×
27.10.2015
216.013.887e

Результат интеллектуальной деятельности: СПОСОБ ПРОВЕТРИВАНИЯ ПОДЗЕМНОГО ГОРНОДОБЫВАЮЩЕГО ПРЕДПРИЯТИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к горной промышленности и может быть использовано для проветривания подземных горнодобывающих предприятий. Техническим результатом является повышение энергоэффективности проветривания за счет действия тепловых депрессий, действующих между стволами, и общерудничной естественной тяги на всех типах подземных горнодобывающих предприятий, работающих по различным способам проветривания (всасывающему, нагнетательному или комбинированному) с различным количеством стволов; расширение периода использования способа (круглогодично). Согласно способу подают наружный воздух по воздухоподающим стволам за счет работы главной вентиляторной установки (ГВУ), нагревают его в шахтной калориферной установке, расположенной в поверхностном комплексе воздухоподающего ствола, при нагреве определяют величины тепловых депрессий, действующих между стволами, и общерудничной естественной тяги в микроконтроллерном блоке. Теплопроизводительность шахтной калориферной установки и режим работы главной вентиляторной установки регулируются устройствами управления, на которые поступает информация с микроконтроллерного блока в зависимости от величины тепловых депрессий, действующих между стволами, и общерудничной естественной тяги. Наружный воздух подают по воздухоподающим стволам, используя различные способы проветривания и любое количество воздухоподающих стволов. Воздух, проходящий по подземной части горнодобывающего предприятия, нагревают при помощи электронагревательных пластинчатых элементов, расположенных в главных вентиляционных выработках, подходящих к вентиляционному стволу. В холодное время года нагревают воздух в главных вентиляционных выработках до значения температуры, при которой между стволами возникают положительные тепловые депрессии и общерудничная естественная тяга. В теплое время года, в период отключения шахтной калориферной установки, нагрев воздуха в главных вентиляционных выработках осуществляют в зависимости от соотношения затрачиваемой на работу электронагревательных пластинчатых элементов и сэкономленной на главной вентиляторной установке электроэнергии, которое вычисляется в микроконтроллерном блоке. При нагреве воздуха определяют величины тепловых депрессий, действующих между стволами, и общерудничной естественной тяги в микроконтроллерном блоке, при этом теплопроизводительность электронагревательных пластинчатых элементов регулируется устройствами управления, на которые поступает информация с микроконтроллерного блока в зависимости от требуемых величин тепловых депрессий, действующих между стволами, и общерудничной естественной тяги. Отводят нагретый воздух на поверхность, используя любое количество вентиляционных стволов, при этом в главных вентиляционных выработках каждого вентиляционного ствола располагают электронагревательные пластинчатые элементы. 1 з.п. ф-лы, 3 ил.

Изобретение относится к горной промышленности и может быть использовано для проветривания подземных горнодобывающих предприятий.

Известен способ проветривания подземного горнодобывающего предприятия, осуществляемый с помощью системы, описанной в патенте RU №140553 от 10.05.2014 г. Способ включает подачу наружного воздуха по двум воздухоподающим стволам за счет работы главной вентиляторной установки (ГВУ), охлаждение его в системе кондиционирования воздуха (СКВ). Поступающий в первый воздухоподающий ствол воздух охлаждается в испарителе поверхностной СКВ, поступающий во второй - в испарителе подземной СКВ. Проходящий по подземной части подземного горнодобывающего предприятия воздух поступает в главные вентиляционные выработки, в которых расположены конденсаторы поверхностной и подземной СКВ, выбрасывающие теплый воздух в исходящую по вентиляционному стволу струю.

Признаки аналога, совпадающие с существенными признаками заявляемого изобретения - подают наружный воздух по воздухоподающим стволам за счет работы главной вентиляторной установки; нагревают воздух, проходящий по подземной части горнодобывающего предприятия, установками, расположенными в главных вентиляционных выработках, подходящих к вентиляционному стволу; отводят нагретый воздух по вентиляционному стволу на поверхность.

Недостатки известного способа следующие:

- величины тепловых депрессий, действующих между стволами, и общерудничной естественной тяги будут зависеть от объема и температуры выбрасываемого из конденсаторов СКВ воздуха, т.е. регулирование их величины можно осуществлять только в ограниченном диапазоне;

- способ применим только в случае работы системы кондиционирования воздуха (СКВ), т.е. только в теплое время года;

- в способе не предусматривается автоматизация процесса проветривания;

- способ применим только на подземных горнодобывающих предприятиях, подача воздуха в которые осуществляется по двум воздухоподающим и выдача по одному вентиляционному стволам;

- способ применим только на подземных горнодобывающих предприятиях, работающих по всасывающему способу проветривания.

Наиболее близким способом к заявленному изобретению по совокупности признаков является способ проветривания подземного горнодобывающего предприятия, осуществляемый с помощью системы автоматизации главной вентиляторной установки (ГВУ), описанной в патенте RU №131083 от 10.08.2013 г. Способ включает подачу наружного воздуха по двум воздухоподающим стволам за счет работы главной вентиляторной установки (ГВУ), нагрев воздуха в шахтных калориферных установках с возможностью изменения их теплопроизводительности, измерение датчиками температуры, давления либо плотномерами и датчиками расхода параметров воздуха в околоствольных дворах воздухоподающих стволов, в месте пересечения главных вентиляционных выработок с вентиляционным стволом, в канале ГВУ и калориферном канале. Информация с датчиков поступает в микроконтроллерный блок (МКБ), выдающий управляющие сигналы на механизм изменения теплопроизводительности шахтных калориферных установок и на задающее устройство электропривода ГВУ. Поступающий в подземное горнодобывающее предприятие воздух проходит по его подземной части и через главные вентиляционные выработки удаляется в вентиляционный ствол. Данный способ принят за прототип.

Признаки прототипа, совпадающие с существенными признаками заявляемого изобретения - подают наружный воздух по воздухоподающим стволам за счет работы главной вентиляторной установки; наружный воздух нагревают в шахтной калориферной установке, расположенной в поверхностном комплексе воздухоподающего ствола; при нагреве воздуха в шахтной калориферной установке определяют величины тепловых депрессий и общерудничной естественной тяги в микроконтроллерном блоке с помощью данных, полученных с датчиков температуры, давления, либо плотномеров и датчиков расхода воздуха, установленных на входе в воздухоподающие стволы, в их околоствольных дворах, в главных вентиляционных выработках и в поверхностном комплексе главной вентиляторной установки; теплопроизводительность шахтной калориферной установки и режим работы главной вентиляторной установки регулируются устройствами управления, на которые поступает информация с микроконтроллерного блока в зависимости от величины тепловых депрессий, действующих между стволами, и общерудничной естественной тяги; воздух отводят по вентиляционному стволу на поверхность.

Недостатки известного способа, принятого за прототип, следующие:

- регулирование режима работы главной вентиляторной установки (ГВУ) осуществляется в зависимости от величины тепловых депрессий, действующих между стволами, и общерудничной естественной тяги только при работе шахтных калориферных установок (ШКУ), т.е. может осуществляться только в холодное время года;

- способ применим только на подземных горнодобывающих предприятиях, подача воздуха в которые осуществляется по двум воздухоподающим стволам и выдача по одному вентиляционному стволу;

- способ применим только на подземных горнодобывающих предприятиях, работающих по всасывающему способу проветривания.

Задачей изобретения является повышение энергоэффективности проветривания за счет действия тепловых депрессий, действующих между стволами, и общерудничной естественной тяги на всех типах подземных горнодобывающих предприятий, работающих по различным способам проветривания (всасывающему, нагнетательному или комбинированному) с различным количеством стволов; расширение периода использования способа (круглогодично).

Поставленная задача была решена за счет того, что в известном способе проветривания, при котором подают наружный воздух по воздухоподающим стволам за счет работы главной вентиляторной установки, нагревают его в шахтной калориферной установке, расположенной в поверхностном комплексе воздухоподающего ствола, при нагреве определяют величины тепловых депрессий, действующих между стволами, и общерудничной естественной тяги в микроконтроллерном блоке с помощью данных, полученных с датчиков температуры, давления, либо плотномеров и датчиков расхода воздуха, установленных на входе в воздухоподающие стволы, в их околоствольных дворах, в главных вентиляционных выработках и в поверхностном комплексе главной вентиляторной установки, причем теплопроизводительность шахтной калориферной установки и режим работы главной вентиляторной установки регулируются устройствами управления, на которые поступает информация с микроконтроллерного блока в зависимости от величины тепловых депрессий, действующих между стволами, и общерудничной естественной тяги, воздух отводят по вентиляционному стволу на поверхность, согласно изобретению подают наружный воздух по воздухоподающим стволам, используя любой из существующих способов проветривания: всасывающий, нагнетательный или комбинированный и любое количество воздухоподающих стволов, затем воздух, проходящий по подземной части горнодобывающего предприятия, нагревают при помощи электронагревательных пластинчатых элементов, расположенных в главных вентиляционных выработках, подходящих к вентиляционному стволу, причем в холодное время года нагревают воздух в главных вентиляционных выработках до значения температуры, при которой между стволами возникают положительные тепловые депрессии и общерудничная естественная тяга, а в теплое время года, в период отключения шахтной калориферной установки, нагрев воздуха в главных вентиляционных выработках осуществляют в зависимости от соотношения затрачиваемой на работу электронагревательных пластинчатых элементов и сэкономленной на главной вентиляторной установке электроэнергии, которое вычисляется в микроконтроллерном блоке, при нагреве воздуха, проходящего через электронагревательные пластинчатые элементы, определяют величины тепловых депрессий, действующих между стволами, и общерудничной естественной тяги в микроконтроллерном блоке с помощью данных, полученных с датчиков температуры, давления либо плотномеров и датчиков расхода воздуха, при этом теплопроизводительность электронагревательных пластинчатых элементов регулируется устройствами управления, на которые поступает информация с микроконтроллерного блока в зависимости от требуемых величин тепловых депрессий, действующих между стволами, и общерудничной естественной тяги, а отводят нагретый воздух на поверхность, используя любое количество вентиляционных стволов, при этом в главных вентиляционных выработках каждого вентиляционного ствола располагают электронагревательные пластинчатые элементы.

Целесообразно в теплое время года для охлаждения наружного воздуха использование системы кондиционирования, хладопроизводительность которой регулируется устройствами управления.

Признаки заявляемого технического решения, отличительные от прототипа - подают наружный воздух по воздухоподающим стволам, используя любой из существующих способов проветривания: всасывающий, нагнетательный или комбинированный и любое количество воздухоподающих стволов; затем воздух, проходящий по подземной части горнодобывающего предприятия, нагревают при помощи электронагревательных пластинчатых элементов, расположенных в главных вентиляционных выработках, подходящих к вентиляционному стволу, причем в холодное время нагревают воздух в главных вентиляционных выработках до значения температуры, при которой между стволами возникают положительные тепловые депрессии и общерудничная естественная тяга, а в теплое время года, в период отключения шахтной калориферной установки, нагрев воздуха, проходящего по подземной части горнодобывающего предприятия, осуществляют в зависимости от соотношения затрачиваемой на работу электронагревательных пластинчатых элементов и сэкономленной на главной вентиляторной установке электроэнергии, которое вычисляется в микроконтроллерном блоке; при нагреве воздуха, проходящего через электронагревательные пластинчатые элементы, определяют величины тепловых депрессий, действующих между стволами, и общерудничной естественной тяги в микроконтроллерном блоке с помощью данных, полученных с датчиков температуры, давления либо плотномеров и датчиков расхода воздуха; теплопроизводительность электронагревательных пластинчатых элементов регулируется устройствами управления, на которые поступает информация с микроконтроллерного блока в зависимости от требуемых величин тепловых депрессий, действующих между стволами, и общерудничной естественной тяги; отводят нагретый воздух на поверхность, используя любое количество вентиляционных стволов, при этом в главных вентиляционных выработках каждого вентиляционного ствола располагают электронагревательные пластинчатые элементы; в теплое время года для охлаждения наружного воздуха используют систему кондиционирования, хладопроизводительность которой регулируется устройствами управления.

Использование при подаче наружного воздуха по воздухоподающим стволам любого из существующих способов проветривания: всасывающего, нагнетательного или комбинированного и любого количества воздухоподающих стволов, а при отводе нагретого воздуха на поверхность любого количества вентиляционных стволов позволит значительно расширить область применения способа.

Нагрев воздуха, проходящего по подземной части горнодобывающего предприятия, при помощи электронагревательных пластинчатых элементов, расположенных в главных вентиляционных выработках, подходящих к вентиляционному стволу, позволит увеличить значение положительной общерудничной естественной тяги, что обеспечит режим работы ГВУ при минимальных затратах электроэнергии.

Нагрев воздуха, проходящего по подземной части горнодобывающего предприятия, в холодное время года до значения температуры, при которой между стволами возникают положительные тепловые депрессии и общерудничная естественная тяга, позволит снизить затраты электроэнергии на работу ГВУ.

Осуществление нагрева воздуха, проходящего по подземной части горнодобывающего предприятия, в теплое время года в зависимости от соотношения затрачиваемой на работу электронагревательных пластинчатых элементов и сэкономленной на ГВУ электроэнергии, которое вычисляется в микроконтроллерном блоке и зависит от величины общерудничной естественной тяги, позволит снизить затраты электроэнергии на работу ГВУ.

Информация, полученная с датчиков температуры, давления либо плотномеров и датчиков расхода воздуха, в микроконтроллерном блоке позволит определить величины тепловых депрессий, действующих между стволами, и общерудничной естественной тяги.

Регулирование теплопроизводительности электронагревательных пластинчатых элементов, на которые поступает управляющий сигнал с микроконтроллерного блока позволит снизить затраты электроэнергии на работу ГВУ и исключить возможность образования воздушных пробок в воздухоподающих стволах.

Отличительные признаки в совокупности с известными позволят повысить энергоэффективность проветривания за счет действия тепловых депрессий, действующих между стволами, и общерудничной естественной тяги на всех типах подземных горнодобывающих предприятий, работающих по различным способам проветривания (всасывающему, нагнетательному или комбинированному) с различным количеством стволов. Кроме того, позволят использовать способ круглогодично.

Сущность изобретения поясняется чертежами, представленными на фиг. 1-3.

На фиг. 1 показана схема проветривания подземного горнодобывающего предприятия, работающая по всасывающему способу проветривания с двумя воздухоподающими и одним вентиляционным стволами.

На фиг. 2 и фиг. 3 - соответственно по нагнетательному и комбинированному способу проветривания с одним воздухоподающим и одним вентиляционным стволами.

На фиг. 1-3 показаны:

1 - воздухоподающий ствол;

2 - главная вентиляторная установка;

3 - поверхностный комплекс воздухоподающего ствола;

4 - подземная часть горнодобывающего предприятия;

5 - главные вентиляционные выработки;

6 - электронагревательные пластинчатые элементы;

7 - вентиляционный ствол.

Способ проветривания подземного горнодобывающего предприятия осуществляется следующим образом.

По воздухоподающему стволу (воздухоподающим стволам) 1 за счет работы главной вентиляторной установки (главных вентиляторных установок) 2 подается наружный воздух. В холодное время года наружный воздух нагревается в шахтной калориферной установке (шахтных калориферных установках), расположенной в поверхностном комплексе 3 воздухоподающего ствола 1. Для охлаждения воздуха в теплое время года в поверхностном комплексе может располагаться система кондиционирования воздуха. Далее воздух поступает в подземную часть горнодобывающего предприятия 4. Проходя по подземной части горнодобывающего предприятия 4, воздух принимает температуру пород. При этом величина тепловых депрессий (hei) и общерудничной естественной тяги (he) зависит только от параметров (температуры и давления) воздуха, поступающего в воздухоподающий ствол (воздухоподающие стволы) 1. При прохождении по главным вентиляционным выработкам 5 воздух нагревается электронагревательными пластинчатыми элементами 6, температура нагрева которых контролируется устройством управления. Далее нагретый воздух удаляется по вентиляционному стволу 7 на поверхность. Увеличение температуры воздуха, удаляемого по вентиляционному стволу 7, позволит увеличить величину положительных тепловых депрессий (hei) и общерудничной естественной тяги (he). С увеличением значения положительных тепловых депрессий (hei) и общерудничной естественной тяги (he) для проветривания подземного горнодобывающего предприятия потребуется меньшее давление, развиваемое ГВУ 2 для подачи по воздухоподающему (воздухоподающим) стволу 1 требуемого количества воздуха. В этом случае режим работы ГВУ 2 переводится в область более низких давлений, в результате чего снижается затрачиваемая на ее работу электроэнергия.

Расчет величины тепловых депрессий, действующих между стволами, (hei) и общерудничной естественной тяги (he) осуществляется в микроконтроллерном блоке (МКБ), на который поступает информация с датчиков температуры, давления либо плотномеров и датчиков расхода. Датчики располагаются на входе в воздухоподающий ствол (воздухоподающие стволы) 1 и в его (их) околоствольном дворе, в главных вентиляционных выработках 5 в месте выхода нагретого воздуха из электронагревательных пластинчатых элементов 6, в поверхностном комплексе ГВУ 2. Также датчиками температуры и давления измеряются атмосферные параметры наружного воздуха.

В период отключения систем воздухоподготовки (шахтных калориферных установок и системы кондиционирования воздуха), т.е. когда температура воздуха, подаваемого в воздухоподающий ствол (воздухоподающие стволы) 1 равна температуре наружного воздуха, с МКБ управляющий сигнал подается только на устройство управления электронагревательными пластинчатыми элементами 6, изменяя их температуру. Параллельно сигнал управления с МКБ подается на задающее устройство электропривода ГВУ 2, снижая ее производительность. Контроль обеспечения подземного горнодобывающего предприятия необходимым объемом воздуха осуществляется датчиками расхода воздуха.

При работе систем воздухоподготовки управляющий сигнал с МКБ также поступает на механизм регулирования теплопроизводительности шахтных калориферных установок в холодное время года либо на механизм регулирования хладопроизводительности системы кондиционирования воздуха - в теплое. При этом в МКБ за счет информации, поступающей с датчиков температуры, давления либо плотномеров, кроме величины общерудничной естественной тяги (he) определяются величины тепловых депрессий, возникающих между стволами (hei). С МКБ подается сигнал на механизм регулирования тепло-(хладо-) производительностью шахтных калориферных установок (системы кондиционирования воздуха) и устройство управления электронагревательными пластинчатыми элементами 6, таким образом, чтобы между стволами отсутствовали отрицательные тепловые депрессии (hei).

В МКБ определяется необходимое для возникновения положительной общерудничной естественной тяги (he) значение температуры воздуха, выдаваемого по главным вентиляционным выработкам 5 в вентиляционный ствол 7. Также рассчитывается количество электроэнергии, необходимой для нагрева электронагревательных пластинчатых элементов 6, и сэкономленной при этом на ГВУ 2. В случае, если затраты электроэнергии, расходуемой на нагрев электронагревательных пластинчатых элементов 6 будут значительно меньше сэкономленной на ГВУ 2 при действии положительной общерудничной естественной тяги (he), с МКБ выдается регулирующий сигнал на устройство управления электронагревательными пластинчатыми элементами 6.

Способ применим для всасывающей (фиг. 1), нагнетательной (фиг. 2) и комбинированной (фиг. 3) схемы проветривания при различном количестве воздухоподающих стволов 1. В случае, если воздух удаляется по нескольким вентиляционным стволам 7, электронагревательные пластинчатые элементы 6 располагаются в главных вентиляционных выработках 5 каждого вентиляционного ствола 7.

Способ проветривания подземного горнодобывающего предприятия применим круглогодично.

Моделирование воздухораспределения для условного калийного рудника глубиной 400 м, диаметром стволов 7 м при атмосферных параметрах воздуха 20°C, атмосферном давлении 740 мм рт. ст. и затратах электроэнергии на работу электронагревательных пластин всего 22 кВт·ч показало, что при использовании заявляемого способа проветривания экономия электроэнергии составила 231,52 кВт·ч, т.е. примерно в 10,5 раза.


СПОСОБ ПРОВЕТРИВАНИЯ ПОДЗЕМНОГО ГОРНОДОБЫВАЮЩЕГО ПРЕДПРИЯТИЯ
СПОСОБ ПРОВЕТРИВАНИЯ ПОДЗЕМНОГО ГОРНОДОБЫВАЮЩЕГО ПРЕДПРИЯТИЯ
СПОСОБ ПРОВЕТРИВАНИЯ ПОДЗЕМНОГО ГОРНОДОБЫВАЮЩЕГО ПРЕДПРИЯТИЯ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 129.
10.08.2015
№216.013.6ab6

Армированный жаростойкими волокнами карбид кремния и способ изотовления из него герметичных тонкостенных изделий

Изобретения относятся к области композиционных материалов с карбидкремниевой матрицей, предназначенных для работы под избыточным давлением в условиях высокого теплового нагружения и окислительной среды, и могут быть использованы в химической, нефтяной и металлургической промышленности, а также...
Тип: Изобретение
Номер охранного документа: 0002558876
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f3d

Состав для выравнивания профиля приемистости нагнетательных скважин

Изобретение относится к нефтедобывающей промышленности и используется для регулирования профилей приемистости нагнетательных скважин. Состав для выравнивания профиля приемистости нагнетательных скважин, содержащий соль алюминия и воду, в качестве соли алюминия содержит хлорид и/или сульфат...
Тип: Изобретение
Номер охранного документа: 0002560047
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70d7

Термошахтный способ разработки высоковязкой нефти

Изобретение относится к нефтяной промышленности. Технический результат - высокий процент извлечения нефти (до 75%) за счет равномерного объемного распространения тепловых полей, начиная с нижней части продуктивного нефтяного пласта. Термошахтный способ разработки высоковязкой нефти включает...
Тип: Изобретение
Номер охранного документа: 0002560457
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70db

Способ получения защитных покрытий на изделиях с углеродсодержащей основой

Изобретение относится к производству изделий из углеродсодержащих материалов и предназначено для защиты от окисления изделий, работающих к условиях окислительной среды при высоких температурах. Техническим результатом является повышение жаростойкости, прочности и вязкости разрушения, а также...
Тип: Изобретение
Номер охранного документа: 0002560461
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70fb

Способ плазменной термической обработки поверхностного слоя изделий

Изобретение относится к области упрочняющей термической обработки поверхностного слоя изделий. Способ плазменной термической обработки поверхностного слоя изделий включает нагрев рабочей поверхности изделия аргоновой плазменной дугой прямого действия на токе обратной полярности. Нагрев рабочей...
Тип: Изобретение
Номер охранного документа: 0002560493
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.742c

Способ определения температур фазовых превращений в металлических материалах

Изобретение относится к термическому и дилатометрическому анализу и может быть использовано для определения критических точек фазовых превращений в металлических материалах при непрерывном нагреве. Согласно способу испытывают образец с использованием одинарного закалочного дилатометра и...
Тип: Изобретение
Номер охранного документа: 0002561315
Дата охранного документа: 27.08.2015
10.10.2015
№216.013.805a

Способ определения степени гомогенизации многокомпонентных гетерогенных смесей

Изобретение относится к технологии производства многокомпонентных гетерогенных смесей и может быть использовано в химической, фармацевтической, лакокрасочной и других отраслях промышленности при получении и анализе степени однородности как готовой многокомпонентной гетерогенной композиции, так...
Тип: Изобретение
Номер охранного документа: 0002564455
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.80ba

Керамическая масса для производства кирпича

Изобретение относится к области производства строительных изделий, в частности к изготовлению керамического кирпича. Керамическая масса для производства кирпича включает глину, измельченную макулатуру с размером частиц менее 10 мм и измельченные до размера частиц менее 0,5 мм отходы стекла при...
Тип: Изобретение
Номер охранного документа: 0002564551
Дата охранного документа: 10.10.2015
27.10.2015
№216.013.887f

Система регулирования воздухоподготовки на подземном горнодобывающем предприятии

Изобретение относится к горной промышленности, а именно к системе регулирования воздухоподготовки на поземном горном предприятии. Технический результат заключается в создании высокоэффективной автоматизированной системы регулирования воздухоподготовки на подземном горнодобывающем предприятии,...
Тип: Изобретение
Номер охранного документа: 0002566546
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8c8a

Сырьевая смесь для производства керамического кирпича

Изобретение относится к производству керамического кирпича. Технический результат - расширение сырьевой базы. Сырьевая смесь содержит, мас.%: глина 97-90, отход целлюлозно-бумажной промышленности - скоп 3-10. Размер частиц скопа не более 5 мм. Скоп содержит древесное волокно и активный ил в...
Тип: Изобретение
Номер охранного документа: 0002567585
Дата охранного документа: 10.11.2015
Показаны записи 91-100 из 141.
10.08.2015
№216.013.6ab6

Армированный жаростойкими волокнами карбид кремния и способ изотовления из него герметичных тонкостенных изделий

Изобретения относятся к области композиционных материалов с карбидкремниевой матрицей, предназначенных для работы под избыточным давлением в условиях высокого теплового нагружения и окислительной среды, и могут быть использованы в химической, нефтяной и металлургической промышленности, а также...
Тип: Изобретение
Номер охранного документа: 0002558876
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f3d

Состав для выравнивания профиля приемистости нагнетательных скважин

Изобретение относится к нефтедобывающей промышленности и используется для регулирования профилей приемистости нагнетательных скважин. Состав для выравнивания профиля приемистости нагнетательных скважин, содержащий соль алюминия и воду, в качестве соли алюминия содержит хлорид и/или сульфат...
Тип: Изобретение
Номер охранного документа: 0002560047
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70d7

Термошахтный способ разработки высоковязкой нефти

Изобретение относится к нефтяной промышленности. Технический результат - высокий процент извлечения нефти (до 75%) за счет равномерного объемного распространения тепловых полей, начиная с нижней части продуктивного нефтяного пласта. Термошахтный способ разработки высоковязкой нефти включает...
Тип: Изобретение
Номер охранного документа: 0002560457
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70db

Способ получения защитных покрытий на изделиях с углеродсодержащей основой

Изобретение относится к производству изделий из углеродсодержащих материалов и предназначено для защиты от окисления изделий, работающих к условиях окислительной среды при высоких температурах. Техническим результатом является повышение жаростойкости, прочности и вязкости разрушения, а также...
Тип: Изобретение
Номер охранного документа: 0002560461
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70fb

Способ плазменной термической обработки поверхностного слоя изделий

Изобретение относится к области упрочняющей термической обработки поверхностного слоя изделий. Способ плазменной термической обработки поверхностного слоя изделий включает нагрев рабочей поверхности изделия аргоновой плазменной дугой прямого действия на токе обратной полярности. Нагрев рабочей...
Тип: Изобретение
Номер охранного документа: 0002560493
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.742c

Способ определения температур фазовых превращений в металлических материалах

Изобретение относится к термическому и дилатометрическому анализу и может быть использовано для определения критических точек фазовых превращений в металлических материалах при непрерывном нагреве. Согласно способу испытывают образец с использованием одинарного закалочного дилатометра и...
Тип: Изобретение
Номер охранного документа: 0002561315
Дата охранного документа: 27.08.2015
10.10.2015
№216.013.805a

Способ определения степени гомогенизации многокомпонентных гетерогенных смесей

Изобретение относится к технологии производства многокомпонентных гетерогенных смесей и может быть использовано в химической, фармацевтической, лакокрасочной и других отраслях промышленности при получении и анализе степени однородности как готовой многокомпонентной гетерогенной композиции, так...
Тип: Изобретение
Номер охранного документа: 0002564455
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.80ba

Керамическая масса для производства кирпича

Изобретение относится к области производства строительных изделий, в частности к изготовлению керамического кирпича. Керамическая масса для производства кирпича включает глину, измельченную макулатуру с размером частиц менее 10 мм и измельченные до размера частиц менее 0,5 мм отходы стекла при...
Тип: Изобретение
Номер охранного документа: 0002564551
Дата охранного документа: 10.10.2015
27.10.2015
№216.013.887f

Система регулирования воздухоподготовки на подземном горнодобывающем предприятии

Изобретение относится к горной промышленности, а именно к системе регулирования воздухоподготовки на поземном горном предприятии. Технический результат заключается в создании высокоэффективной автоматизированной системы регулирования воздухоподготовки на подземном горнодобывающем предприятии,...
Тип: Изобретение
Номер охранного документа: 0002566546
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8c8a

Сырьевая смесь для производства керамического кирпича

Изобретение относится к производству керамического кирпича. Технический результат - расширение сырьевой базы. Сырьевая смесь содержит, мас.%: глина 97-90, отход целлюлозно-бумажной промышленности - скоп 3-10. Размер частиц скопа не более 5 мм. Скоп содержит древесное волокно и активный ил в...
Тип: Изобретение
Номер охранного документа: 0002567585
Дата охранного документа: 10.11.2015
+ добавить свой РИД