимальной разности амплитуд dUmax, и заданном значении времени включения выключателя Твкл используют цифровые сигналы всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt<<T, исходя из цифровых сигналов всех трех фаз промышленного трехфазного напряжения двух систем определяют амплитуды напряжения первой Ua1, Ub1, Uc1 и второй Ua2, Ub2, Uc2 электроэнергетических систем, согласно изобретению определяют проекции Ux1(ti), Ux2(ti) на ось абсцисс X вращающихся полей U1(ti), U2(ti), создаваемых тремя фазами Ua1(ti), Ub1(ti), Uc1(ti) и Ua2(ti), Ub2(ti), Uc2(ti) промышленного трехфазного напряжения:

определяют проекции Uy1(ti), Uy2(ti) на ось абсцисс Υ вращающихся полей U1(ti), U2(ti):

Uy1(ti)=(2·Ua1(ti)-Ub1(ti)-Uc1(ti))/2, Uy2(ti)=(2·Ua2(ti)-Ub2(ti)-Uc2(ti))/2,

определяют модули вращающихся полей U1(ti), U2(ti):

определяют фазы φi1, φi2 вращающихся полей U1(ti), U2(ti):

φi1=k1·2π+k2·arccos{Ux1(ti)/U1(ti)}, φi2=k3·2π+k4·arccos{Ux2(ti)/U2(ti)},

где k1=0, k2=1 если Uy1(ti)≥0, иначе k1=1, k2=-1,

k3=0, k4=1 если Uy2(ti)≥0, иначе k3=1, k4=-1,

определяют модуль угла φi между двумя вращающимися полями U1(ti), U2(ti):

|φi|=|φi1-φi2|,

определяют ближайший угол αi между двумя вращающимися полями U1(ti), U2(ti):

αi=|φi|, если |φi|≤π, иначе αi=2π-|φi|,

определяют разность dωi частот вращения вращающихся полей U1(ti), U2(ti):

dωi=|[α(i+1)-αi]/dt|

определяют разности dUa, dUb, dUc амплитуд всех трех фаз двух систем:

dUa=|Ua1-Ua2|, dUb=|Ub1-Ub2|, dUc=|Uc1-Uc2|,

определяют максимальное значение dU разности амплитуд среди всех трех фаз двух систем:

dU = максимальное значение из (dUa, dUb, dUc),

определяют средние за интервал времени n·dt значения ближайшего угла α и разности частот dω между двумя вращающимися полями U1(ti), U2(ti):

и при выполнении обоих условий dω≤dωmax и dU≤dUmax подают команду включения выключателя, который соединяет две трехфазные электроэнергетические системы, в момент смены знака выражения (α-αmax) с положительного на отрицательный, где αmax=dω·Твкл.

Существенным отличием предлагаемого технического решения является то, что весь процесс точной синхронизации двух трехфазных электроэнергетических систем производится в цифровом виде, используя выходные цифровые сигналы АЦП всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt<<T.

Предлагаемый способ синхронизации двух трехфазных электроэнергетических систем поясняется с помощью прилагаемых чертежей (фиг. 1-3), на которых сделаны следующие обозначения.

- Катушки статора двигателя фазы А (1), В (2), С (3), к которым подключено трехфазное напряжение Ua, Ub, Uc.

- Катушки статора двигателя А (1), В (2), С (3) намотаны на магнитопровод статора 4.

- Токи, протекающие по катушкам 1, 2, 3, создают в роторе 5 вращающееся поле U (6).

- Три вектора напряжения Ua (7), Ub (8), Uc (9), между которыми имеется угол 120 градусов, создают проекции на прямоугольную систему координат с осями X (10), Υ (11).

- Проекции векторов Ua (7), Ub (8), Uc (9) на оси Х(10), Υ (11) создают координаты Ux (12), Uy (13) вращающегося вектора U (6), который имеет угол φ (14) относительно оси X (10).

Сущность изобретения заключается в следующем. Принцип работы промышленных трехфазных сетей 50 герц связан с подачей на двигатель трехфазного напряжения Ua (7), Ub (8), Uc (9). Токи, протекающие по катушкам фаз А (1), В (2), С (3) статора 4 двигателя, к которым подключено трехфазное напряжение Ua (7), Ub (8), Uc (9), создают в роторе 5 двигателя вращающееся поле U (6), последнее и вращает ротор 5 двигателя.

Соответственно частотой F трехфазной сети является частота вращения поля U (6), угол φ (14) которого относительно оси X (10) непрерывно увеличивается с вращением поля U (6). Увеличение угла φ (14) на угол 2π происходит за один оборот поля U (6), или за период Τ частоты F=1/T.

Координаты Ux (12), Uy (13) вращающегося вектора U (6) получаются из проекций векторов Ua (7), Ub (8), Uc (9) на оси X (10), Υ (11):

Ux=(Uc-Ub)·√3/2,

Uy=Ua-(Ub+Uc)/2

Модуль (длина) вектора U (6) определяется из координат Ux (12), Uy (13):

U=√(U2x+U2y)

Весь процесс предлагаемого способа точной синхронизации производится в цифровом виде, используя выходные цифровые сигналы АЦП всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt<<T.

Исходя из цифровых сигналов всех трех фаз промышленного трехфазного напряжения двух систем определяют амплитуды напряжения первой Ua1, Ub1, Uc1 и второй Ua2, Ub2, Uc2 электроэнергетических систем. В каждый момент времени ti определяются проекции Ux1(ti), Ux2(ti) на ось абсцисс X вращающихся полей U1(ti), U2(ti), создаваемых тремя фазами Ua1(ti), Ub1(ti), Uc1(ti) и Ua2(ti), Ub2(ti), Uc2(ti) промышленного трехфазного напряжения, по формуле:

определяются проекции Uy1(ti), Uy2(ti) на ось абсцисс Υ вращающихся полей U1(ti), U2(ti):

Uy1(ti)=(2·Ua1(ti)-Ub1(ti)-Uc1(ti))/2, Uy2(ti)=(2·Ua2(ti)-Ub2(ti)-Uc2(ti))/2,

определяются модули вращающихся полей U1(ti), U2(ti):

определяются фазы φi1, φi2 вращающихся полей U1(ti), U2(ti):

φi1=k1·2π+k2·arccos{Ux1(ti)/U1(ti)}, φi2=k3·2π+k4·arccos{Ux2(ti)/U2(ti)},

где k1=0, k2=1 если Uy1(ti)≥0, иначе k1=1, k2=-l,

k3=0, k4=1 если Uy2(ti)≥0, иначе k3=1, k4=-l,

определяют модуль угла φi между двумя вращающимися полями U1(ti), U2(ti):

|φi|=|φi1-φi2|,

определяют ближайший угол αi между двумя вращающимися полями U1(ti), U2(ti):

αi=|φi|, если |φi|≤π, иначе αi=2π-|φi|,

определяют разность dωi частот вращения вращающихся полей U1(ti), U2(ti):

dωi=|[α(i+1)-αi]/dt|

определяют разности dUa, dUb, dUc амплитуд всех трех фаз двух систем:

dUa=|Ua1-Ua2|, dUb=|Ub1-Ub2|, dUc=|Uc1-Uc2|,

определяют максимальное значение dU разности амплитуд среди всех трех фаз двух систем:

dU = максимальное значение из (dUa, dUb, dUc).

Для повышения точности измерений угла α и разности частот dω определяются средние за интервал времени n·dt значения ближайшего угла α и разности частот dω между двумя вращающимися полями U1(ti), U2(ti):

где n - целое значение.

Исходными значениями для предлагаемого способа точной синхронизации двух трехфазных электроэнергетических систем являются заданное значение максимальной разности частот dωmax, заданное значение максимальной разности амплитуд dUmax и заданное значение времени включения выключателя Твкл.

При выполнении обоих условий dω≤dωmax и dU≤dUmax подают команду включения выключателя, который соединяет две трехфазные электроэнергетические системы, в момент смены знака выражения (α-αmax) с положительного на отрицательный, где αmax=dω·Твкл.

Использование всех трех фаз напряжения (Ua, Ub, Uc) двух электроэнергетических систем (вместо использования одной фазы напряжения) приводит к значительному улучшению параметров синхронизации двух трехфазных электроэнергетических систем:

1. Большее число сигналов (напряжения трех фаз) приводит к увеличению точности определения момента включения выключателя.

2. Использование вращающихся полей U1(ti), U2(ti), создаваемых тремя фазами Ua1(ti), Ub1(ti), Uc1(ti) и Ua2(ti), Ub2(ti), Uc2(ti) промышленного трехфазного напряжения, позволяет учитывать разность фаз между всеми тремя парами фаз напряжений (Ua1 и Ua2, Ub1 и Ub2, Uc1 и Uc2), в результате включение выключателя происходит с наименьшим суммарным по всем трем фазам толчком тока.

3. Автоматически контролируется идентичность чередования фаз двух электроэнергетических систем, поскольку при разном чередовании фаз одна фаза двух систем может быть синхронизована (и может быть неправильное включение при использовании только одной фазы), но вращающиеся поля U1(ti), U2(ti) будут вращаться в разных направлениях, и синхронизация никогда не наступит.

Таким образом, предлагаемый способ синхронизации двух трехфазных электроэнергетических систем позволяет увеличить точность определения момента включения выключателя, который соединяет две трехфазные электроэнергетические системы, включать выключатель с наименьшим суммарным по всем трем фазам толчком тока, автоматически контролировать идентичность чередования фаз двух электроэнергетических систем.

Способ синхронизации двух трехфазных электроэнергетических систем, в котором измеряют разность фаз между двумя трехфазными электроэнергетическими системами, для определения момента подачи команды включения выключателя, который соединяет две трехфазные электроэнергетические системы при разности частот двух систем меньше, чем заданное значение максимальной разности частот dωmax, и при разности амплитуд напряжений двух систем меньше, чем заданное значение максимальной разности амплитуд dU, и заданном значении времени включения выключателя Твкл используют цифровые сигналы всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt<СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 166.
20.08.2015
№216.013.7109

Способ работы тепловой электрической станции

Изобретение относится к способу утилизации тепловой энергии, вырабатываемой электрической станцией. Используют систему маслоснабжения подшипников паровой турбины, состоящую из охладителя, бака и насоса, теплообменник-охладитель сетевой воды, который устанавливают на обратном трубопроводе...
Тип: Изобретение
Номер охранного документа: 0002560507
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.710b

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и...
Тип: Изобретение
Номер охранного документа: 0002560509
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.710c

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию...
Тип: Изобретение
Номер охранного документа: 0002560510
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.710e

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002560512
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.710f

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002560513
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7110

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002560514
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.716b

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации...
Тип: Изобретение
Номер охранного документа: 0002560605
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.716c

Способ утилизации теплоты тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано для утилизации теплоты тепловой электрической станции (ТЭС). Осуществляют подачу пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от...
Тип: Изобретение
Номер охранного документа: 0002560606
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.716d

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. В теплообменнике-охладителе сетевой воды осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой...
Тип: Изобретение
Номер охранного документа: 0002560607
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.716e

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Проводят утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды при помощи охлаждающей жидкости посредством...
Тип: Изобретение
Номер охранного документа: 0002560608
Дата охранного документа: 20.08.2015
Показаны записи 81-90 из 184.
27.07.2015
№216.013.6859

Способ определения расстояния до мест замыканий на землю на двух линиях электропередачи в сетях с малыми токами замыкания на землю

Изобретение относится к измерениям в электроэнергетике и может быть использовано для определения расстояния до мест повреждения при замыканиях на землю одной фазы на двух разных линиях электропередачи распределительной сети 6-35 кВ. Технический результат: повышение точности определения...
Тип: Изобретение
Номер охранного документа: 0002558266
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.685c

Способ голографического контроля неплоскостности кольцевых поверхностей

Изобретение относится к области оптического приборостроения и может быть использовано для контроля неплоскостности кольцевых поверхностей. В способе голографического контроля формируется первый опорный пучок с помощью светоделителя и зеркал и объектный пучок, включающий проекционный объектив,...
Тип: Изобретение
Номер охранного документа: 0002558269
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6dc1

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с...
Тип: Изобретение
Номер охранного документа: 0002559655
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f9f

Способ определения частоты трехфазного напряжения

Изобретение относится к области информационно-измерительной и вычислительной техники и может быть использовано в электроэнергетике для контроля усредненных значений частоты в промышленных трехфазных электрических сетях. Для определения частоты первой гармоники F промышленного трехфазного...
Тип: Изобретение
Номер охранного документа: 0002560145
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70fd

Способ работы тепловой электрической станции

Изобретение относится к способу утилизации тепловой энергии на тепловых электрических станциях (ТЭС). Технический результат заключается в повышении коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической...
Тип: Изобретение
Номер охранного документа: 0002560495
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70fe

Способ работы тепловой электрической станции

Изобретение относится к способу утилизации тепловой энергии, вырабатываемой тепловой электростанцией (ТЭС). Отработавший пар поступает из паровой турбины в паровое пространство конденсатора и полученный конденсат с помощью насоса направляют в систему регенерации. В ТЭС используют...
Тип: Изобретение
Номер охранного документа: 0002560496
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70ff

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с...
Тип: Изобретение
Номер охранного документа: 0002560497
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7100

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, низкопотенциальной...
Тип: Изобретение
Номер охранного документа: 0002560498
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7101

Способ работы тепловой электрической станции

Изобретение относится к способу утилизации тепловой энергии, вырабатываемой на тепловых электрических станциях (ТЭС). Технический результат изобретения заключается в повышении коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации...
Тип: Изобретение
Номер охранного документа: 0002560499
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7102

Способ работы тепловой электрической станции

Изобретение относится к способу утилизации тепловой энергии, вырабатываемой тепловой электрической станцией (ТЭС). Отработавший пар направляют из паровой турбины в паровое пространство конденсатора и полученный конденсат с помощью его конденсатного насоса направляют в систему регенерации....
Тип: Изобретение
Номер охранного документа: 0002560500
Дата охранного документа: 20.08.2015
+ добавить свой РИД