×
27.10.2015
216.013.88f8

Результат интеллектуальной деятельности: СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ

Вид РИД

Изобретение

Аннотация: Использование: в области электроэнергетики. Технический результат - повышение точности определения момента включения выключателя и автоматический контроль идентичности чередования фаз двух электроэнергетических систем. Процесс точной синхронизации двух трехфазных электроэнергетических систем производится в цифровом виде, используя выходные цифровые сигналы АЦП всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt≤≤T. Использование всех трех фаз напряжения (Ua, Ub, Uc) двух электроэнергетических систем (вместо использования одной фазы напряжения) приводит к значительному улучшению параметров синхронизации двух трехфазных электроэнергетических систем. Большее число сигналов (напряжения трех фаз) приводит к увеличению точности определения момента включения выключателя. Использование вращающихся полей U1(ti), U2(ti), создаваемых тремя фазами Ua1(ti), Ub1(ti), Uc1(ti) и Ua2(ti), Ub2(ti), Uc2(ti) промышленного трехфазного напряжения, позволяет учитывать разность фаз между всеми тремя парами фаз напряжений (Ua1 и Ua2, Ub1 и Ub2, Uc1 и Uc2), в результате включение выключателя происходит с наименьшим суммарным по всем трем фазам толчком тока. 3 ил.
Основные результаты: Способ синхронизации двух трехфазных электроэнергетических систем, в котором измеряют разность фаз между двумя трехфазными электроэнергетическими системами, для определения момента подачи команды включения выключателя, который соединяет две трехфазные электроэнергетические системы при разности частот двух систем меньше, чем заданное значение максимальной разности частот dωmax, и при разности амплитуд напряжений двух систем меньше, чем заданное значение максимальной разности амплитуд dU, и заданном значении времени включения выключателя Твкл используют цифровые сигналы всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt<

Предлагаемое изобретение относится к электроэнергетике и может быть использовано для определения момента подачи команды включения выключателя, который соединяет две трехфазные электроэнергетические системы.

Известен способ синхронизации возбужденной синхронной машины с сетью (Константинов В.Н. Синхронизация судовых синхронных генераторов. - Л.: «Судостроение», 1965. - с. 256-267), заключающийся в том, что регулируют частоту возбужденной синхронной машины до совпадения частот машины и сети, ожидают момент совпадения фаз машины и сети и включают машину в сеть в момент совпадения фаз.

Недостатком известного способа является большая длительность синхронизации синхронной машины из-за длительности подготовки частоты и большого периода между моментами возникновения условий, допускающих включение возбужденной машины в сеть.

Известен способ синхронизации возбужденной синхронной машины с сетью (а.с. СССР 598179, H02J 3/42, 1967), заключающийся в том, что при развороте синхронной машины от нулевой частоты вращения путем фиксации действительного скольжения сравнивают его с заданным значением и, в зависимости от величины и знака полученной разности, воздействуют на изменение частоты вращения, причем заданное значение скольжения выбирают большим зоны нечувствительности регулятора скорости и меньшим половины допустимого значения скольжения по условию успешной синхронизации.

Недостатками известного способа являются трудность задания значения скольжения и большая длительность синхронизации синхронной машины из-за длительности подгонки частоты вращения синхронной машины.

Известен способ синхронизации возбужденной синхронной машины с сетью (патент РФ 2190917, МПК 7, H02J 3/42, опубл. 10.10.2002), выбранный в качестве прототипа, заключающийся в том, что регулируют частоту напряжения возбужденной синхронной машины в направлении сближения с частотой сети, измеряют разность фаз и включают возбужденную синхронную машину в сеть в момент совпадения фаз. При этом при частоте напряжения возбужденной синхронной машины ниже частоты сети увеличивают частоту возбужденной машины до уровня, большего, чем частота сети, а измерение разности фаз начинают, когда частота напряжения возбужденной синхронной машины станет больше частоты сети.

Основным недостатком известного способа является исключение операции точной подгонки частоты машины, а также необходимость ожидания момента совпадения фаз. При этом для синхронизации используется напряжение одной фазы трехфазного напряжения, что приводит к неконтролируемым толчкам тока по оставшимся двум фазам при включении выключателя, который соединяет две трехфазные электроэнергетические системы.

Технической задачей, решаемой изобретением, является улучшение параметров синхронизации двух трехфазных электроэнергетических систем увеличение, а именно повышение точности определения момента включения выключателя, включение выключателя с наименьшим суммарным по всем трем фазам толчком тока и автоматический контроль идентичности чередования фаз двух электроэнергетических систем.

Технический результат, заключающийся в повышении точности определения момента включения выключателя, достигается благодаря тому, что в способе синхронизации двух трехфазных электроэнергетических систем, в котором измеряют разность фаз между двумя трехфазными электроэнергетическими системами, для определения момента подачи команды включения выключателя, который соединяет две трехфазные электроэнергетические системы при разности частот двух систем меньше, чем заданное значение максимальной разности частот dωmax, и при разности амплитуд напряжений двух систем меньше, чем заданное значение максимальной разности амплитуд dUmax, и заданном значении времени включения выключателя Твкл используют цифровые сигналы всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt<<T, исходя из цифровых сигналов всех трех фаз промышленного трехфазного напряжения двух систем определяют амплитуды напряжения первой Ua1, Ub1, Uc1 и второй Ua2, Ub2, Uc2 электроэнергетических систем, согласно изобретению определяют проекции Ux1(ti), Ux2(ti) на ось абсцисс X вращающихся полей U1(ti), U2(ti), создаваемых тремя фазами Ua1(ti), Ub1(ti), Uc1(ti) и Ua2(ti), Ub2(ti), Uc2(ti) промышленного трехфазного напряжения:

определяют проекции Uy1(ti), Uy2(ti) на ось абсцисс Υ вращающихся полей U1(ti), U2(ti):

Uy1(ti)=(2·Ua1(ti)-Ub1(ti)-Uc1(ti))/2, Uy2(ti)=(2·Ua2(ti)-Ub2(ti)-Uc2(ti))/2,

определяют модули вращающихся полей U1(ti), U2(ti):

определяют фазы φi1, φi2 вращающихся полей U1(ti), U2(ti):

φi1=k1·2π+k2·arccos{Ux1(ti)/U1(ti)}, φi2=k3·2π+k4·arccos{Ux2(ti)/U2(ti)},

где k1=0, k2=1 если Uy1(ti)≥0, иначе k1=1, k2=-1,

k3=0, k4=1 если Uy2(ti)≥0, иначе k3=1, k4=-1,

определяют модуль угла φi между двумя вращающимися полями U1(ti), U2(ti):

|φi|=|φi1-φi2|,

определяют ближайший угол αi между двумя вращающимися полями U1(ti), U2(ti):

αi=|φi|, если |φi|≤π, иначе αi=2π-|φi|,

определяют разность dωi частот вращения вращающихся полей U1(ti), U2(ti):

dωi=|[α(i+1)-αi]/dt|

определяют разности dUa, dUb, dUc амплитуд всех трех фаз двух систем:

dUa=|Ua1-Ua2|, dUb=|Ub1-Ub2|, dUc=|Uc1-Uc2|,

определяют максимальное значение dU разности амплитуд среди всех трех фаз двух систем:

dU = максимальное значение из (dUa, dUb, dUc),

определяют средние за интервал времени n·dt значения ближайшего угла α и разности частот dω между двумя вращающимися полями U1(ti), U2(ti):

и при выполнении обоих условий dω≤dωmax и dU≤dUmax подают команду включения выключателя, который соединяет две трехфазные электроэнергетические системы, в момент смены знака выражения (α-αmax) с положительного на отрицательный, где αmax=dω·Твкл.

Существенным отличием предлагаемого технического решения является то, что весь процесс точной синхронизации двух трехфазных электроэнергетических систем производится в цифровом виде, используя выходные цифровые сигналы АЦП всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt<<T.

Предлагаемый способ синхронизации двух трехфазных электроэнергетических систем поясняется с помощью прилагаемых чертежей (фиг. 1-3), на которых сделаны следующие обозначения.

- Катушки статора двигателя фазы А (1), В (2), С (3), к которым подключено трехфазное напряжение Ua, Ub, Uc.

- Катушки статора двигателя А (1), В (2), С (3) намотаны на магнитопровод статора 4.

- Токи, протекающие по катушкам 1, 2, 3, создают в роторе 5 вращающееся поле U (6).

- Три вектора напряжения Ua (7), Ub (8), Uc (9), между которыми имеется угол 120 градусов, создают проекции на прямоугольную систему координат с осями X (10), Υ (11).

- Проекции векторов Ua (7), Ub (8), Uc (9) на оси Х(10), Υ (11) создают координаты Ux (12), Uy (13) вращающегося вектора U (6), который имеет угол φ (14) относительно оси X (10).

Сущность изобретения заключается в следующем. Принцип работы промышленных трехфазных сетей 50 герц связан с подачей на двигатель трехфазного напряжения Ua (7), Ub (8), Uc (9). Токи, протекающие по катушкам фаз А (1), В (2), С (3) статора 4 двигателя, к которым подключено трехфазное напряжение Ua (7), Ub (8), Uc (9), создают в роторе 5 двигателя вращающееся поле U (6), последнее и вращает ротор 5 двигателя.

Соответственно частотой F трехфазной сети является частота вращения поля U (6), угол φ (14) которого относительно оси X (10) непрерывно увеличивается с вращением поля U (6). Увеличение угла φ (14) на угол 2π происходит за один оборот поля U (6), или за период Τ частоты F=1/T.

Координаты Ux (12), Uy (13) вращающегося вектора U (6) получаются из проекций векторов Ua (7), Ub (8), Uc (9) на оси X (10), Υ (11):

Ux=(Uc-Ub)·√3/2,

Uy=Ua-(Ub+Uc)/2

Модуль (длина) вектора U (6) определяется из координат Ux (12), Uy (13):

U=√(U2x+U2y)

Весь процесс предлагаемого способа точной синхронизации производится в цифровом виде, используя выходные цифровые сигналы АЦП всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt<<T.

Исходя из цифровых сигналов всех трех фаз промышленного трехфазного напряжения двух систем определяют амплитуды напряжения первой Ua1, Ub1, Uc1 и второй Ua2, Ub2, Uc2 электроэнергетических систем. В каждый момент времени ti определяются проекции Ux1(ti), Ux2(ti) на ось абсцисс X вращающихся полей U1(ti), U2(ti), создаваемых тремя фазами Ua1(ti), Ub1(ti), Uc1(ti) и Ua2(ti), Ub2(ti), Uc2(ti) промышленного трехфазного напряжения, по формуле:

определяются проекции Uy1(ti), Uy2(ti) на ось абсцисс Υ вращающихся полей U1(ti), U2(ti):

Uy1(ti)=(2·Ua1(ti)-Ub1(ti)-Uc1(ti))/2, Uy2(ti)=(2·Ua2(ti)-Ub2(ti)-Uc2(ti))/2,

определяются модули вращающихся полей U1(ti), U2(ti):

определяются фазы φi1, φi2 вращающихся полей U1(ti), U2(ti):

φi1=k1·2π+k2·arccos{Ux1(ti)/U1(ti)}, φi2=k3·2π+k4·arccos{Ux2(ti)/U2(ti)},

где k1=0, k2=1 если Uy1(ti)≥0, иначе k1=1, k2=-l,

k3=0, k4=1 если Uy2(ti)≥0, иначе k3=1, k4=-l,

определяют модуль угла φi между двумя вращающимися полями U1(ti), U2(ti):

|φi|=|φi1-φi2|,

определяют ближайший угол αi между двумя вращающимися полями U1(ti), U2(ti):

αi=|φi|, если |φi|≤π, иначе αi=2π-|φi|,

определяют разность dωi частот вращения вращающихся полей U1(ti), U2(ti):

dωi=|[α(i+1)-αi]/dt|

определяют разности dUa, dUb, dUc амплитуд всех трех фаз двух систем:

dUa=|Ua1-Ua2|, dUb=|Ub1-Ub2|, dUc=|Uc1-Uc2|,

определяют максимальное значение dU разности амплитуд среди всех трех фаз двух систем:

dU = максимальное значение из (dUa, dUb, dUc).

Для повышения точности измерений угла α и разности частот dω определяются средние за интервал времени n·dt значения ближайшего угла α и разности частот dω между двумя вращающимися полями U1(ti), U2(ti):

где n - целое значение.

Исходными значениями для предлагаемого способа точной синхронизации двух трехфазных электроэнергетических систем являются заданное значение максимальной разности частот dωmax, заданное значение максимальной разности амплитуд dUmax и заданное значение времени включения выключателя Твкл.

При выполнении обоих условий dω≤dωmax и dU≤dUmax подают команду включения выключателя, который соединяет две трехфазные электроэнергетические системы, в момент смены знака выражения (α-αmax) с положительного на отрицательный, где αmax=dω·Твкл.

Использование всех трех фаз напряжения (Ua, Ub, Uc) двух электроэнергетических систем (вместо использования одной фазы напряжения) приводит к значительному улучшению параметров синхронизации двух трехфазных электроэнергетических систем:

1. Большее число сигналов (напряжения трех фаз) приводит к увеличению точности определения момента включения выключателя.

2. Использование вращающихся полей U1(ti), U2(ti), создаваемых тремя фазами Ua1(ti), Ub1(ti), Uc1(ti) и Ua2(ti), Ub2(ti), Uc2(ti) промышленного трехфазного напряжения, позволяет учитывать разность фаз между всеми тремя парами фаз напряжений (Ua1 и Ua2, Ub1 и Ub2, Uc1 и Uc2), в результате включение выключателя происходит с наименьшим суммарным по всем трем фазам толчком тока.

3. Автоматически контролируется идентичность чередования фаз двух электроэнергетических систем, поскольку при разном чередовании фаз одна фаза двух систем может быть синхронизована (и может быть неправильное включение при использовании только одной фазы), но вращающиеся поля U1(ti), U2(ti) будут вращаться в разных направлениях, и синхронизация никогда не наступит.

Таким образом, предлагаемый способ синхронизации двух трехфазных электроэнергетических систем позволяет увеличить точность определения момента включения выключателя, который соединяет две трехфазные электроэнергетические системы, включать выключатель с наименьшим суммарным по всем трем фазам толчком тока, автоматически контролировать идентичность чередования фаз двух электроэнергетических систем.

Способ синхронизации двух трехфазных электроэнергетических систем, в котором измеряют разность фаз между двумя трехфазными электроэнергетическими системами, для определения момента подачи команды включения выключателя, который соединяет две трехфазные электроэнергетические системы при разности частот двух систем меньше, чем заданное значение максимальной разности частот dωmax, и при разности амплитуд напряжений двух систем меньше, чем заданное значение максимальной разности амплитуд dU, и заданном значении времени включения выключателя Твкл используют цифровые сигналы всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt<СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 166.
27.11.2013
№216.012.8617

Способ получения голографических интерферограмм фазового объекта

Изобретение может быть использовано при измерении малых разностей хода (менее 0,1λ длины волны) слабых оптических неоднородностей в прозрачных средах, например, при обтекании тел в потоках малой плотности, распыливании топлива из форсунок в разреженное пространство, изучении процессов смешения,...
Тип: Изобретение
Номер охранного документа: 0002500005
Дата охранного документа: 27.11.2013
27.12.2013
№216.012.9189

Способ голографической визуализации обтекания движущегося тела

Способ реализуют посредством двухлучевого интерферометра с оптической системой для формирования опорного и объектного пучков, системой зеркал, установленных вдоль опорной и объектной ветвей, рабочей зоной, проекционным объективом и узлом регистрации голограммы. Голограмму регистрируют...
Тип: Изобретение
Номер охранного документа: 0002502950
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.957f

Способ определения места повреждения на линиях электропередачи по спектру переходного процесса

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места повреждения в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью....
Тип: Изобретение
Номер охранного документа: 0002503965
Дата охранного документа: 10.01.2014
27.01.2014
№216.012.9d16

Регулируемое акустоэлектронное устройство

Изобретение относится к области акустоэлектроники и может быть использовано в составе регулируемых устройств, а именно регулируемой ультразвуковой линии задержки в частотном диапазоне 10-1000 МГц с применением в различных радиоэлектронных системах обработки информации. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002505920
Дата охранного документа: 27.01.2014
27.02.2014
№216.012.a731

Теплообменная труба

Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники. В теплообменной трубе, канал которой выполнен с выступами и канавками, согласно заявляемому изобретению, канал образован гладкими участками трубы и...
Тип: Изобретение
Номер охранного документа: 0002508516
Дата охранного документа: 27.02.2014
10.04.2014
№216.012.b0d0

Цифроаналоговый преобразователь

Изобретение относится к области электроники, а именно к цифроаналоговым преобразователям. Техническим результатом является упрощение конструкции и повышение быстродействия цифроаналогового преобразователя при сохранении точности преобразования за счет формирования двухполярного выходного...
Тип: Изобретение
Номер охранного документа: 0002510979
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b3f2

Горелка для сжигания газа

Изобретение относится к технологии сжигания газообразного топлива в топках котлов и печах. Задачей изобретения является повышение качества сжигания топлива на всех режимах работы горелки. Технический результат достигается тем, что в горелку для сжигания газа, содержащую цилиндрический корпус,...
Тип: Изобретение
Номер охранного документа: 0002511783
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b43c

Теплообменная труба

Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники. В теплообменной трубе канал образован гладкими участками трубы и выступами, при этом выступы выполнены с дополнительным интенсификатором...
Тип: Изобретение
Номер охранного документа: 0002511859
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b497

Газотурбинный двигатель со свободнопоршневым генератором газа

Газотурбинный двигатель со свободнопоршневым генератором газа (СПГГ) состоит из связанных между собой СПГГ, газосборника и газовой турбины. СПГГ содержит рабочий цилиндр двигателя, рабочие поршни двигателя, поршни компрессора, синхронизирующий механизм движения рабочих поршней двигателя и...
Тип: Изобретение
Номер охранного документа: 0002511952
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c0d9

Способ измерения пористости хлебобулочного изделия и устройство для осуществления

Изобретение относится к области технологического контроля пористости хлебобулочных изделий в процессе их производства и может быть использовано при отработке оптимального режима технологии получения заданной пористости в цеховых лабораторных условиях. В способе измерения пористости...
Тип: Изобретение
Номер охранного документа: 0002515118
Дата охранного документа: 10.05.2014
Показаны записи 11-20 из 184.
27.05.2013
№216.012.442d

Алюмокремниевый флокулянт

Изобретение может быть использовано для осветления природной воды в теплоэнергетике. Кремнийорганическая жидкость «Силор» образуется в процессе химической деструкции отходов кремнийорганических резиновых смесей и изделий на основе силиконовых каучуков. Кремнийорганическую жидкость «Силор»...
Тип: Изобретение
Номер охранного документа: 0002483030
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.454a

Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов

Изобретение относится к области электроизмерительной. Осуществляют пассивный прием электромагнитным и акустическим приемниками одновременно электромагнитного и акустического излучений от частичных разрядов, индикацию и совместную компьютерную обработку сигналов, согласно предлагаемому...
Тип: Изобретение
Номер охранного документа: 0002483315
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.45cc

Система беспроводной атмосферной оптической связи на объектах с высоким уровнем электромагнитных помех

Изобретение относится к области оптической связи, в частности к атмосферным системам передачи информации. Технический результат состоит в повышении помехоустойчивости и вероятности гарантированной связи на объектах, имеющих высокий уровень помех и шумов, как в радиодиапазоне, так и в оптической...
Тип: Изобретение
Номер охранного документа: 0002483445
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.492c

Гидравлический таран

Изобретение относится к гидротаранным установкам. В гидравлическом таране напорный колпак 11 выполнен составным из жестко закрепленных между собой верхней, средней и нижней частей. Верхняя часть выполнена в виде корпуса возвратного клапана 14, в полости которого размещен подпружиненный...
Тип: Изобретение
Номер охранного документа: 0002484312
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b6c

Применение шлама, образующегося на водоподготовительной установке, в качестве сорбента при очистке газовых выбросов тэс

Изобретение относится к области производства сорбентов. В качестве сорбента для очистки газов предложен шлам, образующийся при совместной коагуляции и известковании сырой воды на водоподготовительной установке тепловых электрических станций. Шлам имеет химический состав:...
Тип: Изобретение
Номер охранного документа: 0002484890
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4bb4

Устройство для сварки полимерных трубчатых элементов

Изобретение относится к сварке термопластов путем их электрического нагрева и последующего сжатия между собой, а именно к устройствам для сварки полимерных трубчатых элементов, в частности фитинга и трубы. Оно может найти применение в системах отопления, водоснабжения, газоснабжения при монтаже...
Тип: Изобретение
Номер охранного документа: 0002484962
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5482

Устройство для обработки призабойной зоны скважины и способ обработки призабойной зоны скважины

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения эффективности обработки призабойной зоны скважины. Устройство для обработки призабойной зоны скважины, содержащее воздушную камеру с атмосферным давлением, выполненную длиной 20-50 м и соединенную при...
Тип: Изобретение
Номер охранного документа: 0002487237
Дата охранного документа: 10.07.2013
27.09.2013
№216.012.7035

Способ информационного квч воздействия на живой организм

Способ информационного КВЧ воздействия на живой организм относится к области биологии и медицины и может быть использован для стимуляции жизнедеятельности живых организмов или растений, в частности для лечения ряда заболеваний человека и животных. Технический результат - упрощение процесса и...
Тип: Изобретение
Номер охранного документа: 0002494376
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70bc

Способ контроля провиса провода линии электропередачи

Изобретение относится к электротехнике. Способ включает размещение на проводе подвесного датчика температуры, а под проводом - контрольного устройства. При помощи первого и второго ультразвуковых приемопередатчиков осуществляют посредством контрольного устройства совместно с подвесным датчиком...
Тип: Изобретение
Номер охранного документа: 0002494511
Дата охранного документа: 27.09.2013
20.10.2013
№216.012.76cc

Теплообменная труба

Изобретение относится к энергетике. Теплообменная труба, у которой канал выполнен с выступами и канавками, причем канал выполнен с геометрическими соотношениями: h/Д=0,03, l=(90-100)/h, l=(90-100)h, где h - высота выступа, мм, Д - внутренний диаметр теплообменной трубы, мм, l - длина выступа,...
Тип: Изобретение
Номер охранного документа: 0002496072
Дата охранного документа: 20.10.2013
+ добавить свой РИД